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The foie gras is an emblematic product of French gastronomy composed of waterfowl
fatty liver. The organoleptic qualities of this product depend on the liver characteristics
such as liver weight (LW) and technological yield (TY) at cooking. One of the main issues
for producers is to classify the foie gras with high or low technological quality before
cooking them. Thus the study aims at identifying biomarkers of these characteristics
with non-invasive biomarkers in duck. 1H-NMR (nuclear magnetic resonance of the
proton) analyses were performed on plasma of male mule ducks at different time points
during the overfeeding period to obtain a large range of liver characteristics so as to
identify plasmatic biomarkers of foie gras. We used two methods, one based on bucket
data from the 1H-NMR spectra and another one based on the fingerprints of several
metabolites. PLS analyses and Linear models were performed to identify biomarkers.
We identified 18 biomarkers of liver weight and 15 biomarkers of technological yield.
As these two quality parameters were strongly correlated (−0.82), 13 biomarkers were
common. The lactate was the most important biomarker, the other were mainly amino
acids. Contrary to the amino acids, the lactate increased with the liver weight and
decreased with the technological yield. We also identified 5 biomarkers specific to LW
(3 carbohydrates: glucuronic acid, mannose, sorbitol and 2 amino acids: glutamic acid
and methionine) that were negatively correlated to liver weight. It was of main interest to
identify 2 biomarkers specific to the technological yield. Contrary to the isovaleric acid,
the valine was negatively correlated to the technological yield.

Keywords: liver, foie gras, quality, biomarker, plasma, metabolomics

INTRODUCTION

The foie gras of duck is a traditional product in France. It corresponds to a liver weighing more
than 300 g (JORF, 1993) that is composed of 50 to 60% of lipids. During the cooking process, the
lipids can melt resulting in a low cooking technological yield (TY). In addition to deteriorating
the sensory qualities of the products, TY also directly influences the economic valuation of the
foie gras. TY is controlled by the French legislation as it must exceed 70% in products labeled Foie
gras (JORF, 1993).
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The manufacturers classify the livers in function of their
potential cooking TY using the liver weight (LW) and/or the
liver texture. They can adapt their cooking protocol from
pasteurization to sterilization to avoid the melting process and
to improve TY. However the prediction of the potential cooking
TY is not satisfying. As a result, a part of the cooked foie gras
products are downgraded into products with a lower added value.
One of the major challenges for manufacturers is therefore to
predict TY of foie gras and to choose the best food processing.
In addition, TY has a−0.80 genetic correlation with LW (Marie-
Etancelin et al., 2011) and a −0.83 phenotypic correlation
with LW (Bonnefont et al., 2019). But few authors tried to
predict it before animal slaughtering. To predict phenotypes
by identifying biomarkers, the plasma in an interesting fluid
because plasma sampling is minimally invasive. Hermier et al.
(1999) already analyzed some phospholipids of plasmatic very
low density lipoprotein (VLDL) and high density lipoprotein
(HDL) in control and overfed Landes goose. They showed a
stronger quantity of phosphatidylcholine in VLDL and a stronger
quantity of phosphatidylethanolamine in HDL in overfed goose
(Hermier et al., 1999). Furthermore Tavernier et al. (2017)
measured the triglycerides (TG) and non-esterified-fatty-acid
(NEFA) concentrations in plasma of mule ducks during the
overfeeding period. They showed a non-linear increase of TG
and NEFA in parallel with LW. Recently, Pioche et al. (2019)
measured the total cholesterol, the TG and the glucose in
plasma of mule ducks during the overfeeding period. They
highlighted a correlation between the total cholesterol and LW
(0.88), between TG and LW (0.57) and between the glucose
and LW (0.27) (Pioche et al., 2019). Thus these plasmatic
molecules could be potential biomarkers of TY. The current
study aims at identifying new biomarkers of foie gras LW and
TY in mule duck.

The concentration of these metabolites directly reflects
the biochemical activity and state of cells and tissues. All
these metabolites can be potential biomarkers of TY that
can be identify by untargeted metabolomics. Therefore,
metabolomics has been strongly used to identify biomarkers
(Quinones and Kaddurah-Daouk, 2009).

In the current study, plasmatic biomarkers of LW and TY were
investigated by metabolomics approach using proton nuclear
magnetic resonance (1H-NMR). The identification of LW and TY
biomarkers could be used for both grading the liver of the mule
ducks and increasing the added value of foie gras and improving
knowledge in human hepatic steatosis.

MATERIALS AND METHODS

Animal Experimental Design and
Characteristics
The experimental protocol is clearly described in the previous
paper (Bonnefont et al., 2019). Briefly, 120 male mule ducks
(female Cairinamoschata x male Anas platyrhynchos) were reared
collectively until 12 weeks. They were overfed twice a day
during 12 days with two different programs. But the overfeeding
programs did not impact duck performances (Bonnefont et al.,

2019) and were not taken into account in this current study.
A total of 30 ducks were slaughtered at day 6, day 8, day 10
and day 12, 11 h after their last meal (Figure 1A). After 6 days
of overfeeding the liver weight is expected to be superior to
300 g that corresponds to French definition of foie gras. After
slaughtering the ducks, the liver was weighed. TY was determined
after foie gras cooking as described in Rémignon et al. (2018), as
following:

TY (%) = [crude weight of liver in g – (cooked weight of liver
in g - visible melted lipids in g)] × 100/[crude weight of liver in
g]. At each time point, 16 or 17 ducks were selected among the 30
ducks for plasma analyses (n = 65 in total; Figure 1A). The mean
and the variability of LW and TY in the group of 30 birds and in
the subgroup were equivalent. LW and TY during the overfeeding
period are presented in the Figures 1B,C.

Plasma Sampling and 1H-NMR Analysis
1 h before slaughtering blood was sampled from the venous
occipital sinus in heparin-lithium tubes. The tubes were
centrifuged at 3,400 g at 4◦C during 10 min. The plasmas were
collected and stored at−80◦C for further analyses.

All plasma samples were extracted according to the procedure
previously described to precipitate proteins and to avoid
degraded NMR signal due to high lipids levels in fatty liver
samples (Nagana Gowda et al., 2015). Briefly, 300 µL of plasma
and 600 µL of methanol (MeOH) were mixed and incubated at
−20◦C for 20 min. After centrifugation (30 min at 11,000 g at
4◦C), 800 µL of supernatant was isolated and evaporated using a
vacuum concentrator (Concentrator plus, Eppenforf, Germany).
Then, dried plasma extracts were diluted in 700 µL of NMR
deuterium oxide (D2O) phosphate buffer (pH 7), containing
sodium trimethylsilyl propionate (TSP) as an internal standard.
The samples were then centrifuged at 4,600 g during 15 min at
4◦C and 600 µl of supernatant were transferred into 5 mm NMR
tubes. 1H-NMR analyses were performed on a Bruker Avance
III HD spectrometer (Bruker Biospin, Rheinstetten, Germany)
operating at a proton frequency of 600.13 MHz with an inverse
detection 5-mm 1H-13C-15N cryoprobe.

1H-NMR spectra were acquired at 300 K with the nuclear
Overhauser effect spectroscopy (NOESY) pulse sequence. A total
of 128 transients were collected into 32,000 data points with a
spectral width of 20 ppm and an acquisition time of 2.7 s. Prior to
the Fourier transform procedure an exponential line-broadening
of 0.3 Hz was applied to the free induction decay (FID).

Spectra Pre-processing and Statistical
Analysis
1H-NMR spectra were analyzed by two methods: (i) a bucket
method and (ii) a metabolite method.

(i) The bucket method is traditionally used to analyze 1H-
NMR data. It consisted in converting the 1H-NMR spectra into
a bucket intensity table with the Workflow4Metabolomics 3.3
online platform (1Tremblay et al., 2014). (1) The spectra pre-
processing included the following steps: solvent suppression
(exclusion of the 5.1 to 4.5 ppm region corresponding to water

1https://workflow4metabolomics.org/
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FIGURE 1 | Description of the duck samples. Experimental design (A) Evolution of liver weight (B) and technological yield (C) during the overfeeding period (n = 16
or 17 at each time point).

signal), zero-filling, apodization, Fourier transform, phasing,
baseline correction and calibration with TSP at 0.0 ppm. (2)
The spectra alignment was performed. (3) The bucketing was
defined with a 0.01 ppm interval from 0.5 to 10 ppm. The buckets
corresponding to residual methanol from extraction (3.38 to
3.33 ppm) were removed. The intensity of a bucket corresponded
to the intensity of the spectrum curve for that bucket. (4)
The normalization was done with the whole spectrum intensity
method as following:

Normalized bucket intensity = Raw bucket intensity/Whole
spectrum intensity.

A table of bucket intensities was obtained with 65 rows
corresponding to the animals and 758 columns corresponding to
the buckets identified by their chemical shifts.

(ii) The recent metabolite method consists in converting the
1H-NMR spectra into a metabolite relative concentration table
with the ASICS R package (R package version 4.0.22) that contains
an automatic approach to identify and quantify metabolites in
a complex 1H-NMR spectrum from their unique peak pattern
(fingerprint) (Tardivel et al., 2017; Lefort et al., 2019). It is a
relative quantification in function of the whole spectrum and
the metabolite relative concentration has no unit. The metabolite

2https://bioconductor.org/packages/ASICS/

database used consisted in spectra of 176 pure metabolites
described in Tardivel et al. (2017). A total of 67 metabolites were
identified and quantified in at least one sample. The methanol
was removed as it was used to extract the metabolites. Then only
43 metabolites were kept for further analyses as they were present
in at least 50% of the samples at least at one time point. Thus the
final table of metabolite relative concentration contained 65 rows
corresponding to the animals and 43 columns corresponding to
the metabolites.

The bucket and metabolite relative concentration tables were
analyzed with SIMCA P + software (version 12, Umetrics,
AB, Umea, Sweden) for carrying out multivariate statistical
analysis. First, the variables were pre-processed with a Pareto
normalization. A principal component analysis (PCA) was
performed for finding outliers. Then partial least square analyses
(PLS) were performed to explain Y variables (LW and TY) by
the X variables (bucket or metabolite data). The PLS scatter plots
were drawn. The latent variables that corresponded to the scores
t1, t2. . . were new variables summarizing the X variables. The first
latent variable t1 explained the largest variation of the X space.
Usually the scatter plot of t1 vs t2 is a window in the X space,
displaying how the X observations are situated with respect to
each other. Here, as only one latent variable was created, the
PLS scatter plot represented t1 on the vertical axis vs sample
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FIGURE 2 | PLS score plots for foie gras (A) for liver weight with the bucket method (R2X = 0.304, R2Y = 0.376, Q2 = 0.283) and (B) for liver weight with the
metabolite method (R2X = 0.339, R2Y = 0.323, Q2 = 0.269), (C) for technological yield with the bucket method (R2X = 0.313, R2Y = 0.298, Q2 = 0.175) and (D) for
technological yield with the metabolite method (R2X = 0.326, R2Y = 0.254, Q2 = 0.159). The numbers correspond to the identification of the samples and the colors
to the liver weight values. The legend is indicated on the right of the figures.

FIGURE 3 | Permutation plots. (A) for liver weight with the bucket method, (B) for liver weight with the metabolite method, (C) for technological yield with the bucket
method, (D) for technological yield with the metabolite method. 500 permutations were performed. The permutation plot shows, for a selected Y-variable, on the
vertical axis the values of R2Y and Q2 for the original model and for the Y-permuted models. The horizontal axis shows the correlation between the permuted
Y-vectors and the original Y-vector for the selected Y. The original Y has a correlation 1.0 with itself.

Frontiers in Physiology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 628264

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-628264 February 8, 2021 Time: 21:51 # 5

Mozduri et al. Plasmatic Biomarkers of Foie Gras

FIGURE 4 | Plots of predicted vs observed data. (A) for liver weight with the bucket method, (B) for liver weight with the metabolite method, (C) for technological
yield with the bucket method, and (D) for technological yield with the metabolite method. The Root Mean Square Error of Estimation (RMSEE) and the Root Mean
Square Error after cross validation (RMSECv) are indicated.

identification on the horizontal axis. The intensity of the Y-values
were indicated by the colors of the samples. The goodness-of-fits
of the models were estimated by the proportion of cumulative
explained variance (R2) for both the X variables (X = buckets
or metabolites) and the Y variable (Y = LW or TY) and by the
predictive ability of the model (Q2). Q2 is calculated by a cross-
validation. The data were divided into 7 parts and each 1/7th in
turn was removed. A model was built on the 6/7th of the data
until all the data have been predicted. The predictive data are then
compared with the original data and the sum of squared errors
calculated for the whole dataset. The Root Mean Square Error
of Estimation (RMSEE) was computed and indicated the fit of
the observations to the model. The Root Mean Square Error after
cross validation (RMSECv) was computed. The RMSECv has to
be close to the RMSEE. The plot of the Y observed vs Y predicted
values were drawn for each PLS model. With a good model all the
points fall close to the 45 degree line. The validation of the PLS
model was evaluated by comparing the goodness of fit (R2Y and
Q2) of the original model with the goodness of fit of 500 models
based on data where the order of the Y-observations has been
randomly permuted, while the X-matrix (bucket or metabolite)
has been kept intact. The permutation plot shows, for a selected
Y-variable (LW or TY), on the vertical axis the values of R2Y
and Q2 for the original model and for the Y-permuted models.
The horizontal axis shows the correlation between the permuted
Y-vectors and the original Y-vector for the selected Y (LW or

TY). The original Y has a correlation 1.0 with itself. The criteria
for validity of the original model is, all permuted Q2-values are
lower than the original points and the regression line of the Q2-
points intersects the vertical axis at, or below zero. The latent
variables associated with interesting axes were analyzed by the
variable importance in projection (VIP) method. The variables
(buckets or metabolites) with a VIP superior to 1 were considered
as “important”. Then, a one-by-one regression with either the LW
effect or the TY effect was performed on the whole datasets. The
P-values were corrected for multiple tests with the Benjamini-
Hochberg correction using the R software (version 3.6.1) and
named “BH P-values”. A variable was considered as “significant”
when the BH P-value was inferior to 0.050 and “tended to
be significant” when the BH P-Value was between 0.050 and
0.100. For the buckets with VIP superior to 1, the corresponding
metabolites were identified manually by importing the chemical
shift lists into the Human Metabolome Database3 (Wishart et al.,
2009). All carbohydrates identified were D-carbohydrates and
all amino acids were L-amino acids. To simplify the names of
the metabolites, the “D-“ and the “L-“ were removed before the
names of the carbohydrates and the amino acids, respectively.
To confirm the identification of the metabolites, the 1H-NMR
peaks of these metabolites were manually checked on the sample
spectra of some plasma samples with TopSpin software (version

3http://hmdb.ca/
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TABLE 1 | List of the 13 biomarkers of foie gras liver weight identified with the
bucket method.

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζη Number of
buckets with

VIP > 1ε

Carbohydrates

Lactate 0.001

HMDB0000190 doublet 1.31–1.32 0.001 5

quartet 4.08–4.12 0.001 to 0.020 7

Mannose 0.030

HMDB0000169 multiplet 3.35–3.38 0.001 1

triplet 3.54–3.58 0.005 1

multiplet 3.63–3.67 < 0.001 4

multiplet 3.71–3.77 0.001 to 0.300 5

multiplet 3.78–3.79 0.004 to 0.007 2

multiplet 3.80–3.86 < 0.001 to
0.200

5

multiplet 3.87–3.89 <0.001 1

multiplet 3.91–3.94 0.001 2

doublet 5.17 0

Sorbitol 0.040

HMDB0000247 multiplet 3.58–3.67 < 0.001 to
0.005

9

doublet 3.72–3.73 0.300 2

multiplet 3.74–3.79 0.001 to 0.300 6

doublet 3.81–3.82 < 0.001 1

singlet 3.83 0.200 1

Xylitol 0.230

HMDB0002917 multiplet 3.62–3.65 < 0.001 4

multiplet 3.70–3.73 0.300 2

multiplet 3.79–3.82 < 0.001 to
0.007

3

Amino Acids

Alanine < 0.001

HMDB0000161 doublet 1.46–1.47 0.060 2

quartet 3.75–3.79 0.001 to 0.300 4

Arginine 0.002

HMDB0000517 multiplet 1.61–1.75 0.090 1

multiplet 1.87–1.93 0.003 to 0.009 2

triplet 3.22–3.25 0.005 to 0.010 3

triplet 3.74–3.77 0.001 to 0.300 4

Glutamic Acid < 0.001

HMDB0000148 multiplet 2.00–2.15 <0.001 to
0.001

2

singlet 2.29 0.003 1

singlet 2.31 0.003 1

doublet 2.32–2.33 < 0.001 to
0.003

2

doublet 2.34 0.001 1

doublet 2.35–2.36 < 0.001 to
0.002

2

(Continued)

TABLE 1 | Continued

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζη Number of
buckets with

VIP > 1ε

singlet 2.39 0.002 1

quartet 3.74–3.76 0.001 to 0.300 5

Glutamine < 0.001

HMDB0000641 multiplet 2.09–2.16 <0.001 to
0.030

8

multiplet 2.39–2.49 0.060 to 0.070 2

triplet 3.75–3.78 0.001 to 0.300 6

Isoleucine < 0.001

HMDB0000172 triplet 0.91–0.94 0.003 to 0.006 2

doublet 0.99–1.00 0.007 to 0.020 2

multiplet 1.21–1.28 0.01 to 0.050 6

multiplet 1.42–1.49 0.060 2

multiplet 1.93–2.00 < 0.001 to
0.009

8

doublet 3.65–3.66 <0.001 3

Lysine 0.002

HMDB0000182 multiplet 1.38–1.52 0.001 to 0.060 4

multiplet 1.68–1.74 0.090 1

singlet 1.83 0

singlet 1.85 0

doublet 1.86–1.87 0

doublet 1.87–1.88 0

triplet 1.89–1.90 0

doublet 1.91 0.009 1

singlet 1.93 0.009 1

singlet 1.94 0.003 2

triplet 3.00–3.03 0.080 0

triplet 3.73–3.75 0.003 to 0.300 4

Methionine 0.030

HMDB0000696 multiplet 2.07–2.16 < 0.001 to
0.030

11

triplet 2.62–2.65 0.010 to 0.020 2

triplet 3.84–3.86 < 0.001 to
0.20

4

Pyroglutamic Acid <0.001

multiplet 1.99–2.05 < 0.001 to
0.002

9

HMDB0000267 multiplet 2.35–2.43 <0.001 to
0.070

6

multiplet 2.46–2.53 0.020 to 0.070 3

quartet 4.16–4.19 < 0.001 1

Other organic compound

Glycerol < 0.001

HMDB0000131 quartet 3.53–3.57 0.005 to 0.200 2

quartet 3.62–3.66 < 0.001 4

multiplet 3.75–3.79 0.003 to 0.300 6

(Continued)
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TABLE 1 | Continued

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζη Number of
buckets with

VIP > 1ε

Methylmalonic Acid < 0.001

HMDB00202 doublet 1.22–1.24 0.010 to 0.050 5

quartet 3.14–3.18 0.080 1

γFor each metabolite the nature of each 1H-NMR peak is mentioned.
δFor each metabolite the range of chemical shift of each peak is mentioned in ppm.
ζFor each bucket, the effect of the bucket intensity on the liver weight was tested by
a linear model with R software and the P-Values were corrected with the Benjamini-
Hochberg procedure and named BH P-Values. For each metabolite the range of
BH P-Values of each peak is presented.
ηFor each biomarker the metabolite relative concentration was computed with
bucket data. The effect of the metabolite relative concentration on the liver weight
was tested by a linear model with R software and the P-Values were corrected with
the Benjamini-Hochberg procedure and named BH P-Values. For each biomarker,
the BH P-Value is indicated in bold.
εThe PLS model to describe the liver weight with bucket data was plotted. The first
latent enabled to separate the fatty livers in function of their liver weight. The VIP of
the buckets involved in the first latent were extracted. For each 1H-NMR peak of
each metabolite, the number of buckets with VIP > 1 is indicated.

TABLE 2 | List of the 9 biomarkers of foie gras liver weight identified with the
metabolite method.

Metabolites VIPε BH P-Valueζ R2

Glucose 1.90 0.151 0.04

Glucuronic Acid 1.03 0.006 0.17

Lactate 4.21 0.008 0.15

Alanine 1.30 0.024 0.11

Glutamine 1.10 0.075 0.07

Glycine 1.21 0.007 0.15

Leucine 1.12 0.002 0.22

Proline 2.50 < 0.001 0.32

Serine 1.08 0.033 0.10

ζFor each biomarker the effect of their relative concentration on the liver weight was
tested by a linear model with R software and the P-Values were corrected with the
Benjamini-Hochberg procedure and named BH P-Values.

4.0, Bruker BioSpin, Germany). For each metabolite all 1H-NMR
peaks were listed. For each 1H-NMR peak the VIP values and the
BH P-values of the corresponding buckets were summarized by
the number of buckets with VIP superior to 1 and by the range
of BH P-values, respectively. The relative concentrations (RC) of
a metabolite with the bucket data were estimated with a method
adapted from Kostidis et al., 2017, by the following formula:

Metabolite RC j = mean [(intensity Peak ij)/(H number Peak
ij)]

Where j represents a specific metabolite.
Where i represents each proton peak of the 1H-NMR

spectrum of the j metabolite.
Where “intensity Peak ij” was computed as the sum of the

bucket intensity of the i peak for the j metabolite.
Where “H number Peak ij” corresponds to the number of

protons that corresponds to the i peak for the j metabolite.
Then the lists of the biomarkers obtained by the bucket

method and the metabolite method were compared with a Venn

diagram4. All the biomarkers identified by the bucket method
and/or the metabolite method were considered as biomarkers.
A network analysis based on the correlation of the biomarker RC
and the Y-variable (LW or TY) was performed with the functions
pls and network of the MixOmics R package (Lê Cao et al., 2009;
Rohart et al., 2017) (R package version 4.0.2.5).

RESULTS

The rearing of male mule ducks that were overfed during 6
to 12 days enabled to obtain animals with large variability of
performances. The liver of ducks weighed between 302.3 and
914.9 g and the technological yield was between 54.8 and 99.5%
(Figures 1B,C). This experimental protocol mimicked the high
variability of the liver characteristics that are present in the foie
gras industry and was suitable to identify plasmatic biomarkers
of foie gras quality by 1H-NMR analysis.

1-Identification of Plasmatic Biomarkers
of Liver Weight of Foie Gras
First plasmatic biomarkers of LW were identified with the bucket
method. After a PCA no outlier was detected (not shown).
The PLS scatter plot had only one latent variable and the
parameters were cumulative R2X = 0.304 and R2Y = 0.376. The
projection of the samples highlighted an evolution of LW with
the first latent variable on the vertical axis (Figure 2A). The
prediction of the model was Q2 = 0.283. The original R2Y and
Q2-values were higher than the ones obtained after permutation
and the regression line of Q2-points intersected the vertical
axis below zero (Figure 3A). The RMSEE and the RMSECv
were close (145.3 and 153.3, respectively, Figure 4A). A group
of 124 buckets with a VIP > 1 explained the latent variable
(Supplementary Data 1). For the buckets with VIP > 1, the
involved metabolites were identified. They corresponded to 14
metabolites summarized in Table 1. The relative concentrations
of the metabolites were computed and the BH P-values of
the metabolites were presented in bold in Table 1. In total,
13 out of the 14 metabolites were statistically significant (BH
P-Value < 0.05) and were further considered as biomarkers of
LW. For each biomarker, the numbers of important peaks that
contained at least one bucket with VIP > 1 in comparison to the
numbers of 1H-NMR peaks were indicated in parenthesis. The
biomarkers of LW were 3 carbohydrates: lactate (HMDB0000190,
with 2/2 important peaks), mannose (HMDB0000169 with
8/9) and sorbitol (HMDB0000247 with 5/5), 8 amino acids:
alanine (HMDB0000161 with 2/2), arginine (HMDB0000517
with 4/4), glutamic acid (HMDB0000148 with 8/8), glutamine
(HMDB0000641 with 3/3), isoleucine (HMDB0000172 with 6/6),
lysine (HMDB0000182 with 6/12), methionine (HMDB0000696
with 3/3) and pyroglutamic acid (HMDB0000267 with 4/4) and
also glycerol (HMDB0000131 with 3/3) and methylmalonic acid
(HMDB00202 with 2/2; Table 1).

4https://bioinfogp.cnb.csic.es/tools/venny/index.html
5http://www.bioconductor.org/packages/release/bioc/html/mixOmics.html
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FIGURE 5 | Comparisons of biomarker lists with Venn diagram. (A) Biomarkers of liver weight (LW) identified by the bucket method and by the metabolite method
(with VIP > 1 and BH P-value < 0.1), (B). Biomarkers of technological yield (TY) identified by the bucket method and by the metabolite method. (C) Biomarkers of
liver weight and technological yield identified by at least one method.

In parallel, the metabolite method was applied and the 65
spectra were converted into a table of 43 metabolite intensities
with the ASICS R package. No outlier was detected by PCA (not
shown). The PLS scatter plot had only one latent variable and
the parameters were cumulative R2X = 0.339 and R2Y = 0.323
(Figure 2B). The prediction of the model was Q2 = 0.269. The
original R2Y and Q2-values were higher than the ones obtained
after permutation and the regression line of Q2-points intersected
the vertical axis below zero (Figure 3B). The RMSEE and the
RMSECv were close (10.7 and 11.4, respectively, Figure 4B).
The evolution of LW was well represented on the vertical axis
corresponding to the first latent variable (Figure 2B). Only 9
metabolites had a VIP > 1 and 7 metabolites were significant
(BH P-value < 0.05) and 1 metabolite tended to be significant
(BH P-value < 0.1) (Table 2). Only these 8 metabolites were
considered as biomarkers of LW, including 2 carbohydrates:
glucuronic acid (VIP = 1.03, BH P-value = 0.006) and lactate
(VIP = 4.21, BH P-value = 0.008) and 6 amino acids: alanine
(VIP = 1.30, BH P-value = 0.024), glutamine (VIP = 1.10, BH
P-value = 0.075), glycine (VIP = 1.21, BH P-value = 0.007),
leucine (VIP = 1.12, BH P-value = 0.002), proline (VIP = 2.50,
BH P-value < 0.001) and serine (VIP = 1.08, BH P-value = 0.033;
Table 2).

In conclusion, 18 biomarkers were identified for LW whose
3 biomarkers identified by both the bucket method and the
metabolite method (lactate, alanine and glutamine), 5 ones
identified only by the metabolite method (glucuronic acid,
glycine, leucine, proline and serine) and 10 ones identified only
by the bucket method (mannose, sorbitol, arginine, glutamic acid,

isoleucine, lysine, methionine, pyroglutamic acid, glycerol and
methylmalonic acid; Figure 5A). For all the 18 biomarkers, their
RC were computed with the bucket data and the plots of their RC
in function of LW were presented in Figure 6A. The correlation
network between LW and the 18 biomarkers was presented in
Figure 7A. LW was positively correlated to lactate (0.62) and
negatively correlated to other carbohydrates: mannose (−0.78),
sorbitol (−0.76) and glucuronic acid (−0.63) and to all the
amino acids: alanine (−0.97), glutamic acid (−0.96), glutamine
(−0.93), arginine (−0.92), glycine (−0.87), lysine (−0.84), serine
(−0.82), methionine (−0.79), leucine (−0.65), proline (−0.64),
pyroglutamic acid (−0.32), isoleucine (−0.29) and to glycerol
(−0.96) and methylmalonic acid (−0.29; Figure 6A).

2- Identification of Plasmatic Biomarkers
of Technological Yield of Foie Gras
A PCA was first performed but no outlier was detected (not
shown). The PLS scatter plot to explain TY had only one
latent variable and the parameters were cumulative R2X = 0.313
and R2Y = 0.298. The projection of the samples highlighted
an evolution of TY with the first latent variable on the
vertical axis (Figure 2C). The prediction of the model was
Q2 = 0.175. The original R2Y and Q2-values were higher
than the ones obtained after permutation and the regression
line of Q2-points intersected the vertical axis below zero
(Figure 3C). The RMSEE and the RMSECv were close (151.3
and 154.8, respectively, Figure 4C). A group of 128 buckets
with a VIP > 1 explained the latent variable (Supplementary
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FIGURE 6 | Plots of biomarker relative concentration in function of liver weight (LW) (A) or technological yield (TY) (B). The relative concentrations are computed with
the bucket data and have no unit. The regression curves are in red.

Data 2). They corresponded to 16 metabolites (Table 3). In
total, 9 out of the 16 metabolites were statistically significant
(BH P-Value < 0.05) and 1 tended to be significant (BH
P-value = 0.070). These 10 biomarkers were further considered
as biomarkers of TY. For each biomarker, the numbers of
important peaks that contained at least one bucket with VIP > 1
and the total numbers of 1H-NMR peaks were indicated in
parenthesis. The biomarkers of TY were 1 carbohydrate: lactate

(HMDB0000190 with 2/2 important peaks), 6 amino acids:
alanine (HMDB0000161 with 2/2), arginine (HMDB0000517
with 4/4), glutamine (HMDB0000641 with 3/3), isoleucine
(HMDB0000172 with 6/6), lysine (HMDB0000182 with 8/12)
and pyroglutamic acid (HMDB0000267 with 4/4) and 3
other organic compounds: glycerol (HMDB0000131 with 3/3),
isovaleric acid (HMDB0000718 with 3/3) and methylmalonic
acid (HMDB00202 with 2/2; Table 3).
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FIGURE 7 | Correlation networks of foie gras biomarkers (A) of liver weight (Y represents the liver weight) and (B) of technological yield (Y represents the
technological yield). The relative concentration used for the correlations are calculated with the bucket data.

In parallel, the metabolite method was performed. No outlier
was detected by PCA (not shown). The PLS scatter plot had
only one latent variable and the parameters were cumulative
R2X = 0.326 and R2Y = 0.254 (Figure 2D). The prediction of
the model was Q2 = 0.159. The original R2Y and Q2-values
were higher than the ones obtained after permutation and the
regression line of Q2-points intersected the vertical axis below
zero (Figure 3D). The RMSEE and the RMSECv were close
(11.0 and 11.5, respectively, Figure 4D). The latent variable on
the vertical axis explained the evolution of TY (Figure 2D)
and 9 metabolites had a VIP values superior to 1 (Table 4).
But only 7 metabolites were significant (BH P-value < 0.05)
and 1 metabolite tended to be significant (BH P-value = 0.080).
Only these 8 metabolites were considered as biomarkers of
TY. There were only 1 carbohydrate: lactate (VIP = 4.03, BH
P-value = 0.046) and 7 amino acids: alanine (VIP = 1.26, BH
P-value = 0.080), glutamine (VIP = 1.65, BH P-value = 0.043),
glycine (VIP = 1.39, BH P-value = 0.010), leucine (VIP = 1.38,
BH P-value < 0.001), proline (VIP = 2.68, BH P-value < 0.001),
serine (VIP = 1.33, BH P-value = 0.043) and L-valine (VIP = 1.13,
BH P-value = 0.010; Table 4).

In conclusion, 15 biomarkers were identified for TY: 3
biomarkers were commonly identified by the bucket and the
metabolite methods (lactate, alanine and glutamine), 5 ones
were identified only by the metabolite method (glycine, leucine,
proline, serine and valine) and 7 ones were identified by the
bucket method (arginine, isoleucine, lysine, pyroglutamic acid,
glycerol, isovaleric acid and methylmalonic acid; Figure 5B).
For the 15 biomarkers of TY, their RC were computed with the
bucket data and the plots of their RC in function of TY were
presented in Figure 6B. The correlation network between TY
and the biomarker RC was presented in Figure 7B. TY was
negatively correlated to lactate (−0.58) and valine (−0.58) and
positively correlated to glutamine (0.91), alanine (0.85), proline
(0,83), lysine (0.81), arginine (0.73), glycine (0.65), pyroglutamic

acid (0.61), isoleucine (0.58), serine (0.57) and leucine (0.35;
Figure 6B).

Consequently, the results of the 1H-NMR analysis identified
18 biomarkers for the liver weight of foie gras and 15 for its
technological yield (Table 5). As the phenotypic correlation
between LW and TY was strong (−0.82, P-value < 0.001),
13 biomarkers were common to LW and TY, of which 1
carbohydrate: lactate and 10 amino acids: alanine, arginine,
glutamine, glycine, isoleucine, leucine, lysine, proline,
pyroglutamic acid, serine and also glycerol and methylmalonic
acid (Figure 5C and Table 5). All these biomarkers were
negatively correlated to LW and positively correlated to TY,
except the lactate. Thus the small livers with high technological
yield were characterized by a low concentration of lactate and
a strong concentration of the other biomarkers and it was
the contrary for the heavy livers with low technological yield.
Moreover, 5 biomarkers were specific to LW: glucuronic acid,
mannose, sorbitol, glutamic acid and methionine. All were
negatively correlated to LW. Thus their concentrations were
higher in small livers than in heavy livers. In addition, two
biomarkers were specific to technological yield: the valine was
negatively correlated to TY and the isovaleric acid was positively
correlated to TY. As a result, the livers with high TY were
characterized by a high concentration of isovaleric acid and a
small concentration of valine and vice versa (Table 5).

DISCUSSION

NMR Methodology Discussion
A constant volume of 300 µL was sampled and prepared
for further 1H-NMR analysis. Thus the metabolite quantity
was supposed to be equivalent between all samples. To build
the bucket intensity table, the intensity of each bucket was
normalized by the intensity of the whole spectrum that was
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TABLE 3 | List of the 15 biomarkers of foie gras technological yield identified with
the bucket method.

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζ Number of
buckets with

VIP > 1ε

Carbohydrates

Lactate 0.001

HMDB0000190 doublet 1.31–1.32 0.001 to 0.060 7

quartet 4.08–4.12 0.001 to 0.040 7

Mannose 0.230

HMDB0000169 multiplet 3.35–3.38 0.003 1

triplet 3.54–3.58 < 0.001 to
0.006

2

multiplet 3.63–3.67 <0.001 to
0.004

5

multiplet 3.71–3.77 0.010 to 0.100 3

multiplet 3.78–3.79 0.002 to 0.020 2

multiplet 3.80–3.86 < 0.001 to
0.003

3

multiplet 3.87–3.89 <0.001 2

multiplet 3.91–3.94 0.001 to 0.002 3

doublet 5.17 0

Sorbitol 0.240

HMDB0000247 multiplet 3.58–3.67 < 0.001 to
0.006

9

doublet 3.72–3.73 0.030 1

multiplet 3.74–3.79 0.002 to 0.100 5

doublet 3.81–3.82 < 0.001 to
0.003

2

singlet 3.83 <0.001 1

Xylitol 0.690

HMDB0002917 multiplet 3.62–3.65 < 0.001 to
0.004

4

multiplet 3.70–3.73 0.030 1

multiplet 3.79–3.82 < 0.001 to
0.003

3

Amino Acids

Alanine 0.004

HMDB0000161 doublet 1.46–1.47 < 0.100 2

quartet 3.75–3.79 <0.001 to
0.100

7

Arginine 0.040

HMDB0000517 multiplet 1.61–1.75 0.060 1

multiplet 1.87–1.93 0.010 to 0.030 2

triplet 3.22–3.25 0.030 to 0.070 3

triplet 3.74–3.77 0.010 to 0.100 3

Glutamine < 0.001

HMDB0000641 multiplet 2.09–2.16 0.001 to 0.020 7

multiplet 2.39–2.49 0.006 to 0.030 7

triplet 3.75–3.78 0.002 to 0.100 5

Isoleucine 0.003

HMDB0000172 triplet 0.91–0.94 0.002 to 0.010 2

doublet 0.99–1.00 0.004 to 0.100 3

multiplet 1.21–1.28 0.020 to 0.100 5

multiplet 1.42–1.49 0.100 2

(Continued)

TABLE 3 | continued

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζ Number of
buckets with

VIP > 1ε

multiplet 1.93–2.00 0.001 to 0.030 7

doublet 3.65–3.66 < 0.001 to
0.004

4

Leucine 0.690

HMDB0000687 triplet 0.94–0.96 0.002 to 0.090 3

multiplet 1.63–1.76 0.030 to 0.090 4

multiplet 3.70–3.74 0.002 to 0.100 3

Lysine 0.070

HMDB0000182 multiplet 1.38–1.52 0.006 to 0.100 3

multiplet 1.68–1.74 4

singlet 1.83 0

singlet 1.85 0

doublet 1.86–1.87 0

doublet 1.87–1.88 0

triplet 1.89–1.90 0.030 1

doublet 1.91 0.030 1

singlet 1.93 0.030 1

singlet 1.94 0.007 to 0.010 2

triplet 3.00–3.03 0.100 1

triplet 3.73–3.75 0.030 to 0.100 2

Methionine 0.230

HMDB0000696 multiplet 2.07–2.16 < 0.001 to
0.020

10

triplet 2.62–2.65 0.050 1

triplet 3.84–3.86 < 0.001 1

Pyroglutamic
Acid

0.001

HMDB0000267 multiplet 1.99–2.05 < 0.001 to
0.002

8

multiplet 2.35–2.43 0.003 to 0.030 4

multiplet 2.46–2.53 < 0.001 to
0.030

5

quartet 4.16–4.19 <0.001 1

Other organic
compounds

Ethanolamine 0.410

HMDB0000149 triplet 3.12–3.14 0.005 to 0.100 2

triplet 3.80–3.82 < 0.001 to
0.003

2

Glycerol 0.002

HMDB0000131 quartet 3.53–3.57 0.006 1

quartet 3.62–3.66 < 0.001 to
0.004

4

multiplet 3.75–3.79 0.002 to 0.100 6

Isovaleric
acid

0.001

HMDB0000718 doublet 0.89–0.90 0.010 to 0.050 2

multiplet 1.90–1.98 0.002 to 0.030 6

doublet 2.04–2.05 < 0.001 to
0.001

2

Methylmalonic
acid

0.005

(Continued)
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TABLE 3 | continued

Metabolites 1H-NMR
Peakγ

Chemical
shiftδ (ppm)

BH P-Valueζ Number of
buckets with

VIP > 1ε

HMDB00202 doublet 1.22–1.24 0.020 to 0.100 4

quartet 3.14–3.18 0.005 1

γFor each metabolite the nature of each 1H-NMR peak is mentioned.
δFor each metabolite the range of chemical shift of each peak is mentioned in ppm.
ζFor each bucket, the effect of the bucket intensity on the technological yield was
tested by a linear model with R software and the P-Values were corrected with the
Benjamini-Hochberg procedure and named BH P-Values. For each metabolite the
range of BH P-Values of each peak is mentioned.
ηFor each biomarker the metabolite relative concentration was computed with the
bucket data. The effect of the metabolite relative concentration on the technological
yield was tested by a linear model with R software and the P-Values were
corrected with the Benjamini-Hochberg procedure and named BH P-Values. For
each biomarker, the BH P-Value is indicated in bold.
εThe PLS model to describe the liver weight with bucket data was plotted. The first
latent enabled to separate the fatty livers in function of their technological yield. The
VIP of the buckets involved in the first latent were extracted. For each 1H-NMR
peak of each metabolite, the number of buckets with VIP > 1 is indicated.

TABLE 4 | List of the 9 biomarkers of foie gras technological yield identified with
the metabolite method.

Metabolites VIPε BH P-Valueζ R2

Glucose 1.00 0.547 0.01

Lactate 4.03 0.046 0.10

Alanine 1.26 0.080 0.08

Glutamine 1.65 0.043 0.11

Glycine 1.39 0.010 0.15

Leucine 1.38 <0.001 0.25

Proline 2.68 <0.001 0.28

Serine 1.33 0.043 0.11

Valine 1.13 0.010 0.16

ζFor each biomarker the effect of their relative concentration on the liver weight was
tested by a linear model with R software and the P-Values were corrected with the
Benjamini-Hochberg procedure and named BH P-Values.

assumed to be equivalent in all samples, that may insert an error
in the bucket intensity values. Moreover, to compute the relative
concentration of a metabolite, the intensity of each 1H-NMR
peak was divided by the number of proton for this peak as it
was proposed by Kostidis et al. (2017). Then, the mean of the
intensity of all 1H-NMR peaks for this metabolite was computed.
But contrary to Kostidis et al. (2017), the concentration of a
metabolite was not divided by the concentration of a standard, as
the normalization of the buckets was done by the intensity of the
whole spectrum, thus the bucket intensity was already a relative
bucket intensity.

In addition, one of the bias of the 1H-NMR analysis is that
several 1H-NMR peaks of different metabolites can have the
same chemical shift. Thus there is an error in the estimation
of the relative concentration of a metabolite, as the relative
concentration of a peak of a metabolite can be increased by the
presence of a peak of another metabolite at the same chemical
shift. The fact that the relative concentration of a metabolite was
computed as the mean of all the 1H-NMR of this metabolite may

reduce this bias as all the 1H-NMR peaks could not be affected
by the peaks of the same metabolites. Moreover, the comparison
of the bucket method and metabolite method obtained with the
ASICS package (Lê Cao et al., 2009; Rohart et al., 2017) enabled
us to be more confident in the current results.

First O-PLS models were developed to analyze 1H-NMR
spectra with both the bucket method and the metabolite method
(not shown) but as it is known to lead to a severe overfitting
of the data, we decided to use PLS models. The R2Y and
Q2-values of our PLS models were small. Thus to validate
the models, we decided to perform 500 permutation tests to
compare the original R2Y and Q2-values to the ones obtained
after permutations and we computed the RMSEE and RMSECv
parameters. Moreover, the biomarkers that we identified were
consistent with the literature of hepatic steatosis of other animal
models, giving insights on our results on metabolic mechanisms
of hepatic steatosis.

Biomarkers Discussion
In a study to search for biomarkers of non-alcoholic fatty liver
disease (NAFLD) in human, the plasmatic content of glucose
was equivalent between the control and the steatosis groups but
it was increased in a non-alcoholic steatosis hepatitis (NASH)
group (Kalhan et al., 2011). In our study, the plasmatic glucose
content was negatively correlated with LW (−0.66) but it was
not significant. This difference was probably due to the fact that
glucose has many 1H-NMR peaks and is not easy to estimate its
relative concentration in plasma with 1H-NMR method.

The liver of mule ducks responds to overfeeding by increasing
its glucose uptake capacity (Pioche et al., 2019). The glucose may
be converted into sorbitol by the aldose reductase an enzyme
that can reduce carbonyl function into alcohol function. The
up-regulation of this enzyme induced from high glucose intake
led to a strong increase of sorbitol in hepatocytes, resulting in
the elevation of intracellular triglycerides (Hotta et al., 2019). In
our study, the plasmatic sorbitol was negatively correlated with
LW (−0.76). This result confirms the study of a rabbit model of
hepatic steatosis in which a high cholesterol diet increased the
presence of sorbitol and the activity of sorbitol dehydrogenase
enzyme in the blood (Birkner et al., 2007). The sorbitol was
already identified as a potential biomarker of alcoholic steatosis
in vivo and in vitro in mice (Guo et al., 2018).

In our study, the plasmatic lactate content obtained the highest
VIP values (4.21 and 4.03 for LW and TY respectively) therefore it
was the metabolite with the strongest importance to draw the first
latent variable that separate the livers in function of their LW or
TY. It was enhanced when LW increased and reduced when TY
increased (Pearson correlation of 0.62 and −0.58, respectively).
Similar results were highlighted in the liver, because the liver
lactate content was low in low fat loss livers that corresponded
to high TY livers (Bonnefont et al., 2014). In addition, the lactate
content was already identified as biomarker of liver steatosis in
serum for mice (Li et al., 2011), in plasma of human (Kalhan et al.,
2011) and in blood of human (Lin et al., 2020).

The amino acid metabolism was strongly impacted by the
evolution of fatty livers as many amino acids were identified as
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TABLE 5 | List of the biomarkers of liver weight and technological yield of foie gras.

Biomarkers of liver weight Biomarkers of technological yield

With bucket method With metabolite method With bucket method With metabolite method

Important
peaksε

BH
P-Valueζ

Correlation
with LW η

VIP BH
P-Value

Correlation
with LW

Important
peaksε

BH
P-Value

Correlation
with TY

VIP BH
P-Value

Correlation
with TY

Biomarkers of LW and TY

Lactate 2/2 0.001 0.62 4.21 0.008 0.50 2/2 0.001 −0.58 4.03 0.046 −0.42

Alanine 2/2 <0.001 −0.97 1.30 0.024 −0.80 2/2 0.004 0.85 1.26 0.080 0.85

Arginine 4/4 0.002 −0.92 4/4 0.040 0.73

Glutamine 3/3 <0.001 −0.93 1.10 0.075 −0.68 3/3 <0.001 0.91 1.65 0.043 0.68

Glycine −0.87 1.21 0.007 −0.88 0.65 1.39 0.010 0.91

Isoleucine 6/6 <0.001 −0.29 6/6 0.003 0.58

Leucine −0.65 1.12 0.002 −0.81 0.35 1.38 < 0.001 0.86

Lysine 6/12 0.002 −0.84 8/12 0.070 0.81

Proline −0.64 2.50 < 0.001 −0.91 0.83 2.68 < 0.001 0.91

Pyroglutamic acid 4/4 <0.001 −0.32 4/4 0.001 0.61

Serine −0.82 1.08 0.033 −0.82 0.57 1.33 0.043 0.85

Glycerol 3/3 <0.001 −0.96 3/3 0.002 0.83

Methylmalonic acid 2/2 <0.001 −0.29 2/2 0.005 0.55

Biomarkers of LW only

Glucuronic Acid −0.63 1.03 0.006 −0.36

Mannose 8/9 0.030 −0.78 8/9 0.230

Sorbitol 5/5 0.040 −0.76 5/5 0.240

GlutamicAcid 8/8 <0.001 −0.96

Methionine 3/3 0.030 −0.79 3/3 0.230

Biomarkers of TY only

Valine −0.58 1.13 0.010 0.87

Isovaleric acid 3/3 0.001 0.62

εFor each biomarker, the number of important peaks in comparison to the total number of 1H-NMR peaks are indicated. The important peaks contain at least one bucket with a VIP > 1 to explain the first latent variable
of PLS model of liver weight or technological yield.
ζFor each biomarker the effect of their relative concentration computed with bucket data or metabolite data on the liver weight was tested by a linear model with R software and the P-Values were corrected with the
Benjamini-Hochberg procedure and named BH P-Values.
ηThe Pearson correlation of the metabolite relative concentration obtained with bucket data or metabolite data and the liver weight or the technological yield is indicated.
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biomarkers (10 of LW and TY, 2 of LW only and 1 of TY only).
For all the amino acid biomarkers of LW when LW increased
their plasmatic contents decreased as their correlations with LW
were negative. Thus, the plasmatic amino acid concentration was
higher in ducks with small livers with high TY. This corroborates
with previous results as the metabolism of livers with low fat loss
was oriented toward anabolism contrary to the livers with high
fat loss (Theron et al., 2011; Bonnefont et al., 2014).

Many previous studies highlighted the reduction of the amino
acid metabolism in animals or humans with steatosis hepatisis.
For instance, in obese mice, the role of leucine on the regulation
of energy metabolism was shown (Bruckbauer and Zemel, 2014;
Fu et al., 2015). The role of leucine, isoleucine and valine
deficiency revealed a decreasing in lipogenic gene expression in
the liver in mice (Du et al., 2012). Contrary to our results, Kalhan
et al. (2011) showed an increase in plasma content for glutamate
and isoleucine and an insignificant evolution of leucine and
valine in steatosis patients, but these evolutions were significant
in NASH patients when compared to controls (Kalhan et al.,
2011). Human NAFLD patients had much higher concentrations
of proline in urines (Dong et al., 2017) whereas we found a higher
proline concentration in plasma of ducks with low LW.

Plasmatic biomarkers of NAFLD have already been searched
in many researches. For instance, Li et al. (2011) identified
3 serum biomarkers (glucose, lactate, glutamate/glutamine) to
diagnose NAFLD at various stages in mice (Li et al., 2011).
High plasmatic levels of isoleucine, alanine and glutamate were
also associated with NAFLD severity and glutamate was the
top plasmatic amino acid biomarker of obesity (Sookoian and
Pirola, 2018). Glutamine supplementation reduced oxidative
stress and NAFLD, and increased glucose metabolism in insulin
resistant Ob/Ob mice (Leite et al., 2018). Thus the negative
correlation of glutamic acid with LW (-0.96) was coherent
because the heavy livers were associated to oxidative stress
(Bonnefont et al., 2014). The anti-diabetic effect of pyroglutamic
acid that is obtained from the glutamic acid were reported
in type 2 diabetic rats and mice (Yoshinari and Igarashi,
2011). Moreover, the plasmatic contents of valine, leucine and
isoleucine were significantly reduced in animals and patients
with hepatic encephalopathy (Fischer et al., 1975). Our results
were consistent for leucine and isoleucine (correlation with LW
−0.65 and −0.29, respectively) and we did not identify valine
as a biomarker of LW, but as a biomarker of TY. A lower
circulating glycine levels was observed in association with hepatic
insulin resistance in NAFLD patients (Alves et al., 2019) in
accordance with our findings where glycine was negatively
correlated with LW (−0.87) and positively correlated with
TY (0.65). Moreover, the quantity of some metabolites impact
directly the development of liver steatosis. Diets deficient in labile
methyl groups (choline, methionine, betaine, folate) produced
fatty liver (Mato et al., 2008) which validates the negative
correlation of methionine with LW (−0.79), and a 5% L-Lysine
diet developed fatty livers in rats (Hevia and Visek, 1980).
In addition, the evolution of amino acid metabolism that we
observed was consistent with the utilization by several authors
of plasmatic aminotransferases as biomarkers of liver metabolic
functioning (Sookoian and Pirola, 2015).

To our knowledge, there is no reference of methylmalonic acid
implication in hepatic steatosis. The role of the isovaleric acid in
the metabolism of hepatic steatosis is not clearly describe in the
literature. However, in a study about the impact of specific starch
to reverse the weight gain and hepatic steatosis induced by high
fat diet in mice, the colonic isobutyric acid and isovaleric acid
levels were decreased by half compared to the high-fat group of
mice (Zhang et al., 2020). Even if we studied the plasma and not
the colon, the high concentration of plasmatic isovaleric acid in
high technological livers seemed to be consistent.

CONCLUSION – PERSPECTIVES

This study presents the first analysis of plasmatic biomarkers of
duck foie gras qualities with a large approach. We identified 18
biomarkers of liver weight and 15 biomarkers of technological
yield of foie gras that were mainly lactate and amino acids.
As these two quality parameters were strongly correlated, 13
metabolites were biomarkers of both LW and TY. The lactate
was the most important biomarker, it increased with LW and
decreased with TY. On the contrary the other biomarkers that
were mainly amino acids were negatively correlated to LW and
positively correlated to TY. We also identified 5 biomarkers
specific to LW (3 carbohydrates and 2 amino acids) that were
negatively correlated to LW. It was of main interest to identify
2 biomarkers specific to the technological yield. Contrary to
the isovaleric acid, the valine was negatively correlated to TY.
To predict the technological yield, these metabolites could be
measured in order to optimize the valorization of foie gras. But
further studies are required to analyze the robustness of the
model based on these biomarkers.

Moreover, it was previously shown that plasmatic NEFA, TG
and cholesterol were correlated to liver weight (Tavernier et al.,
2017; Pioche et al., 2019). In other animal models of hepatic
steatosis, lipophilic biomarkers were identified in rats (Goda
et al., 2018) and specifically ceramids in mice (Dong et al., 2017)
and adolescents (Maldonado-Hernández et al., 2017). Another
perspective of the present study could be to search for biomarkers
in the lipid fraction of the plasma.
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