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ABSTRACT 

Decade years of efforts on the retrieval of soil 

moisture based on radiative transfer model have

largely improved the accuracy of soil moisture 

(SM). This paper focus on the other parameter, 

namely vegetation optical depth (VOD). We 

retrieved X-band VOD from AMSR-E and 

AMSR2 observations by inverting the L-MEB 

model (Wigneron et al.  2007 [1]) at X-band,

considering that SM was known. As SM input 

to the L-MEB inversion we used the ECMWF 

SM product. This step avoids correlation

between VOD and SM retrievals from the

mono-angular AMSR-E observations. In a first 

step we evaluated the retrieved VOD with the

Copernicus Global Land Service (CGLS) LAI.

The evaluation results indicate our model has a 

great potential for VOD retrievals from AMSR-

E/2 satellite data. 

INTRODUCTION 

In recent years, much attention has been placed

on the role of terrestrial biosphere dynamics in 

the climate system. Brandt et al. [2] found there

is a strong linear correlation with no clear sign

of saturation, even in densely vegetated areas,

between SMOS L-VOD based on L-MEB 

model and aboveground vegetation carbon 

stocks among different land cover classes. 

However, SMOS monitored the Earth since

2010 limiting our capability to evaluate long-

term global carbon changes, such as over 

several decades. Therefore, there is a need to

extend the application of the L-MEB model to

other satellite data, such as AMSR-E/2.  

Over the last decade, lots of efforts have been 

put on the retrieval of soil moisture for which 

the accuracy was greatly improved. For more 

than a decade, the European Centre for 

Medium-Range Weather Forecasts (ECMWF) 

has used in-situ and remote sensing 

observations to operationally constrain the 

temporal evolution of soil moisture[3]. In this 

paper, we assume ECMWF SM is accurate 

enough to be used as an input to the L-MEB 

model (a more accurate name for the model 

would be X-MEB, but we used "L-MEB" which 

is a more standard name). We used an iterative

optimization procedure to retrieve VOD, the

initial (or first guess) value of VOD is the yearly

average LPRM VOD.  

L-MEB MODEL 

In the L-MEB model, the simulation of the land 

surface emission is based on the τ-ω radiative
transfer model using simplified (zero-order) 

radiative transfer equations. The upwelling 

radiation (brightness temperature) as observed

from above the canopy consists of three

components: 1) the radiation from the soil layer 

attenuated by the overlaying vegetation; 2) the 

upward radiation from the vegetation; and 3) the

downward radiation from the vegetation,

reflected upwards by the soil layer and again 
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attenuated by the vegetation as given in the

following equation [4, 5]: 𝑇𝑏𝑃 =  𝑇𝑆Γ(θ)𝑒𝑟 + (1 − 𝜔)(1 − Γ(θ))𝑇𝐶+ (1 − 𝜔)(1 − Γ(θ))(1− 𝑒𝑟)Γ(θ)𝑇𝐶 

where P is the polarization, we only used

horizontal polarization in this paper; 𝑇𝑆 and 𝑇𝐶
are the temperatures of the soil and the canopy

respectively;  𝑒𝑟  is the soil emissivity

determined by soil moisture, temperature and

roughness; ω is the effective scattering albedo; 

Γ is the vegetation transmissivity determined by
VOD (dimensionless) and the observing 

incidence angle (𝜃) as given in the following 

equation: Γ = exp (−𝑉𝑂𝐷cos (𝜃)) 

In this paper, we assume ECMWF SM is

accurate enough to be used as a known input to 

the L-MEB model, therefore, VOD becomes the 

only unknown parameter. The approach of 

retrieving VOD is to minimize the following 

cost function: cost function=  ∑ (𝑇𝐵𝑝(𝜃)𝑜𝑏𝑠 − 𝑇𝐵𝑝(𝜃)𝑠𝑖𝑚)22𝑖=1 σ(TB)2+ (VOD𝑖𝑛𝑖 − VOD)2𝜎(VOD)2
where VOD𝑖𝑛𝑖 denotes the initial VOD  equal to

the yearly average of the LPRM VOD, 𝜎(VOD) 

is set as a constant value of 0.5. 

Previous studies have shown that the brightness

temperature is sensitive to the soil roughness 

(HR)[6] and the effective vegetation scattering 

albedo (ω) [7]. In other words, the quality of 

the retrieved VOD could be affected by the

values of these two parameters. By now, we

have only completed the calibration of ω. We

first set HR equal to 0, and change the value of ω from 0 to 0.08. Consequently, the retrieved 

VOD in this study does not only reflect the

vegetation information, it also incorporates the 

surface roughness effects. In order to save the

time of the calibration process, we started with 

the African continent where various vegetation 

classes are included. In a first step, we assumed

CGLS LAI is a good proxy of the VOD. So the 

optimum ω  is the one that lead to the best 

temporal correlation between the retrieved

VOD and the CGLS LAI. 

DATA 

AMSR-2, launched on 18 May 2012 on board 

the JAXA GCOMW1 satellite, provides the

global measurements of vertically (V) and 

horizontally (H) polarized microwave

emissions at six frequencies (6.9, 10.7, 18.7,

23.8, 36.5, 89.0 GHz) with descending and 

ascending orbital equatorial crossings at 01:30 

and 13:30 local time. In this first analysis, we 

focused on X-band (10.7GHz), horizontal 

polarization, descending data for only one year 

of 2016. The ECMWF dataset used in this study 

for the VOD retrieval is based on the ERA-

Interim dataset which used a numerical weather 

prediction (NWP) system (IFS-Cy31r2) to

produce the reanalyzed data.  The ECMWF soil 

surface (Level 1, top 0–7 cm soil layer) and soil 

deep temperature (Level 3, 28-100 cm) were 

used to compute the effective soil temperature. 

The surface (Level 1) soil moisture was chosen

as a known input to the model. The 10-day LAI 

product used in this study is obtained from the 

CGLS website

(https://land.copernicus.eu/global/). LPRM X-

VOD[8], CCI X-VOD  [9] and LPDR X-VOD 

[10] were downloaded, respectively, from 

Goddard Earth Sciences Data and Information 

Services Center (GES DISC), Vegetation

Optical Depth Climate Archive (VODCA) and 

National Snow and Ice Data Center (NSIDC).

These three products are calculated using an 

iterative solution of the radiative transfer 

equations to retrieve VOD and soil moisture at 

the same time from vertical and horizontal 

polarized microwave data.  

RESULT 

By now, we have only completed the calibration 

of ω. We first set HR equal to 0 and change the 

value of ω ranging from 0 to 0.08. Therefore, 

the retrieved VOD in this study doesn’t only 

reflect the vegetation information, also 
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incorporates the surface roughness effects. We

evaluated the retrieved VOD against the CGLS 

LAI, and only the temporal correlation was

considered in this study. Table 1 shows the 

percentages accounting for which the specific 

model produced the highest temporal 

correlation for different effective scattering 

albedo values. It’s clear that LMEB produced 

the largest number of pixels with highest 

temporal correlation for most of the tested 

effective scattering albedo values (0 to 0.06).

Then LPDR is the second model producing the 

highest temporal correlation. On the contrary,

CCI and LPRM only have a small fraction 

pixels showing highest temporal correlation,

less than 20% and 10 % respectively. For 

LMEB model, the proportion fell down from 

61.35% to 27.30% when increasing 𝜔 from 0 to

0.08. 

Table1. The percentage of pixels for the 

specific model producing the highest temporal 

correlation

(Red presents the high values, on the contrary, 

green presents the low values). 

Regarding the above study, we fixed the

optimum parameters (HR = 0 and ω  = 0). 

Figure 1 (left) illustrates the distribution of the

model which produced the highest temporal 

correlation. It is easy to find that LMEB owned 

the largest proportion of pixels (61.35%) with 

the highest temporal correlation with the CGLS 

LAI，  especially in the west of the Africa. 

LPDR surpassed the other models over a 

fraction of 26.52% of the pixels which were 

mainly located in the east and the south of

the Africa. In comparison to the former 2 

models, CCI and LPRM showed only a few 

pixels (less than 10%) with the highest 

temporal correlation.

Figure 1. Left: the distribution of the model which produced the highest temporal correlation; right: 

the histogram of the percentage for each model with the highest temporal correlation.

CONCLUSION 

We evaluated a new retrieval approach of 

AMSR-E/2 X-VOD using the L-MEB model. In 

this study, we assumed ECMWF SM as a 

known input to the L-MEB inversion and we

only retrieved VOD. In this study, we first set 

HR equal to 0, and tested 7 values of the 

effective vegetation scattering albedo (ω) from 

0 to 0.08. We evaluated the retrieved VOD with

the CGLS LAI by comparing the temporal 

correlation with other VOD products. For most 

of the tested ω values (from 0 to 0.06), LMEB 

surpassed other models by producing the 

LMEB LPDR CCI LPRM

0 0.6135 0.2652 0.0796 0.0417

0.01 0.5916 0.2762 0.0870 0.0453

0.02 0.5588 0.2912 0.0989 0.0511

0.03 0.5298 0.3060 0.1069 0.0573

0.04 0.4898 0.3227 0.1212 0.0663

0.06 0.4233 0.3487 0.1482 0.0798

0.08 0.2730 0.4236 0.2055 0.0979

𝜔
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highest temporal correlation over the largest 

fraction of pixels (60 % of the studied area in 

Africa). This model showed best performance 

in the west of the Africa, then followed by

LPDR especially in the east and the south of the 

Africa.  Future studies will extend the analysis

to a combined calibration of both ω and HR, 

and to the spatial correlation with biomass, 

NDVI and LAI. 
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