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1  | INTRODUC TION

Phenotypic Plasticity (abbreviated as PP in the article) commonly re-
fers to the ability of a genotype (an individual's gene collection) to 
adjust its phenotype (the set of observable traits of the same individ-
ual) under different environmental conditions (Arnold et al., 2019; 
Bradshaw, 1965; Pigliucci & Pigliucci, 2001). This mechanism plays 
a crucial role for the development and survival of individuals facing 

new adverse environmental conditions (Silvestre et  al.,  2012), es-
pecially if we refer to sedentary and long-living organism such as 
forest trees (Bradshaw, 1965; Santini et al., 2018). Due to their long 
existence, trees have to face climatic fluctuations of variable fre-
quencies and intensities (Rehfeldt et al., 2001) and thus have higher 
chances to come across extreme weather events. PP however is also 
a very important mechanism to adapt to rapid environmental change 
(Bradshaw & Holzapfel,  2008): PP is the only possible adaptation 
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Why this research Matters
Phenotypic plasticity is a key mechanism for sedentary long-living species to adjust 
to changing environment. Here, we use mature Larix decidua tree-ring variables col-
lected along an elevational transect in the French Alps to characterize the range of in-
dividual plastic responses to temperature. Stem cores from 821 mature Larix decidua 
trees have been collected from four plots distributed along a 1,000-m elevational 
gradient in a natural forest to build up individual linear reaction norms of tree-ring 
microdensity traits to temperature. The sign, magnitude and spread of variations of 
the slopes of the individual reaction norms were used to characterize variation of 
phenotypic plasticity among plots and traits. Results showed a large range of phe-
notypic plasticity (with positive and negative slopes) at each elevational plot and for 
each tree-ring variable. Overall, phenotypic plasticity tends to be larger but posi-
tive at higher elevation, negative at the warmer lower sites, and more variable in the 
center of the elevation distribution. Individual inter-ring reaction norm is a valuable 
tool to retrospectively characterize phenotypic plasticity of mature forest trees. This 
approach applied to Larix decidua tree-ring micro-density traits along an elevation 
gradient showed the existence of large inter-individual variations that could support 
local adaptation to a fast-changing climate.
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mechanism if the length of the change is much less than the gen-
eration time (Bradshaw,  1965). However, despite the accelerated 
interest in unravelling the genetic basis of PP in relation to the fast-
increasing global warming, its quantification for the endangered sed-
entary and long-living organisms remains a challenge and is scarce.

PP is usually estimated using Reaction Norm (RN), which is a 
linear or non-linear function indicating the amount of phenotypic 
change of a genotype between environments (Arnold et  al.,  2019; 
Falconer,  1990; Morrissey & Liefting,  2016; Via et  al.,  1995). 
Generally, the environmental variability is generated by exposing the 
same genotype to different conditions. Spatial (site-related) and tem-
poral (time-related) PP refer to the types of environmental variation 
(Scheiner, 2013). The spatial PP requires reciprocal experiments and 
copies of the same genotype in different sites or controlled conditions 
(Via, 1993; Vitasse et al., 2010). The temporal PP demands repeated 
measurements (Araya-Ajoy et al., 2015) or retrospective evaluations 
(Fonti et al., 2010; Marchal et al., 2019). While the definition is sim-
ple, accurate spatial (or site-related) RN are often difficult to estimate, 
since the number of sites or controlled conditions is generally low and 
their environmental value is most of the time problematic to quantify 
(Pigliucci & Pigliucci, 2001). Temporal (or time-related) PP can be es-
timated from series of repeated measurements, or, for some organ-
isms like fish and tree species, retrospectively using temporal markers 
(scales in fish and annual rings in trees; Black et al., 2019; Fallour-Rubio 
et al., 2009). Estimation of temporal PP is never straightforward, since 
it can be confused with the ontogenic development of the organism.

Trees have a high potential for recording signals at different tem-
poral scales and frequencies. Many studies explored tree response 
to environmental variation based on radial growth, annual ring for-
mation and relationships with climate estimated at the population 
level. In particular, dendrochronology (Büntgen, 2019; Vitas, 2018) 
and dendroecology (Manzanedo & Pederson, 2019; Pompa-García 
et al., 2018; Vitasse et al., 2019) achieve climatic reconstructions and 
ecological investigations (Huang et al., 2017) through retrospective 
measurements of ring width or, more recently, basal area increments 
(Biondi & Qeadan,  2008). Typically, dendroecology estimates and 
employs a response curve that corresponds to a RN calculated at 
the level of the group of individuals (population): it thus estimates 
the average plasticity of this group of individuals, and it can be called 
average plastic response (Feinard-Duranceau et  al.,  2018). Other 
physical and anatomical ring variables are rarely used as alternatives 
to ring width (Fonti & Jansen, 2012). Non-significant average plastic 
response may conceal very variable levels of PP, which can be elu-
cidated only by fitting RN at the individual level, and fails to achieve 
the key-question about the variability and significant differences 
between entities (groups of trees, populations, genetic entities) for 
PP (Arnold et al., 2019). But developing significant1 RN, that is, sig-
nificant phenotype-environment relationships at the genotype, that 
is, at the individual level, is challenging and rarely achieved in PP 
studies (Arnold et al., 2019). This may explain why, while the amount 
of dendroecology studies estimating an average plastic response is 
very high, and while, to our knowledge, the first published study of 
inter-ring PP is relatively old (Fallour-Rubio et al., 2009), the number 

of published studies estimating PP by means of individual inter-ring 
RN is still very low today.

The retrospective use of tree-rings for analysis of PP with con-
struction of RN involves two different time-scale approaches: inter- 
and intra-ring PP. The inter-ring approach considers inter-annual PP, 
while the intra-ring methodology investigates intra-annual (or intra-
growing season) PP. Studies of inter-ring PP associate inter-annual 
time-series of ring variables to inter-annual time-series of climatic 
variables, like for example ring width and mean summer temperature 
(Fallour-Rubio et al., 2009) or ring width and a climatic drought index 
(Marchal et al., 2019). Intra-ring PP considers the construction of a 
RN associating intra-ring time-series with intra-annual environmen-
tal variables, such as ring microdensity profiles and water balance 
variation during the year (Sánchez-Vargas et al., 2007). Intra-annual 
ring fluctuations (IADF) are also used as a way to quantify intra-ring 
PP (Balzano et al., 2019; Nabais et al., 2014).

The shape of the RN, linear or non-linear, determines the vari-
ables used for eventually estimating the PP. If the RN is linear, the 
slope of the straight regression line is the unique PP variable (Arnold 
et  al.,  2019; Sánchez-Vargas et  al.,  2007). If the RN is non-linear, 
then several variables may be necessary to correctly quantify the 
PP (Martinez-Meier et al., 2009). These authors proposed the word 
“dendroplasticity” to describe the retrospective estimation of PP 
based on tree-ring analysis.

The slope of the RN, like any other phenotypic trait, can be ge-
netically (Fallour-Rubio et  al.,  2009; Martinez-Meier et  al.,  2009; 
Sánchez-Vargas et  al.,  2007) and environmentally (Marchal 
et al., 2019) variable. (Martinez-Meier et al., 2009; Sánchez-Vargas 
et al., 2007) found significant genetic determinism for PP of intra-
ring microdensity in response to climatic indices.

In this study, we use microdensity tree-ring variables of European 
Larch (Larix decidua Mill.) to estimate inter-annual PP to temperature, 
aiming at maximizing the number of trees with significant RN estimation 
at all elevation levels and for all ring variables. Then we study PP vari-
ation between individuals and between contrasted environments, that 
is, four study plots along an elevational gradient in a naturally regen-
erated adult Larch forest. We selected microdensity variables consid-
ering that density is a proxy for important xylem ecological (Björklund 
et  al.,  2019) and functional properties (e.g. hydraulic efficiency and 
safety and mechanical stability) (Lachenbruch & McCulloh, 2014).

European larch is a key forest tree species all over the Alps and 
in certain regions of Central Europe. In the southwestern part of its 
natural area, Larch is distributed along elevation gradients starting 
as low as 1,200 m and culminating as high as 2,500 m. It is one of 
the mountain species with the major temperature variation along 
its elevational gradients (Carrer et al., 1998; Fourchy, 1952; Jochner 
et  al.,  2017; Obojes et  al.,  2018; Saulnier et  al.,  2019). Elevational 
gradients are the most powerful natural experiments to test eco-
logical responses to geophysical influences, such as temperature 
(Körner, 2007). Individuals in colder conditions increase their growth 
when temperature increases, while on the contrary individuals in 
warmer condition reduce their growth when temperature increases, 
with a smaller between-individual variation at the warmer site (Clark 
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et al., 2003; Way & Oren, 2010). This suggests that their response to 
time-related temperature variation and specifically to global warm-
ing is distinct at the different temperature conditions of the various 
elevational levels (Morin et al., 2018). Populations distributed over an 
environmental gradient experience differential selection pressures 
(Barton, 1999), which can ultimately lead to different levels of intra-
population variation and inter-population genetic differentiation for 
adaptive traits. Local adaptation occurs when populations that expe-
rience divergent selection become better adapted to their own local 
environment than other populations, and comparatively less adapted 
to neighboring ones (Kawecki & Ebert, 2004). The other possibility 
is that the larch forest distributed along this gradient be one pre-
dominantly homogeneous population with considerable gene flow 
between all elevational levels (King et al., 2013). In fact this pattern 
was observed with the same trees used in this study along the same 
elevational gradient for neutral genetic markers (Nardin et al., 2015). 
Whether variation of larch PP reflects local adaptation or neutral ge-
netic variation is among the questions raised by this study.

Our objective was to fit inter annual-ring reaction norms of several 
ring variables and use their variations in sign, magnitude and range to 
estimate PP variation among elevational plots and ring variables. Finally, 
we discuss whether elevational variation for PP could correspond to 
local adaptation and could improve larch response to climate change.

2  | MATERIAL AND METHODS

2.1 | Sites characteristics

Our study site is located in the native range of Larix decidua (Mill.) at 
Villard-St-Pancrace, close to Briançon (latitude: 44.9° N; longitude: 

6.65° E; average elevation: 1,326 m) in the French Alps. The experi-
ment is formed of four forest plots distributed along a north-faced 
Alpine steep-slope ranging from 1,200 m to 2,500 m and mostly cov-
ered by uneven-aged larch forests with some patches of Abies alba, 
Pinus sylvestris, Pinus cembra and Pinus uncinata. The four plots each 
include 200 larch trees and are located at 2,300, 2,000, 1,700 and 
1,350 m a.s.l., respectively (Nardin, 2013; Nardin et al., 2015). The 
average annual maximum temperature difference along the gradient 
is 6.1°C, changing from 7.58°C at the highest site to 13.68°C at the 
lowest one (Table 1; Table S1). Besides temperature, other factors 
such as solar radiation (higher at the lowest plots), and soil water 
availability and fertility (higher for the two intermediate plots) are 
changing. These differing conditions affect the tree characteristics 
at each plot with large variation on average tree height (from 16 
to 27 m), stem girth (from 81 to 112 cm) and average annual radial 
growth (from 0.63 to 0.91 mm; Table 1; Table S1).

2.2 | X-ray, cross-dating and detrending

All the details about the methods of tree-ring related measurements are 
in (Nardin, 2013; Nardin et al., 2015; Rozenberg, Chauvin, et al., 2020; 
Rozenberg et al., 2020). Shortly, from each selected tree, we collected 
a 5.5 mm diameter-increment core at 1.3 m in the stem using a power-
driven Pressler increment borer. The increment cores were stored in 
polycarbonate honeycomb boxes and dried to reach a stable uniform 
humidity of about 12%. The cores were sawn to a uniform cross-
section thickness of 2 mm and immersed during one week in pentane 
solvent (C5H12) to extract resin. The samples were dried again, X-rayed 
and the X-ray films were scanned at 4,000 dpi, then analyzed with 
WINDENDRO (Windendro 2008e Regent instruments, Canada).

TA B L E  1   Site and plots characteristics. Values in parenthesis are standard errors. The climatic data are for the period 1967–2007 (source 
Météo-France)

Plot 2,300 m Plot 2,000 m Plot 1,700 m Plot 1,350 m

Altitude range (m) 2,357–2,299 2,023–1,988 1,683–1,640 1,373–1,341

Latitude (N) 44.848972 44.85119 44.858476 44.854350

Longitude (E) 6.636990 6.628716 6.624955 6.597923

Mean annual maximum temperature (°C) 7.58 9.56 11.96 13.68

Mean annual temperature (°C) 2.92 4.46 6.32 7.66

Mean temperature of the warmest month; July (°C) 10.95 12.95 15.37 17.09

Mean temperature of the coldest month; January (°C) −3.73 −2.72 −1.49 −0.61

Average number of frost days 208 192 170 154

Soil type Calcisol Eutric Brunisol / Calcisol Colluviosol Regosol / Colluviosol

Total number of trees in the plot 198 217 206 200

Plot size (m2) 5,429 7,540 5,815 8,704

Plot density (nb trees/ha) 365 288 354 230

Mean height (m) 16.21 (± 2.19) 25.31 (± 2.76) 26.71 (± 2.93) 23.79 (± 2.64)

Mean circumference at breast height (cm) 79.3 (± 27.4) 98.6 (± 32.8) 105.1 (± 34.4) 107 (± 25.4)

Average ring number in the increment cores, as an 
estimation of tree age

95.7 (± 34.1) 134.0 (± 48.8) 133.2 (± 46.1) 143.7 (± 15.5)
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We cross-dated the tree-ring time-series using the Interdat soft-
ware (version 1.1, Becker et al., 1994; Mérian et al., 2011) and pointer 
years based on the tree-ring width (RW) measurements provided by 
WINDENDRO. We considered the rings 1967–2007 (41 successive 
years). We used the “extreme average method” (Vargas-Hernandez 
& Adams,  1991) to separate each annual ring microdensity profile 
into its earlywood and latewood components. We then obtained the 
widths (RW), the average densities (RD) of each dated annual ring, 
specifically the earlywood, latewood width (EW and LW), and the 
earlywood and latewood average density (EWD, LWD).

We used and compared several methods to correct the time-
series of ring microdensity variables to only keep climatic variability 
(Rozenberg, Chauvin, et al., 2020). Our objective was to estimate in-
dividual RN on the maximum number of trees. However, fitting RN 
with statistically significant slopes is often a big challenge in PP stud-
ies. Here we compared different methods used at the successive 
steps of the RN construction, for their ability to maximize the num-
ber of trees with significant RN. First we tested several detrending 
methods: we used no correction, negative exponential curve (Cook 
& Kairiukstis, 1990; Fritts, 1976) and regional curve standardization 
(RCS; Esper et  al.  2003), with residual RCS and ratio RCS (Esper 
et al., 2003; Rozenberg, Chauvin, et al., 2020). For the negative ex-
ponential function we used the dendrochronology library in R, dplR 
(Bunn,  2008). Since larch budmoth (LBM) can induce major cyclic 
defoliations with important non-climatic impact on ring microden-
sity profiles (Castagneri et al., 2020; Peters et al., 2020; Rozenberg, 
Pâques, et al., 2020) we also tested the impact of standardizing for 
this effect. For each individual tree and for all annual rings with a 
validated Zeiraphera griseana attack within a plot, the values of the 
corresponding ring variables were replaced by the average value of 
the three previous and the three subsequent annual rings (Büntgen 
et al., 2009; Rozenberg, Pâques, et al., 2020).

2.3 | Construction of the reaction norms and 
estimation of phenotypic plasticity

To fit the reaction norm (RN) between the tree-ring variables and 
the climate variables we applied the linear model Yi = β1 + β2Xi + 
ϵij using the lm() function of R (R Core Team, 2018), where Yi is the 
phenotypic variable; Xi is the climatic variable, β1 is the intercept and 
β2 is the slope (the PP value), and ϵij is the error term (the residuals). 
The adjusted model R-square is used to estimate the quality of the 
relationships. When p is under 0.05 we assume that the RN slope is 
significantly different from zero and can be used as a quantitative 
estimate of the PP.

The climatic data are daily values of minimum and maximum tem-
perature and precipitation coming from the closest Météo-France 
weather station (French national weather service; Rozenberg, 
Chauvin, et  al.,  2020). This weather station moved from Briançon 
(44°53'59.21" N, 6°38'31.24" E, 1,306  m) to Villard-St-Pancrace 
(44°51' 57.5388'' N, 6°36'58.7772'' E, 1,276 m), 4.8 km south of the 
Briançon weather station, in 2003. Nevertheless, from 2004 to 2010 

both weather stations have been operating together. Thus, for this 
study (1966–2007) we used the Briançon data only. For each plot we 
adjusted the Briançon climatic time-series from the elevation effect, 
as in (Latreille et al., 2017; Rozenberg, Chauvin, et al., 2020) using the 
on-site climatic data measured since 2008 at each plot.

We estimated the RN by averaging the daily climatic data for 
time-windows of variable duration and position during the calendar 
year. We compared four methods (M1 to M4). In M1 we fitted the 
RN with the same annual climatic means for all the trees in the four 
plots. In M2 we estimated the RN for a time-window based on the 
results of a ring formation study (Saderi et al., 2019). It reflects the 
duration of the ring formation period estimated on a sub-sample 
of the same trees, studied during the 2013 growing season (Saderi 
et al., 2019). In M3 we systematically tested different time-windows 
and at each elevation level. We selected one common time-window 
for all the trees in each plot: this time-window is the one giving the 
highest number of trees with significant RN. Finally in M4, we tested 
the time-windows at the tree level: for each tree we selected the 
time-window giving the RN with the highest R-square. We obtained 
similar results for minimum and maximum temperature. M3 and 
M4 gave a higher proportion of trees with significant RN than M1 
and M2. In contrast we were not able to fit RN with statistically sig-
nificant slopes (p  <  .05) with precipitation, whatever the method, 
which was then excluded from the study. Figure S2 in Supporting 
Information shows the heatmap of the tested flexible time-windows 
in M4 for a given tree, for LWD and maximum temperature.

The slopes are used as quantitative estimates of the tree PP. We 
used a single factor fixed effect ANOVA to test for the differences 
between the elevational plots.

3  | RESULTS

3.1 | Diversity of the RN along the gradient

The main characteristics of the trees in the four elevational plots 
(table 2) showed that on average the trees were slightly bigger at 
1,700 m, taller at 1,700 and 2,000 m, younger at 2,300 m and with a 
lower wood density at 1,350 m.

3.1.1 | Test and selection of the methods 
(standardization and construction of RN)

We observed that the standardization method to adjust from the 
cambial age effect did not affect the results: the number of trees 
with significant RN was not strongly modified and the results were 
the same with the different standardization methods tested. We also 
found that the larch budmoth standardization did not affect the re-
sults since it did not change the general findings (data not shown).

In contrast, the number of trees with significant RN varied a lot 
between the four fitting methods M1 to M4. M3 and M4 gave the 
highest number of trees with significant RN. For most ring variables 
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and at most elevations, the number of trees with significant RN was 
higher for M4 than for M3, with a difference ranging from six to 46 
trees, corresponding to four to 30% of the total number of trees in the 
plot (Figure 1). The superiority of M4 over M3 was stronger for RW at 
1,350 and 1,700 m and for EWD and LWD at 1,700 m (Figure 1). The 
only exception was LWD at 2,300 m, where there were 115 trees with 
significant RN with M3 and 114 for M4 (Figure 1).

We also compared the value of the slopes of the RN fitted with 
M3 and M4. We found that they were very strongly correlated, with 
r ranging from 0.94 to 0.98 according to the ring variable (Figure 2).

Finally, we observed that, when significant, the main trends of 
the findings were similar between M3 and M4. The higher number of 
trees with estimations of PP in M4 made that, compared to M3, more 
results concerning the elevation trends were significant.

3.1.2 | Reaction norms (RN)

We succeeded to estimate RN relating ring variables and minimum 
and maximum temperature with significant slopes for the majority 
of the trees in the four elevation plots with method M4. The results 
obtained with minimum and maximum temperature were extremely 
similar, almost redundant, with a slightly better fitting with maxi-
mum temperature for all the ring variables. Thus, we decided to re-
tain maximum temperature. In the rest of the section, we present 
only the results obtained with maximum temperature and M4. On 
average, 71% of the trees displayed a RN with a significant slope 
(p <  .05). The significant reaction norms that we estimated at the TA
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F I G U R E  1   Comparison of the number of trees with significant 
RN obtained with methods M3 and M4 for each ring variable and at 
each elevation. The line shows the y = x line [Colour figure can be 
viewed at wileyonlinelibrary.com]
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individual tree level were all linear, with a median correlation coeffi-
cient with maximum temperature of 0.44 (ranging from 0.31 to 0.99, 
with the first quartiles at 0.37 and 0.53). The number of individuals 
with significant slopes was higher for RW and LWD than for EWD 
and RD (Figure 1). All individual RN with significant slopes grouped 
by ring variables showed different mixtures of positive and nega-
tive slopes (Figures 2 and 3) with a more stable pattern between el-
evation levels in RW and LWD. If slopes are averaged by elevation, 
only four site-specific slopes resulted to be higly significant (p < .01), 
namely RW and LWD at 2,000 and 2,300 m a.s.l. (Figure 3; Figure S3 
in Supporting Information) whereby the two at 2,300 were stronger 

than at 2,000 m. The other site average RN slopes were not signifi-
cant, except for RD for which we found a significant and low rela-
tionship at 2,000 m a.s.l. (r = 0.38, p =.014, not shown).

Figure 4 presents the percentage of trees with significant slopes 
for each ring variable at each elevational plot and grouped by posi-
tive (the slope of the RN is positive), negative (the slope is negative) 
and null (the slope is not significantly different from zero) PP (the 
corresponding numbers are in Table S2 in Supporting Information). 
Depending on elevation, the percentage of significant slopes ranged 
between 53% and 66% for EWD, 73 and 94% for LWD, 63 and 71% 
for RD and 75 and 94% for RW (Figure 4). For EWD and RD at all 

F I G U R E  2   Comparison of the values of the slope of the RN in M3 and M4 for the four ring variables at the four elevation plots [Colour 
figure can be viewed at wileyonlinelibrary.com]
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elevations, and for LWD and RW from 1,350 to 2,000 m, the range 
of percentage of trees with significant slopes varied from 3% to 
13%. For LWD and RW, the percentage peaked at 2,300 m, where it 
reached 94% for both ring variables.

3.1.3 | Time-windows

The individual time-windows used to estimate the significant RN 
in M4 are presented in the Supplementary Material (Table  S3; 
Figures  S4–S7 in Supplementary Material). These time-windows 

were very variable among the ring variables, elevations and trees. 
The variation of the characteristics of the time-windows (first day, 
last day and duration) between the elevations was mostly significant 
for the first and last days, but not for the duration (Supplementary 
Material: Figures S5–S7). When significant, these elevational trends 
were increasing for both the first and last days for positive slopes 
and most of the time decreasing for both the first and last days for 
negative slopes. In other words, both the first and last days of the 
maximizing time-windows were postponed with increasing elevation 
for the positive slopes and advanced for the negative slopes. The 
length of the time-windows was generally not significantly variable 

F I G U R E  3   Plot of the individual reactions norms, grouped by ring variable and elevation. Thick lines indicates the average slope for each 
elevation. All individual slopes are significantly different from zero. Only the average slopes of RW and LWD at 2,000 and 2,300 m a.s.l. and 
of RD at 2,000 m a.s.l. are significantly different from zero [Colour figure can be viewed at wileyonlinelibrary.com]
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between elevations, except for EWD negative slopes and for RW 
positive slopes.

3.1.4 | Variation of the slope value and of the 
PP intensity

Inside each group of slopes, positive and negative, there was varia-
tion of the value of the slope, that is, variation of the intensity of PP. 
For most variables and types of PP this intensity of PP is significant 
between elevational levels (Figure 5). In two cases only (EWD for 
positive PP and RW for negative PP) the elevational variation was 
not significant. In one case (RD for positive PP) the variation was 
significant at the 5% probability level. The corresponding trend was 
a consequence of steeper slopes at 1,350 m (Table 3). But the corre-
sponding number of trees was only 10, while it was respectively 38, 
72 and 69 at the other elevational levels, between which there was 
no significant variation of PP (Figure 5; Table 3). For the five other 
cases, the variation of the PP values was significant at the 0.1% prob-
ability level. In these cases, the highest PP values (positive and nega-
tive) were always found at 2,000 or 2,300 m a.s.l., while the lowest 
were always found at 1,350 or 1,700 m a.s.l. However, in some cases, 
these minimum and maximum PP values were estimated with a low 
or very low number of trees: for RD, the mean value of the nega-
tive PP at 2,000 m a.s.l. was estimated with 12 trees. Consequently, 

there was no significant difference between the three higher eleva-
tions (1,700, 2,000 and 2,300 m a.s.l., Table 3). For LWD at 2,000 
and 2,300 m a.s.l., the mean value of the negative PP was estimated 
with respectively eight and one trees only. Here again, there was 
no significant difference between the three higher elevations. The 
significant elevational variation of the PP value was better described 
for LWD (positive and negative PP), RW (positive PP) and for EWD 
(negative PP) (Figure  4). The details about the significance of the 
variation between pairs of elevational levels in Table  3 show that 
for LWD positive PP, the value at 1,700 m was strongly and signifi-
cantly lower than that of the PP at the higher elevational levels. For 
RW positive PP, the elevational trend was highly significant between 
each pair of successive elevational levels. Finally, for EWD, only the 
value of the negative PP at 1,350 m asl was significantly different 
from that at the three higher elevations (Table 3).

4  | DISCUSSION

In this study, we relied on 41 years tree-ring long time-series from 
821 trees to successfully estimate individual phenotypic plastic-
ity (PP) of Larix decidua micro-density ring variables in response to 
changes in temperature. The study was conducted for four differ-
ent ring variables measured on four large groups of trees distrib-
uted along an elevational gradient characterised by a 6°C amplitude 

F I G U R E  4   Percentage of trees 
with significant and non-significant 
reaction norms (method M4): trends by 
variable, elevation and type of PP. Blue 
line = Positive PP, Red line = Negative 
PP, Green line = Null (not significant) 
PP [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  5   Variation of the PP values 
between the variables and the elevational 
levels. Blue line = Positive PP and Red 
line = Negative PP. Error bars represent 
standard error of the mean. Signif. codes: 
NS: p ≥ .05, *: p < .05, **: p < .01, ***: 
p < .001 [Colour figure can be viewed at 
wileyonlinelibrary.com]

Variable Elevation PP - Pos PP - Neg Variable Elevation PP - Pos PP - Neg

EWD 1,350–1,700 NS ** RD 1,350–1,700 * ***

1,350–2,000 NS *** 1,350–2,000 * **

1,350–2,300 NS * 1,350–2,300 * NS

1,700–2,000 NS NS 1,700–2,000 NS NS

1,700–2,300 NS NS 1,700–2,300 NS NS

2,000–2,300 NS NS 2,000–2,300 NS NS

LWD 1,350–1,700 * *** RW 1,350–1,700 *** NS

1,350–2,000 NS * 1,350–2,000 NS NS

1,350–2,300 NS NS 1,350–2,300 *** NS

1,700–2,000 *** NS 1,700–2,000 *** NS

1,700–2,300 *** NS 1,700–2,300 *** NS

2,000–2,300 NS NS 2,000–2,300 *** *

TA B L E  3   Significance of the two-by-
two differences between the elevational 
levels, for positive and negative slopes 
of the RN. PP – Pos = Positive PP, PP 
– Neg = Negative PP, Blue = Positive PP 
(Pos) and Red = Negative PP (Neg). Signif. 
codes: NS: p ≥ .05, *: p < .05, **: p < .01, 
***: p < .001
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between the lowest (1,350 m) and highest (2,300 m) plots. Based on 
inter-annual temperature variations, we succeded to estimate reac-
tions norms (RN with significant slopes) to average maximum daily 
temperature for 71% of the 555 adult trees.

We found individuals with slopes of reaction norms in opposite 
directions for different plasticities, that is, different associations of 
phenotypic and environmental variables. This is common and reflects 
the specific physiological process associated with each phenotypic 
variable (Pélabon et  al.,  2013). For each of the four ring variables 
studied, we found a broad range of individual tree plasticities within 
a natural population: for a given trait, they range from positive to 
negative slope values. This population includes as well a more or less 
large proportion of individuals (from 6% to 41%) with no PP related 
to the climatic variable studied (null plasticity).

There are other examples of slopes of reaction norms in oppo-
site directions for a given PP in animals (fishes and insects) and in 
plants, but we found none in trees. The variation between positive 
and negative slopes was sometimes associated with age (Smoliński 
et  al.,  2020), more often with quality of environment (Diamond & 
Kingsolver, 2012; Tammaru & Teder, 2012; Teder et al., 2014), and 
in the case of field gentian (Gentianella campestris), with population 
variation (Juenger et al., 2000). In our case, the variation between 
positive and negative slopes slopes of the RN is related with ele-
vation for three of the four ring variables. Across all variables, the 
slopes have a tendency to be more negative at the low elevation and 
more positive at the top. Furthermore, the individuals with a nega-
tive slope at the low elevation plots (1,350 and 1,700 m) tend to have 
a more negative slope than the individuals from the high elevation 
plots (2,000 and 2,300 m). The more positive slopes at the higher 
elevation plots for the trees with a positive slope were found mainly 
for RW and LWD.

Our results mean that a temperature increase is indeed associ-
ated to opposite reactions between trees within a population: the 
temperature increase corresponds, according to individual trees, to 
either an increase or decrease of ring width, ring density, earlywood 
density and latewood density (Figure 3). The very strong relation-
ship between the slope values estimated with fixed time-windows 
at each elevation and with variable time-windows at each elevation 
(Figure 2) suggests that the reason behind this is not the selection of 
different time-windows for the different trees. This is confirmed by 
the fact that the other results of the analysis using fixed time win-
dows and flexible time-windows at each elevation level were very 
similar (same differences between the ring traits and same eleva-
tional variation), at the cost of a much lower number of trees with 
significant estimation of PP (results not shown).

4.1 | Strength and weaknesses of the flexible time-
windows

As stated immediately above, we carefully compared the results of 
the analysis conducted with fixed and flexible time windows. We ob-
served that the number of trees with significant reaction norms was 

lower with the fixed time windows method. The flexible time win-
dow method better took into account the differential behaviour of 
the individuals towards temperature. If at species or even population 
levels, mean annual (or growing season) temperature is convenient 
and satisfactory to explain overall radial tree growth, it may not be 
the case anymore when the target is the individual response. One 
consequence was that, especially for earlywood density, the statis-
tical power of between-elevation-level comparison decreased for 
the fixed-window method in comparison with the flexible-window 
method: some of the differences between the elevation levels were 
not statistically significant. We also screened the strength of the 
relationships between the ring variables and temperature for each 
individual using correlation heat-maps for the flexible time-windows 
(example tree 41 for LWD, Figure  S2 in Supplementary Material). 
The results showed that for most trees, the range of the first and 
last days of the time-windows displaying significant correlation was 
usually large and covered a wide period. For example (Figure S2 in 
Supplementary Material), a change in the correlation coefficient value 
from 5% to 10% is observed within a 2 to 3 months time-window 
change. It means that in the tested range, the choice of the time-
window did not affect much the value of the correlation coefficient, 
because it did not affect much the interannual variation of the aver-
age temperature of the time-window. Conversely, the temperature-
sensitive periods were rather variable between the ring variables 
and the elevational plots (Figures S4–S7, Supplementary Material). 
As expected, days that maximize the relationship with ring growth 
and density parameters are delayed at higher elevations compared to 
lower elevations. If we assume that there is a close relationship be-
tween these time-windows and the phenology of ring formation, we 
would expect for example earlier periods for earlywood than for late-
wood (Rossi et al., 2013; Saderi et al., 2019) and shorter periods for 
the high elevation plots (He et al., 2012; King et al., 2013). However 
the variation observed among plots and traits is not fully consistent 
with what could be expected from a biological point of view. The 
time-windows we defined are not supposed to precisely determine 
starting and ending days of growth processes but are rather climatic 
periods maximizing statistical relationships without any attempt to 
physiologically interpret them. These annual periods are convenient 
tools to maximize the number of trees with significant estimations 
of the RN and to increase the statistical power of the experiment, 
but should not be strictly interpreted from a biological point of view.

4.2 | Variation of phenotypic plasticity (PP) 
along the elevation gradient

We used the significant (positive or negative) slopes of the RN as 
quantitative estimates of PP. For the trees with non-significant RN, 
we cannot conclude if the non-significant estimation of the slope 
corresponds to a flat reaction norm (Fusco & Minelli, 2010), or null 
PP, or to a failure to estimate the PP (the individual is plastic but 
we were not able to estimate its PP with the available data). For 
convenience, we call trees with “null PP” the trees for which the 
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estimation of the slope was not statistically significant (not sig-
nificantly different from zero). For an adaptive trait, the distinction 
between positive and negative slopes could correspond to a major 
(genetic?) divergence between responses. For latewood density, 
and to a lesser extent, for ring width and ring density, the change 
from negative to positive slopes is closely associated with eleva-
tional variation. The proportion of trees with a positive PP tends to 
increase from the bottom to the top of the gradient, with obviously 
the opposite trend for the negative PP. This tendency is especially 
strong for LWD (latewood density): in the warmer conditions at 
the bottom of the gradient, the temperature increase is associated 
to a latewood density decrease for most of the trees, while in the 
colder conditions at the top of the gradient, a temperature increase 
is associated to a latewood density increase for nearly all the trees. 
This trend is less marked for RD (mean ring density), which logically 
shows a pattern intermediate between that of earlywood and late-
wood density. The results in Figures 3–5 provide a global picture 
of PP variation along this elevational gradient: the PP tends to be 
more negative in the warmer conditions at low elevation, while it is 
mostly positive in the colder conditions at high elevation. There is 
some variation around this trend, since trees with opposite tenden-
cies are found all along the gradient, although in very variable pro-
portions. The heterogeneity of the mixture is greater at the lower, 
warmer elevations (1,350 and 1,700 m asl) and smallest in colder 
environments, at 2,000 m and above. The 1,700 m plot appears as a 
kind of hotspot of PP diversity.

In the case of earlywood density (EWD), the proportion of 
trees with positive and negative PP does not change much with 
elevation, with a greater proportion of trees with a negative PP 
at all elevations: contrary to the other ring variables, most part of 
the contrast between positive and negative PP is within plots. The 
mixture of trees with such contrasting PP values at the same eleva-
tional plot, comprising negative and positive PP, explains well the 
non-significant average plastic response found for RD and EWD 
at all elevations, and for RW and LWD at 1,350 and 1,700 m asl 
(Figure  3; Figure  S3 in Supporting Information). A direct conse-
quence is that plastic response, as well as other plasticity index 
used in dendroecology studies (de Luis et  al.,  2013; Martínez-
Vilalta,  2018; Matisons et  al.,  2019; Paiva et  al.,  2008; Sánchez-
Salguero et al., 2018) correspond to particular cases of PP at the 
population or species level. It certainly hides sometimes large 
individual variation of PP. In our study, strong or moderate inter-
individual variation of PP for RD and EWD at all elevations and for 
RW and LWD at 1,350 and 1,700 m a.s.l. lowers the intensity of the 
corresponding average plastic response, making it non significant. 
Information at this level is however key to study the PP potential 
of evolutionary adaptation, which relies on phenotypic and genetic 
variation, and on heritability.

The linear warming trend observed at Briançon explains about 
half of inter-annual temperature variation between 1967 and 2007 
(Figure  S1 in Supporting Information). In another study, a similar 
trend was found for the 1967–2016 period at the same location 
(Rozenberg, Chauvin, et  al.,  2020). If we assume that this linear 

temperature increase is a manifestation of the global warming, then 
about half of the PP is an individual response to this global warming. 
According to (Rozenberg, Chauvin, et al., 2020), this global warming 
effect is stronger for tree response at low elevation than at high el-
evation: global warming reveals the potential of plasticity of larch. 
Whether such response can be considered as an adaptation mecha-
nism relies on the adaptive value, or fitness, of PP. To what extent the 
fitness of PP is related to the fitness of the phenotypic trait (Nicotra 
& Davidson, 2010; Via et al., 1995)? In our case, direct relationship 
with fitness is not available, thus the putative adaptive value of PP 
can only be inferred from the possible functional role of the associ-
ated phenotypic trait. This role is mainly related to the three wood 
functions, mechanical support, reserves and sap conduction which 
are related to the four ring variables for which we estimated PP. As 
discussed above, the modification of wood anatomical and hydraulic 
properties associated to the observed PP is a promising research line 
that requires further investigations.

Within plots and across the gradient, the existence of a broad 
phenotypic variability for individual tree reaction norms (in sign and 
intensity) is a favorable indication and one of the conditions for pop-
ulations to evolve through natural selection and hopefully to adapt to 
new climatic conditions. The jump from negative to positive PP could 
correspond to dramatically opposed individual adaptive strategies. It 
could correspond to different segments of nonlinear reaction norms. 
Obviously, and as observable for example in Figure 3, the range of 
temperature variation at each elevation is shorter than the complete 
range of interannual temperature variation along the whole gradient. 
What would be the shape of a reaction norm of a tree facing this 
complete range of interannual temperature variation? The opposite 
directions of the slopes of the low and high elevation trees in their 
respective temperature conditions suggest that a tree facing the full 
temperature range would respond with a nonlinear reaction norm, 
maybe similar to the bell-shaped one shown in Figure 6. This would 
be consistant with the fact that reaction norms of most plant pheno-
typic traits observed accross a wide temperature range are expected 
to be nonlinear (Arnold et al., 2019). A way of testing this hypothesis 
could be to plant reciprocal transplant experiments: if the assump-
tion is correct, vegetative copies of low and high elevation trees 
transplanted at the other extremity of the gradient would respond 
with an inverted slope.

For some ring variables and/or at some elevation, there is a mix-
ture of trees with positive and negative slopes. Such opposite PP 
could correspond to differences between trees for the position of 
the complete nonlinear reaction norm along the temperature axis, 
as shown in Figure 7.

This variation could reflect both environmental and genetic dif-
ferences between the trees. The proportion of between-tree envi-
ronmental and genetic variation could be very different for trees 
sharing the same plot or being largely separated along the gradi-
ent. However, test of these hypotheses requires access to genetic 
information, which necessitates other approaches such as genetic 
trials. The experimental trial in this study does not encompass a 
common garden experiment and thus does not permit the accurate 
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separation of the environmental and genetic components of PP 
variation. A previous study of genetic diversity along the same el-
evational gradient (Nardin et al., 2015) showed a genetic structure 
only slightly affected by climatic variation, human activities or his-
torical events. Yet, a small but significant inter-plot genetic variation 

indicates the existence of variable genetic dynamics, which could 
be an indication of local adaptation (Nardin et  al.,  2015). This 
suggests that the strong gene flow between all elevations levels 
redistributes more or less the same large genetic diversity every-
where at each new generation. This large genetic diversity could 
be related with the large PP variation observed along the gradient 
and especially at mid-gradient. Indeed, large phenotypic variation 
is often associated to large genetic variation (Roff,  1995). In ad-
dition, the more constraining climatic conditions at the gradient 
extremities could locally select adapted trees and reduce pheno-
typic and genetic variation, including for PP. But these facts are not 
enough to provide evidence for genetic variation, local adaptation 
and a potential for evolutionary adaptation for PP in this gradient. 
Studies based on genetic trials, reciprocal transplant experiments 
and non-neutral genetic markers would deliver additional relevant 
information.

4.3 | Strength of the individual 
reaction norm approach

A PP variable obtained from the reaction norm can be seen as a 
complex dynamic phenotypic trait. This new dynamic trait encom-
passes the variation of the original phenotypic variable within a 
given range of environmental variation. Earlier studies using tree-
rings have often assessed average plasticity by quantifying the envi-
ronmental response at the population level using main site tree-ring 
chronology (Fonti et  al.,  2010; de Luis et  al.,  2013) and the RDPI 
(Valladares et al., 2006) of xylem traits (Scholz et al., 2014). In other 
cases, inter-ring average plasticity was discussed based on indirect 
estimations and tolerance analysis (Matisons et al., 2019) or climate-
growth plastic responses (Arzac et al., 2018; Caminero et al., 2018; 
Sánchez-Salguero et al., 2018). In the few studies investigating inter-
ring PP with individual reaction norms, the results do not contain in-
formation about the proportion of trees with significant estimations 
(Fallour-Rubio et al., 2009; Marchal et al., 2019). Information about 
individual reaction norms becomes particularly relevant to evalu-
ate the fate of populations facing strong selection pressure such as 
imposed by climate changes and how their diversity might prepare 
them to adapt.

The retrospective construction of individual RN using inter-
annual ring variation is a very promising tool for the study of PP. 
Intra-individual variation in RN, that is, reiterated expression of 
RN during an individual's lifetime (Araya-Ajoy et al., 2015), could 
also be based on tree-ring analysis, taking advantage of the 
strong intra-ring (from earlywood to latewood) variation for basic 
wood properties (anatomy, micro-density). First theoric and prac-
tical attempts (Fonti & Jansen, 2012; Martinez-Meier et al., 2009; 
Sánchez-Vargas et al., 2007) support the feasibility of the method. 
Random regression mixed model is another promising framework 
for studying plant PP to global warming and its associated envi-
ronmental and genetic determinism in an accurate and integrated 
way (Arnold et  al.,  2019; Fallour-Rubio et  al.,  2009; Marchal  

F I G U R E  6   The linear reaction norms observed at the bottom 
(orange with a negative slope) and at the top (blue with a positive 
slope) of the elevation gradient could be segments of unique 
nonlinear reaction norms. Whether both putative reaction norms 
are similar (as suggested by the figure) or different is unknown 
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  7   Two trees with opposite slopes of reaction norms at 
the same elevation level may have in reality reaction norms with 
similar nonlinear shape but shifted along the temperature axis 
[Colour figure can be viewed at wileyonlinelibrary.com]
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et al., 2019), as long as the number of estimated individual RN is 

high enough.

Whereas this study shows that PP tends to be greater in the 

colder conditions at the top of the gradient, and more variable in 

the most favourable conditions at mid gradient, there are also very 

strong differences between ring variables: it does not seem possible 

to consider PP as a single trait. PP should be systematically referred 

to mentioning the corresponding phenotypic trait-environmental 

variable association. Estimating reaction norms at the individual tree 

level provides information about the inter individual variation of PP, 

which is not available when it is studied as the average plastic re-

sponse of a group (species, population) of trees. This information is 

especially relevant in evolutionary studies when the adaptation po-

tential of the population submitted to new selection pressure such 

as climate change is heavily dependent of the available genetic diver-

sity of its individual tree components.

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

[Correction added on 18 June 2021, after first online publication: 

Conflict of Interest statement added to provide full transparency.]

ACKNOWLEDG MENTS
The authors thank the INRAE experimental unit UE GBFOR and 

the INRAE plateau technique PHENOBOIS (formerly GENOBOIS), 

INRAE Val de Loire, Orléans (Frédéric Millier), France, for field 

and laboratory work along the larch altitudinal gradient, and the 

International Associated Laboratory (LIA) between INRAE, France, 

and INTA, Argentina FORESTIA. The authors also thank the mu-

nicipalities of Villard-St-Pancrace, St-Martin-de-Queyrières and 

Puy-St-André, as well as the local forest service, ONF Hautes-Alpes, 

Briançon, France. The study experimental site “Gradient Altitudinal 

Mélèze” is part of the “Zone Atelier Alpes.” Finally, the authors thank 

the students and researchers who participated to early steps of 

field work in the study, and who provided help and advices for data 

analysis: Sara Marin, Maxime Nardin, Nathalie Mayeur, Jean-Paul 

Charpentier, Leopoldo Sanchez, Vanina Guérin, Kévin Ader, Jean-

Pierre Rossi, Sophie Gerber, Bérengère Bougué, Frédéric Huard, 

Facundo Muñoz, Thibaud Chauvin and Alexandre Marchal.

AUTHORSHIP
Margarita Escobar-Sandoval contributed to methodology; software; 

formal analysis; investigation; visualization; and writing - original 

draft. Luc Pâques contributed to conceptualization; investigation; 

writing - review & editing; and supervision. Patrick Fonti contrib-

uted to investigation; writing - review & editing; and supervision. 

Alejandro Martinez-Meier contributed to investigation; writing - 

review and editing. Philippe Rozenberg contributed to conceptual-

ization; methodology; software; formal analysis; writing - review & 

editing; visualization; supervision; project administration; and fund-

ing acquisition.

ORCID
Patrick Fonti   https://orcid.org/0000-0002-7070-3292 
Philippe Rozenberg   https://orcid.org/0000-0002-9971-0795 

ENDNOTE
	1	 “Significant” refers to the statistical meaning of the word: we call “sig-

nificant RN” a RN for which the slope of the associated linear relation-
ship is significantly different from zero. 

R E FE R E N C E S
Araya-Ajoy, Y. G., Mathot, K. J., & Dingemanse, N. J. (2015). An ap-

proach to estimate short-term, long-term and reaction norm repeat-
ability. Methods in Ecology and Evolution, 6, 1462–1473. https://doi.
org/10.1111/2041-210X.12430

Arnold, P. A., Kruuk, L. E. B., & Nicotra, A. B. (2019). How to analyse 
plant phenotypic plasticity in response to a changing climate. New 
Phytologist, 222, 1235–1241. https://doi.org/10.1111/nph.15656

Arzac, A., Rozas, V., Rozenberg, P., & Olano, J. M. (2018). Water avail-
ability controls Pinus pinaster xylem growth and density: A multi-
proxy approach along its environmental range. Agricultural & Forest 
Meteorology, 250–251, 171–180. https://doi.org/10.1016/j.agrfo​
rmet.2017.12.257

Balzano, A., Battipaglia, G., & Micco, V. D. (2019). Wood-trait analy-
sis to understand climatic factors triggering intra-annual density-
fluctuations in co-occurring Mediterranean trees. IAWA Journal, 40, 
241–258. https://doi.org/10.1163/22941​932-40190220

Barton, N. H. (1999). Clines in polygenic traits. Genetical Research, 74, 
223–236. https://doi.org/10.1017/S0016​67239​900422X

Becker, M., Nieminen, T. M., & Gérémia, F. (1994). Short-term variations 
and long-term changes in oak productivity in northeastern France. 
The role of climate and atmospheric CO2. Annales des sciences for-
estières, 51, 477–492.

Biondi, F., & Qeadan, F. (2008). A theory-driven approach to tree-
ring standardization: Defining the biological trend from expected 
basal area increment. Tree-Ring Research, 64, 81–96. https://doi.
org/10.3959/2008-6.1

Björklund, J., Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke, J., 
Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T., 
Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, 
T., Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., … Frank, D. 
(2019). Scientific merits and analytical challenges of tree-ring 
densitometry. Reviews of Geophysics, 57, 1224–1264. https://doi.
org/10.1029/2019R​G000642

Black, B. A., Andersson, C., Butler, P. G., Carroll, M. L., DeLong, K. 
L., Reynolds, D. J., Schöne, B. R., Scourse, J., van der Sleen, P., 
Wanamaker, A. D., & Witbaard, R. (2019). The revolution of crossdat-
ing in marine palaeoecology and palaeoclimatology. Biology Letters, 
15, 20180665. https://doi.org/10.1098/rsbl.2018.0665

Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plas-
ticity in plants. Advances in Genetics, 13, 115–155.

Bradshaw, W. E., & Holzapfel, C. M. (2008). Genetic response to rapid 
climate change: It’s seasonal timing that matters. Molecular Ecology, 
17, 157–166. https://doi.org/10.1111/j.1365-294X.2007.03509.x

Bunn, A. G. (2008). A dendrochronology program library in R (dplR). 
Dendrochronologia, 26, 115–124. https://doi.org/10.1016/j.
dendro.2008.01.002

Büntgen, U. (2019). Re-thinking the boundaries of dendrochro-
nology. Dendrochronologia, 53, 1–4. https://doi.org/10.1016/j.
dendro.2018.10.012

Büntgen, U., Frank, D., Liebhold, A., Johnson, D., Carrer, M., Urbinati, C., 
Grabner, M., Nicolussi, K., Levanic, T., & Esper, J. (2009). Three cen-
turies of insect outbreaks across the European Alps. New Phytologist, 
182, 929–941. https://doi.org/10.1111/j.1469-8137.2009.02825.x

 25756265, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pei3.10040 by Inrae - D

ipso, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-7070-3292
https://orcid.org/0000-0002-7070-3292
https://orcid.org/0000-0002-9971-0795
https://orcid.org/0000-0002-9971-0795
https://doi.org/10.1111/2041-210X.12430
https://doi.org/10.1111/2041-210X.12430
https://doi.org/10.1111/nph.15656
https://doi.org/10.1016/j.agrformet.2017.12.257
https://doi.org/10.1016/j.agrformet.2017.12.257
https://doi.org/10.1163/22941932-40190220
https://doi.org/10.1017/S001667239900422X
https://doi.org/10.3959/2008-6.1
https://doi.org/10.3959/2008-6.1
https://doi.org/10.1029/2019RG000642
https://doi.org/10.1029/2019RG000642
https://doi.org/10.1098/rsbl.2018.0665
https://doi.org/10.1111/j.1365-294X.2007.03509.x
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2008.01.002
https://doi.org/10.1016/j.dendro.2018.10.012
https://doi.org/10.1016/j.dendro.2018.10.012
https://doi.org/10.1111/j.1469-8137.2009.02825.x


58  |     ESCOBAR-SANDOVAL et al.

Caminero, L., Génova, M., Camarero, J. J., & Sánchez-Salguero, R. (2018). 
Growth responses to climate and drought at the southernmost European 
limit of Mediterranean Pinus pinaster forests. Dendrochronologia, 48, 
20–29. https://doi.org/10.1016/j.dendro.2018.01.006

Carrer, M., Anfodillo, T., Urbinati, C., & Carraro, V. (1998). High-altitude 
forest sensitivity to global warming: Results from long-term and 
short-term analyses in the eastern italian alps. In M. Beniston & J. L. 
Innes (Eds.), The impacts of climate variability on forests (pp. 171–189). 
Springer.

Castagneri, D., Prendin, A. L., Peters, R. L., Carrer, M., von Arx, G., & 
Fonti, P. (2020). Long-term impacts of defoliator outbreaks on larch 
xylem structure and tree-ring biomass. Frontiers in Plant Science, 11, 
https://doi.org/10.3389/fpls.2020.01078

Clark, D. A., Piper, S. C., Keeling, C. D., & Clark, D. B. (2003). Tropical 
rain forest tree growth and atmospheric carbon dynamics linked to 
interannual temperature variation during 1984–2000. Proceedings 
of the National Academy of Sciences, 100, 5852–5857. https://doi.
org/10.1073/pnas.09359​03100

Cook, E. R., & Kairiukstis, L. (1990). Methods of dendrochronology: 
Applications in the environmental sciences. Springer.

de Luis, M., Čufar, K., Di Filippo, A., Novak, K., Papadopoulos, A., 
Piovesan, G., Rathgeber, C. B. K., Raventós, J., Saz, M. A., & Smith, 
K. T. (2013). Plasticity in dendroclimatic response across the distri-
bution range of aleppo pine (Pinus halepensis). PLoS One, 8, e83550.

Diamond, S. E., & Kingsolver, J. G. (2012). Host plant adaptation and 
the evolution of thermal reaction norms. Oecologia, 169, 353–360. 
https://doi.org/10.1007/s0044​2-011-2206-7

Esper, J., Cook, E. R., Krusic, P. J., Peters, K., & Schweingruber, F. H. 
(2003). Tests of the RCS method for preserving low-frequency 
variability in long tree-ring chronologies. Tree-Ring Research, 59, 
81–98.

Falconer, D. S. (1990). Selection in different environments: Effects on 
environmental sensitivity (reaction norm) and on mean performance. 
Genetical Research, 56, 57–70. https://doi.org/10.1017/S0016​67230​
0028883

Fallour-Rubio, D., Guibal, F., Klein, E. K., Bariteau, M., & Lefèvre, F. (2009). 
Rapid changes in plasticity across generations within an expanding 
cedar forest. Journal of Evolutionary Biology, 22, 553–563. https://doi.
org/10.1111/j.1420-9101.2008.01662.x

Feinard-Duranceau, M., Berthier, A., Vincent-Barbaroux, C., Marin, S., 
Lario, F.-J., & Rozenberg, P. (2018). Plastic response of four maritime 
pine (Pinus pinaster Aiton) families to controlled soil water deficit. 
Annals of Forest Science, 75, 47.

Fonti, P., & Jansen, S. (2012). Xylem plasticity in response to climate. New 
Phytologist, 195, 734–736. https://doi.org/10.1111/j.1469-8137. 
2012.04252.x

Fonti, P., von Arx, G., Garcia-Gonzalez, I., Eilmann, B., Sass-Klaassen, U., 
Gartner, H., & Eckstein, D. (2010). Studying global change through in-
vestigation of the plastic responses of xylem anatomy in tree rings. New 
Phytologist, 185. https://doi.org/10.1111/j.1469-8137.2009.03030.x

Fourchy, P. (1952). Ecologie du mélèze particulièrement dans les Alpes 
françaises. In Etudes sur l’Ecologie et la Sylviculture du Mélèze (Larix eu-
ropeae D. C.). : Ecole Nationale des eaux et forêts, 144 pp.

Fritts, H. C. (1976). Tree rings and climate. Academic Press.
Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and 

evolution: Facts and concepts. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 365, 547–556. https://doi.org/10.1098/
rstb.2009.0267

He, M., Yang, B., & Bräuning, A. (2012). Tree growth–climate relation-
ships of Juniperus tibetica along an altitudinal gradient on the south-
ern Tibetan Plateau. Trees, 27, 429–439. https://doi.org/10.1007/
s0046​8-012-0813-5

Huang, W., Fonti, P., Larsen, J. B., Ræbild, A., Callesen, I., Pedersen, 
N. B., & Hansen, J. K. (2017). Projecting tree-growth responses 
into future climate: A study case from a Danish-wide common 

garden. Agricultural & Forest Meteorology, 247, 240–251. https://doi.
org/10.1016/j.agrfo​rmet.2017.07.016

Jochner, M., Bugmann, H., Notzli, M., & Bigler, C. (2017). Among-tree 
variability and feedback effects result in different growth responses 
to climate change at the upper treeline in the Swiss Alps. Ecology and 
Evolution, 7, 7937–7953. https://doi.org/10.1002/ece3.3290

Juenger, T., Lennartsson, T., & Tuomi, J. (2000). The evolution of toler-
ance to damage in Gentianella campestris: Natural selection and the 
quantitative genetics of tolerance. Evolutionary Ecology, 14, 393. 
https://doi.org/10.1023/A:10109​08800609

Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local 
adaptation. Ecology Letters, 7, 1225–1241. https://doi.
org/10.1111/j.1461-0248.2004.00684.x

King, G. M., Gugerli, F., Fonti, P., & Frank, D. C. (2013). Tree growth 
response along an elevational gradient: Climate or genetics? 
Oecologia, 173, 1587–1600. https://doi.org/10.1007/s0044​
2-013-2696-6

Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends 
in Ecology & Evolution, 22, 569–574. https://doi.org/10.1016/j.
tree.2007.09.006

Lachenbruch, B., & McCulloh, K. A. (2014). Traits, properties, and perfor-
mance: How woody plants combine hydraulic and mechanical func-
tions in a cell, tissue, or whole plant. New Phytologist, 204, 747–764. 
https://doi.org/10.1111/nph.13035

Latreille, A., Davi, H., Huard, F., & Pichot, C. (2017). Variability of the 
climate-radial growth relationship among Abies alba trees and pop-
ulations along altitudinal gradients. Forest Ecology and Management, 
396, 150–159. https://doi.org/10.1016/j.foreco.2017.04.012

Manzanedo, R. D., & Pederson, N. (2019). Towards a more ecologi-
cal dendroecology. Tree-Ring Research, 75, 152–159. https://doi.
org/10.3959/1536-1098-75.2.152

Marchal, A., Schlichting, C. D., Gobin, R., Balandier, P., Millier, F., Muñoz, 
F., Pâques, L. E., & Sánchez, L. (2019). Deciphering hybrid larch reac-
tion norms using random regression. G3 Genes Genomes Genetics, 9, 
21–32. https://doi.org/10.1534/g3.118.200697

Martinez-Meier, A., Sanchez, L., Dalla-Salda, G., Gallo, L., Pastorino, 
M., & Rozenberg, P. (2009). Ring density record of phenotypic 
plasticity and adaptation to drought in Douglas-fir. Forest Ecology 
and Management, 258(5), 860–867. https://doi.org/10.1016/j.
foreco.2009.03.021

Martínez-Vilalta, J. (2018). The rear window: Structural and functional 
plasticity in tree responses to climate change inferred from growth 
rings. Tree Physiology, 38, 155–158. https://doi.org/10.1093/treep​
hys/tpy008

Matisons, R., Jansone, D., Elferts, D., Adamovičs, A., Schneck, V., & 
Jansons, Ā. (2019). Plasticity of response of tree-ring width of Scots 
pine provenances to weather extremes in Latvia. Dendrochronologia, 
54, 1–10. https://doi.org/10.1016/j.dendro.2019.01.002

Mérian, P., Bontemps, J. -D., Bergès, L., & Lebourgeoiss, F. (2011). Spatial 
variation and temporal instability in climate-growth relationships of 
sessile oak (Quercus petraea [Matt.] Liebl.) under temperate condi-
tions. Plant Ecology, 212, 1855–1871.

Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., 
& Bugmann, H. (2018). Long-term response of forest productivity 
to climate change is mostly driven by change in tree species com-
position. Scientific Reports, 8, 5627., https://doi.org/10.1038/s4159​
8-018-23763​-y

Morrissey, M. B., & Liefting, M. (2016). Variation in reaction norms: 
Statistical considerations and biological interpretation. Evolution, 70, 
1944–1959. https://doi.org/10.1111/evo.13003

Nabais, C., Campelo, F., Vieira, J., & Cherubini, P. (2014). Climatic 
signals of tree-ring width and intra-annual density fluctuations 
in Pinus pinaster and Pinus pinea along a latitudinal gradient in 
Portugal. Forestry, 87, 598–605. https://doi.org/10.1093/fores​try/
cpu021

 25756265, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pei3.10040 by Inrae - D

ipso, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.dendro.2018.01.006
https://doi.org/10.3389/fpls.2020.01078
https://doi.org/10.1073/pnas.0935903100
https://doi.org/10.1073/pnas.0935903100
https://doi.org/10.1007/s00442-011-2206-7
https://doi.org/10.1017/S0016672300028883
https://doi.org/10.1017/S0016672300028883
https://doi.org/10.1111/j.1420-9101.2008.01662.x
https://doi.org/10.1111/j.1420-9101.2008.01662.x
https://doi.org/10.1111/j.1469-8137.2012.04252.x
https://doi.org/10.1111/j.1469-8137.2012.04252.x
https://doi.org/10.1111/j.1469-8137.2009.03030.x
https://doi.org/10.1098/rstb.2009.0267
https://doi.org/10.1098/rstb.2009.0267
https://doi.org/10.1007/s00468-012-0813-5
https://doi.org/10.1007/s00468-012-0813-5
https://doi.org/10.1016/j.agrformet.2017.07.016
https://doi.org/10.1016/j.agrformet.2017.07.016
https://doi.org/10.1002/ece3.3290
https://doi.org/10.1023/A:1010908800609
https://doi.org/10.1111/j.1461-0248.2004.00684.x
https://doi.org/10.1111/j.1461-0248.2004.00684.x
https://doi.org/10.1007/s00442-013-2696-6
https://doi.org/10.1007/s00442-013-2696-6
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.1111/nph.13035
https://doi.org/10.1016/j.foreco.2017.04.012
https://doi.org/10.3959/1536-1098-75.2.152
https://doi.org/10.3959/1536-1098-75.2.152
https://doi.org/10.1534/g3.118.200697
https://doi.org/10.1016/j.foreco.2009.03.021
https://doi.org/10.1016/j.foreco.2009.03.021
https://doi.org/10.1093/treephys/tpy008
https://doi.org/10.1093/treephys/tpy008
https://doi.org/10.1016/j.dendro.2019.01.002
https://doi.org/10.1038/s41598-018-23763-y
https://doi.org/10.1038/s41598-018-23763-y
https://doi.org/10.1111/evo.13003
https://doi.org/10.1093/forestry/cpu021
https://doi.org/10.1093/forestry/cpu021


     |  59ESCOBAR-SANDOVAL et al.

Nardin, M. (2013). Ajustement biologique du mélèze aux variations envi-
ronnementales le long d’un gradient altitudinal: approche microdensi-
tométrique de la réponse au climat. .

Nardin, M., Musch, B., Rousselle, Y., Guérin, V., Sanchez, L., Rossi, J.-P., 
Gerber, S., Marin, S., Pâques, L. E., & Rozenberg, P. (2015). Genetic 
differentiation of European larch along an altitudinal gradient in 
the French Alps. Annals of Forest Science, 72, 517–527. https://doi.
org/10.1007/s1359​5-015-0483-8

Nicotra, A. B., & Davidson, A. (2010). Adaptive phenotypic plasticity and 
plant water use. Functional Plant Biology, 37, 117–127. https://doi.
org/10.1071/FP09139

Obojes, N., Meurer, A., Newesely, C., Tasser, E., Oberhuber, W., Mayr, S., 
& Tappeiner, U. (2018). Water stress limits transpiration and growth of 
European larch up to the lower subalpine belt in an inner-alpine dry val-
ley. New Phytologist, 220, 460–475. https://doi.org/10.1111/nph.15348

Paiva, J. A. P., Garnier-Géré, P. H., Rodrigues, J. C., Alves, A., Santos, 
S., Graça, J., Provost, G. L., Chaumeil, P., Silva-Perez, D. D., Bosc, 
A., Fevereiro, P., & Plomion, C.. (2008). Plasticity of maritime pine 
(Pinus pinaster) wood-forming tissues during a growing season. New 
Phytologist, 179, 1180–1194.

Pélabon, C., Osler, N. C., Diekmann, M., & Graae, B. J. (2013). Decoupled phe-
notypic variation between floral and vegetative traits: Distinguishing 
between developmental and environmental correlations. Annals of 
Botany, 111, 935–944. https://doi.org/10.1093/aob/mct050

Peters, R. L., Miranda, J. C., Schönbeck, L., Nievergelt, D., Fonti, M. V., 
Saurer, M., Stritih, A., Fonti, P., Wermelinger, B., von Arx, G., & Lehmann, 
M. M. (2020). Tree physiological monitoring of the 2018 larch budmoth 
outbreak: Preference for leaf recovery and carbon storage over stem 
wood formation in Larix decidua. Tree Physiology, 40, 1697–1711.

Pigliucci, M., & Pigliucci, P. (2001). Phenotypic plasticity: Beyond nature 
and nurture. JHU Press.

Pompa-García, M., Venegas-GonzáLez, A., Júnior, A. A., & Sigala-
Rodríguez, J. A. (2018). Dendroecological approach to assessing 
carbon accumulation dynamics in two Pinus species from northern 
Mexico. Tree-Ring Research, 74, 196–209.

R Core Team. (2018). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. Retrieved from http://
www.R-proje​ct.org/

Rehfeldt, G. E., Wykoff, W. R., & Ying, C. C. (2001). Physiologic plas-
ticity, evolution, and impacts of a changing climate on Pinus contorta. 
Climatic Change, 50, 355–376

Roff, D. A. (1995). The estimation of genetic correlations from pheno-
typic correlations: A test of Cheverud’s conjecture. Heredity, 74, 481–
490. https://doi.org/10.1038/hdy.1995.68

Rossi, S., Anfodillo, T., Čufar, K., Cuny, H. E., Deslauriers, A., Fonti, P., 
Frank, D., Gričar, J., Gruber, A., King, G. M., Krause, C., Morin, H., 
Oberhuber, W., Prislan, P., & Rathgeber, C. B. K. (2013). A meta-
analysis of cambium phenology and growth: Linear and non-linear 
patterns in conifers of the northern hemisphere. Annals of Botany, 
112, 1911–1920. https://doi.org/10.1093/aob/mct243

Rozenberg, P., Chauvin, T., Escobar-Sandoval, M., Huard, F., Shishov, V., 
Charpentier, J.-P., Sergent, A.-S., Vargas-Hernandez, J. J., Martinez-
Meier, A., & Pâques, L. (2020). Climate warming differently affects 
Larix decidua ring formation at each end of a French Alps elevational 
gradient. Annals of Forest Science, 77, 54, https://doi.org/10.1007/
s1359​5-020-00958​-w

Rozenberg, P., Pâques, L., Huard, F., & Roques, A. (2020). Direct and in-
direct analysis of the elevational shift of larch budmoth outbreaks. 
Frontiers in Forests and Global Change, 3.

Saderi, S., Rathgeber, C. B. K., Rozenberg, P., & Fournier, M. (2019). 
Phenology of wood formation in larch (Larix decidua Mill.) trees grow-
ing along a 1000-m elevation gradient in the French Southern Alps. 
Annals of Forest Science, 76, 89.

Sánchez-Salguero, R., Camarero, J. J., Rozas, V., Génova, M., Olano, J. M., 
Arzac, A., Gazol, A., Caminero, L., Tejedor, E., de Luis, M., Linares, J. 

C. (2018). Resist, recover or both? Growth plasticity in response to 
drought is geographically structured and linked to intraspecific vari-
ability in Pinus pinaster. Journal of Biogeography, 45, 1126–1139.

Sánchez-Vargas, N. M., Sánchez, L., & Rozenberg, P. (2007). Plastic and 
adaptive response to weather events: A pilot study in a maritime pine 
tree ring. Canadian Journal of Forest Research, 37, 2090–2095. https://
doi.org/10.1139/X07-075

Santini, F., Ferrio, J. P., Hereş, A.-M., Notivol, E., Piqué, M., Serrano, L., 
Shestakova, T. A., Sin, E., Vericat, P., & Voltas, J. (2018). Scarce pop-
ulation genetic differentiation but substantial spatiotemporal phe-
notypic variation of water-use efficiency in Pinus sylvestris at its 
western distribution range. European Journal of Forest Research, 137, 
863–878. https://doi.org/10.1007/s1034​2-018-1145-9

Saulnier, M., Corona, C., Stoffel, M., Guibal, F., & Edouard, J.-L. (2019). 
Climate-growth relationships in a Larix decidua Mill. network in the 
French Alps. Science of the Total Environment, 664, 554–566. https://
doi.org/10.1016/j.scito​tenv.2019.01.404

Scheiner, S. M. (2013). The genetics of phenotypic plasticity. XII. 
Temporal and spatial heterogeneity. Ecology and Evolution, 3, 4596–
4609. https://doi.org/10.1002/ece3.792

Scholz, A., Stein, A., Choat, B., & Jansen, S. (2014). How drought and de-
ciduousness shape xylem plasticity in three Costa Rican woody plant 
species. IAWA Journal, 35, 337–355. https://doi.org/10.1163/22941​
932-00000070

Silvestre, F., Gillardin, V., & Dorts, J. (2012). Proteomics to assess the role 
of phenotypic plasticity in aquatic organisms exposed to pollution 
and global warming. Integrative and Comparative Biology, 52, 681–
694. https://doi.org/10.1093/icb/ics087

Smoliński, S., Deplanque-Lasserre, J., Hjörleifsson, E., Geffen, A. J., 
Godiksen, J. A., & Campana, S. E. (2020). Century-long cod otolith 
biochronology reveals individual growth plasticity in response to 
temperature. Scientific Reports, 10, 16708. https://doi.org/10.1038/
s4159​8-020-73652​-6

Tammaru, T., & Teder, T. (2012). Why is body size more variable in stress-
ful conditions: An analysis of a potential proximate mechanism. 
Evolutionary Ecology, 26, 1421–1432. https://doi.org/10.1007/s1068​
2-012-9557-3

Teder, T., Vellau, H., & Tammaru, T. (2014). Age and size at maturity: 
A quantitative review of diet-induced reaction norms in insects. 
Evolution, 68, 3217–3228. https://doi.org/10.1111/evo.12518

Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). 
Quantitative estimation of phenotypic plasticity: Bridging 
the gap between the evolutionary concept and its ecologi-
cal applications. Journal of Ecology, 94, 1103–1116. https://doi.
org/10.1111/j.1365-2745.2006.01176.x

Vargas-Hernandez, J., & Adams, W. T. (1991). Genetic variation of wood 
density components in young coastal Douglas-fir: Implications for 
tree breeding. Canadian Journal of Forest Research, 21. https://doi.
org/10.1139/x91-248

Via, S. (1993). Adaptive phenotypic plasticity: Target or by-product of se-
lection in a variable environment? American Naturalist, 142, 352–365. 
https://doi.org/10.1086/285542

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. 
D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: 
Consensus and controversy. Trends in Ecology & Evolution, 10, 212–
217. https://doi.org/10.1016/S0169​-5347(00)89061​-8

Vitas, A. (2018). Climatically induced light rings of European larch 
(Larix decidua Mill.) in Lithuania. Trees, 32, 791–800. https://doi.
org/10.1007/s0046​8-018-1672-5

Vitasse, Y., Bottero, A., Rebetez, M., Conedera, M., Augustin, S., Brang, 
P., & Tinner, W. (2019). What is the potential of silver fir to thrive 
under warmer and drier climate? European Journal of Forest Research, 
138, 547–560.

Vitasse, Y., Bresson, C. C., Kremer, A., Michalet, R., & Delzon, S. 
(2010). Quantifying phenological plasticity to temperature in two 

 25756265, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pei3.10040 by Inrae - D

ipso, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s13595-015-0483-8
https://doi.org/10.1007/s13595-015-0483-8
https://doi.org/10.1071/FP09139
https://doi.org/10.1071/FP09139
https://doi.org/10.1111/nph.15348
https://doi.org/10.1093/aob/mct050
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1038/hdy.1995.68
https://doi.org/10.1093/aob/mct243
https://doi.org/10.1007/s13595-020-00958-w
https://doi.org/10.1007/s13595-020-00958-w
https://doi.org/10.1139/X07-075
https://doi.org/10.1139/X07-075
https://doi.org/10.1007/s10342-018-1145-9
https://doi.org/10.1016/j.scitotenv.2019.01.404
https://doi.org/10.1016/j.scitotenv.2019.01.404
https://doi.org/10.1002/ece3.792
https://doi.org/10.1163/22941932-00000070
https://doi.org/10.1163/22941932-00000070
https://doi.org/10.1093/icb/ics087
https://doi.org/10.1038/s41598-020-73652-6
https://doi.org/10.1038/s41598-020-73652-6
https://doi.org/10.1007/s10682-012-9557-3
https://doi.org/10.1007/s10682-012-9557-3
https://doi.org/10.1111/evo.12518
https://doi.org/10.1111/j.1365-2745.2006.01176.x
https://doi.org/10.1111/j.1365-2745.2006.01176.x
https://doi.org/10.1139/x91-248
https://doi.org/10.1139/x91-248
https://doi.org/10.1086/285542
https://doi.org/10.1016/S0169-5347(00)89061-8
https://doi.org/10.1007/s00468-018-1672-5
https://doi.org/10.1007/s00468-018-1672-5


60  |     ESCOBAR-SANDOVAL et al.

temperate tree species. Functional Ecology, 24, 1211–1218. https://
doi.org/10.1111/j.1365-2435.2010.01748.x

Way, D. A., & Oren, R. (2010). Differential responses to changes in 
growth temperature between trees from different functional groups 
and biomes: A review and synthesis of data. Tree Physiology, 30, 669–
688. https://doi.org/10.1093/treep​hys/tpq015

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Escobar-Sandoval M, Pâques L, Fonti 
P, Martinez-Meier A, Rozenberg P. Phenotypic plasticity of 
European larch radial growth and wood density along a-1,000 
m elevational gradient. Plant-Environment Interactions. 
2021;2:45–60. https://doi.org/10.1002/pei3.10040

 25756265, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pei3.10040 by Inrae - D

ipso, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/j.1365-2435.2010.01748.x
https://doi.org/10.1111/j.1365-2435.2010.01748.x
https://doi.org/10.1093/treephys/tpq015
https://doi.org/10.1002/pei3.10040

