
HAL Id: hal-03166935
https://hal.inrae.fr/hal-03166935

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Keeping modelling notebooks with TRACE: Good for
you and good for environmental research and

management support
Daniel Ayllón, Steven Railsback, Cara Gallagher, Jacqueline Augusiak, Hans
Baveco, Uta Berger, Sandrine Charles, Romina Martin, Andreas Focks, Nika

Galic, et al.

To cite this version:
Daniel Ayllón, Steven Railsback, Cara Gallagher, Jacqueline Augusiak, Hans Baveco, et al..
Keeping modelling notebooks with TRACE: Good for you and good for environmental re-
search and management support. Environmental Modelling & Software, 2021, 136, pp.104932.
�10.1016/j.envsoft.2020.104932�. �hal-03166935�

https://hal.inrae.fr/hal-03166935
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

1

Keeping modelling notebooks with TRACE: Good for you and

good for environmental research and management support

Daniel Ayllón a,*, Steven F. Railsback b, Cara Gallagher c, Jacqueline Augusiak d, Hans

Baveco e, Uta Berger f, Sandrine Charles g, Romina Martin h, Andreas Focks e, Nika Galic i,

Chun Liu j, E. Emiel van Loon k, Jacob Nabe-Nielsen c, Cyril Piou l, J. Gareth Polhill m,

Thomas G. Preuss n, Viktoriia Radchuk o, Amelie Schmolke p, Julita Stadnicka-Michalak q,

Pernille Thorbek r, Volker Grimm s,t

a Complutense University of Madrid (UCM), Faculty of Biology, Department of Biodiversity, Ecology

and Evolution. Calle José Antonio Novais 12, 28040, Madrid, Spain daniel.ayllon@bio.ucm.es

b Lang Railsback & Associates, 250 California Ave., Arcata, CA 95521, USA

Steve@LangRailsback.com

c Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark

cgallagher@bios.au.dk, jnn@bios.au.dk

d Charles River Laboratories Den Bosch B.V., Dept. of Discovery and Environmental Sciences,

Hambakenwetering 7, 5231 DD 's-Hertogenbosch, the Netherlands jaugusiak@gmail.com

e Wageningen Environmental Research, Wageningen University & Research, Droevendaalsesteeg 3a,

6708PB Wageningen, the Netherlands hans.baveco@wur.nl, andreas.focks@wur.nl

f TU Dresden, Institute of Forest Growth and Computer Sciences, Pienner Straße 8, 01737 Tharandt,

Germany uta.berger@tu-dresden.de

g Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie - Biologie
Evolutive, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

sandrine.charles@univ-lyon1.fr

h Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden

romina.martin@su.se

i Syngenta Crop Protection LLC., Greensboro, NC-27408, USA nika.galic@syngenta.com

j Syngenta, Herbicide Bioscience, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY,

UK chun.liu@syngenta.com

k Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904,

1098 XH Amsterdam, the Netherlands E.E.vanLoon@uva.nl

l CIRAD, UMR CBGP, INRA, IRD, Montpellier SupAgro, Univ. Montpellier, F-34398 Montpellier,

France cyril.piou@cirad.fr

m The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK gary.polhill@hutton.ac.uk

n Bayer AG, Alfred Nobel Str. 50, 40789 Monheim, Germany thomas.preuss1@bayer.com

o Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin,

Germany radchuk@izw-berlin.de

p Waterborne Environmental, Inc., 897B Harrison Street SE, Leesburg, VA 20175, USA

schmolkea@waterborne-env.com

q Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland

julita.stadnicka@eawag.ch

r BASF SE, APD/EE, Speyerer Strasse 2, 67117 Limburgerhof, Germany pernille.thorbek@basf.com

This document is the accepted manuscript version of the following article:
Ayllón, D., Railsback, S. F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., … Grimm,
V. (2021). Keeping modelling notebooks with TRACE: good for you and good for environmental
research and management support. Environmental Modelling and Software, 136, 104932 (12 pp.).
https://doi.org/10.1016/j.envsoft.2020.104932

This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/sdfasd

mailto:daniel.ayllon@bio.ucm.es
mailto:Steve@LangRailsback.com
mailto:cgallagher@bios.au.dk
mailto:jnn@bios.au.dk
mailto:jaugusiak@gmail.com
mailto:hans.baveco@wur.nl
mailto:andreas.focks@wur.nl
mailto:uta.berger@tu-dresden.de
mailto:sandrine.charles@univ-lyon1.fr
mailto:romina.martin@su.se
mailto:nika.galic@syngenta.com
mailto:chun.liu@syngenta.com
mailto:E.E.vanLoon@uva.nl
mailto:cyril.piou@cirad.fr
mailto:gary.polhill@hutton.ac.uk
mailto:thomas.preuss1@bayer.com
mailto:radchuk@izw-berlin.de
mailto:schmolkea@waterborne-env.com
mailto:julita.stadnicka@eawag.ch
mailto:pernille.thorbek@basf.com

2

s Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany

volker.grimm@ufz.de

t University of Potsdam, Institute for Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam,

Germany

* Corresponding author: Daniel Ayllón. Complutense University of Madrid (UCM), Faculty of
Biology, Department of Biodiversity, Ecology and Evolution. Calle José Antonio Novais 12, 28040,

Madrid, Spain. Telephone: +34 913944951. E-mail: daniel.ayllon@bio.ucm.es

Content

Abstract ... 2

1. Introduction... 4

2. Documenting experiments: Laboratory and modelling notebooks 7

3. Documenting the modelling cycle: Model “evaludation” and the TRACE documentation

framework ... 9

4. Proposed structure of TRACE modelling notebooks .. 13

4.1. What should be in a modelling notebook? .. 13

4.2. Details for specific modelling tasks .. 15

5. Schedules, tools, and recommendations for keeping modelling notebooks 23

5.1. Schedules... 23

5.2. Tools ... 24

5.3. Recommendations.. 27

5.4. How to produce a TRACE document from a modelling notebook 29

6. Discussion ... 30

7. References .. 33

Abstract

The acceptance and usefulness of simulation models are often limited by the efficiency,

transparency, reproducibility, and reliability of the modelling process. We address these

issues by suggesting that modellers (1) “trace” the iterative modelling process by keeping a

modelling notebook corresponding to the laboratory notebooks used by empirical researchers,

(2) use a standardized notebook structure and terminology based on the existing TRACE

documentation framework, and (3) use their notebooks to compile TRACE documents that

mailto:volker.grimm@ufz.de
mailto:daniel.ayllon@bio.ucm.es

3

supplement publications and reports. These practices have benefits for model developers,

users, and stakeholders: improved and efficient model design, analysis, testing, and

application; increased model acceptance and reuse; and replicability and reproducibility of the

model and the simulation experiments. Using TRACE terminology and structure in modelling

notebooks facilitates production of TRACE documents. We explain the rationale of TRACE,

provide example TRACE documents, and suggest strategies for keeping “TRACE Modelling

Notebooks.”

Keywords: model documentation, standards, modelling cycle, reproducible research,

environmental modelling, scientific communication

4

“The act of writing in the notebook causes the scientist to stop and think about what is being done in the

laboratory. It is in this way an essential part of ‘doing good science’.”

 Kanare (1985, p. 1)

1. Introduction

Modelling has become an essential tool for environmental and ecological research and for

management support (e.g., EFSA, 2014, 2018; Stillman et al., 2015; Elsawah et al., 2017;

Ayllón et al., 2018; Badham et al., 2019; Schuhwirth et al., 2019). Simulation experiments are

used to explore and understand the behaviour of a model and to make inferences about the

corresponding real system. However, a major limitation in the current practice of

environmental modelling is that simulation experiments are usually not documented well

enough, particularly for the purpose of relating and discussing insights to management

practice (Schmolke et al., 2010, Schuwirth et al., 2019). Most of the work testing, evaluating,

analyzing, and actually using a model usually remains undocumented, which limits the

transparency and hence credibility of the results while making inefficiencies more likely.

In empirical research, the use of laboratory notebooks to document experiments is

routine and often standardized and demanded by third parties (Kanare, 1985; Lee, 2003;

Nickla and Boehm, 2011), but there is no such notebook culture for simulation experiments in

ecology and other environmental sciences. This lack is unfortunate because keeping

modelling notebooks is as valuable for simulation experiments as it is for empirical

experiments. Keeping a notebook on a daily basis forces us not only to document settings and

results, but also to write narratives about what we have learned. Writing by itself improves

our science, as pointed out by the sociologist Niklas Luhmann: “Without writing, one cannot

think; at least not in a sophisticated, connective way” (translated from German).

Many simulation modellers keep some kind of paper or electronic notebook, but

usually at their own discretion, as they are not specifically trained to maintain these types of

records. Consequently, their notebooks are not standardized, often incomplete, and not easily

understood by others or even, after some time, by the notebook keepers themselves. This

situation is regrettable as keeping and using a proper notebook provides many benefits for

both the individual modeller and for environmental research and management based on

modelling.

First, keeping a record of the whole modelling process contributes to increased

efficiency during model development and when re-using a model in new applications.

Without keeping track of the workflow, the modelling process often becomes less efficient

because resources influencing coding decisions (e.g., web pages, papers, code snippets) are

5

forgotten, analyses must be repeated, and mistakes, unproductive approaches, or unsuccessful

trials are made or used repeatedly (Grimm et al., 2014).

Second, modelling notebooks streamline the generation of transparent supporting

documentation that facilitates the acceptance and increases impact of developed models. The

design of models and simulation experiments often looks ad hoc because the series of

experiments and thoughts leading to the current design have not been documented (Schmolke

et al., 2010). Without a modelling notebook, early model design decisions, assessments of

model quality and realism, and rationales for simulation experiment design are hard to

document as the project wraps up. Chances of a model being used for decision support are

considerably increased if the rationale for important assumptions is transparent and there is

documentation of how alternative assumptions were evaluated.

Third, precise descriptions of model design, analysis, and application enable

reproducible research. Replication or reproduction of published results can be difficult or

even impossible because simulation experiment details have been forgotten or lost. Many

studies have recently drawn attention to problems with model replicability and reproducibility

in computation-based science (Peng, 2011; Sandve et al., 2013; Donkin et al., 2017; Rougier

et al., 2017; Miłkowski et al., 2018; Monks et al., 2018). Inaccurate or imprecise description

of the model, analysis workflow, or simulation experiments are among the main reasons

published simulation experiments cannot be replicated or reproduced (Crook et al., 2013;

Rougier et al., 2017). Modelling notebooks are an important tool for avoiding such problems.

Despite these benefits, simulation modellers have not yet developed a strong culture of

keeping notebooks. Moreover, even if such a culture existed, some of its benefits—increased

transparency, reproducibility, and credibility—would still be limited because they require

communication with others and notebooks contain too much unfiltered information to be

communicated efficiently. To be useful to a model ’s “clients”, information in the modelling

notebook must be filtered and distilled into a document of appropriate format and detail.

But what is appropriate document format and detail for a useful summary of a

modelling notebook? In fact, there is already a standard for such documents: TRACE

(TRAnsparent and Comprehensive model Evaludation1; Schmolke et al., 2010; Grimm et al.,

2014). TRACE provides a standardized terminology and structure for compiling, in a

printable document intended for others to use, information about the formulation,

implementation, testing, analysis, evaluation/validation, and application of ecological and

1 ‘Evaludation’ merges model evaluation and validation and refers to the process of assessing the quality of all

aspects of a model and its development – see section 3.

6

other simulation models. The TRACE standard keeps modellers from having to invent their

own format and provides guidance on what information is important to include. Standard

formats make communication more efficient and coherent, as we know from the standard

structure of scientific publications and standards for describing agent-based (the ODD

protocol; Grimm et al., 2006, 2010, 2020a; Railsback and Grimm, 2019) or species

distribution models (e.g., Zurell et al., 2020).

Because TRACE already provides a standard format for distilling information from

notebooks, all we need to fully realize the benefits of both is a way to efficiently link

notebooks to TRACE. To provide this link and therefore (1) facilitate the establishment of a

culture of keeping modelling notebooks and (2) promote a standard for summarizing and

communicating their contents, we propose a standard format for modelling notebooks that

uses TRACE terminology and standards.

There are important differences between TRACE documents and modelling

notebooks. TRACE documents are designed to be published as supplements to scientific

articles or reports (Schmolke et al., 2010; Grimm et al., 2014), with the goal of making

decisions and research more transparent, robust, and trustworthy (Grimm et al., 2020b). In

contrast, modelling notebooks are primarily for the modellers themselves, kept as a routine

record of the work conducted during the entire modelling cycle. But providing the

information for a TRACE document is yet another benefit of keeping a modelling notebook,

and this benefit should be a major consideration in designing the notebook.

We first briefly review and summarize literature on laboratory notebooks. This

provides insight into why and how modelling notebooks should be kept, but we also discuss

important differences between empirical and simulation experiments and, hence, laboratory

and modelling notebooks. Then we explain TRACE and its rationale, and introduce the

corresponding proposed structure of modelling notebooks.

Next, we give general and practical recommendations for keeping modelling

notebooks. Our article particularly targets beginners and junior modellers, faculty teaching

modelling classes, and modellers not in the habit of keeping notebooks. We therefore provide

(1) guidelines about the kind of notes and details to be included in the modelling notebook in

relation to each TRACE element, (2) general recommendations on keeping the notebook and

designing the workflow, and (3) information on a range of available notebook tools to help

modellers select one appropriate to their experience and skills. Consequently, the article goes

into some detail about the TRACE protocol. Readers interested in practical instructions on

how to use it are directed to section 4. The experience of those who follow our

7

recommendations is that keeping a modelling notebook typically takes about 15 minutes per

day.

We conclude with a vision of the future practice and role of ecological and

environmental modelling if a culture of keeping modelling notebooks and producing TRACE

documents is established.

2. Documenting experiments: Laboratory and modelling

notebooks

A laboratory notebook is usually a bound book where the experimenter takes notes on the

planning, design, execution, analysis, and interpretation of experiments (Kanare, 1985).

Alternative names are “laboratory journal” or “research journal”. The classical laboratory

notebook contains the purpose of the experiment, all information that is needed to repeat the

experiment, and the data observed (or just the metadata) or the reference to where these data

are stored, and a short interpretation and comment on the results. Notes should be concise and

clear enough that they can be read and fully understood by others. Notebook entries form the

basis of scientific publications, but they also describe all kinds of experiments that are not

published but nevertheless important to document, including auxiliary or preparatory

experiments and experiments that failed.

One important function of a modelling notebook is similar to that of a laboratory

notebook: the documentation of experimental procedures that allows replication and

explanation of how experiments were designed, executed, and interpreted. However,

laboratory and modelling notebooks differ in various ways. One important difference is the

format. The paper-based laboratory notebook is still the most widely used form of recording

in laboratories worldwide, despite no longer being the most efficient system because most

data generated in laboratories is now digital (Dirnagl and Przesdzing, 2016; Kanza et al.,

2017). For modelling notebooks, a paper-based format is inefficient. An electronic format

offers many advantages over the traditional paper notebook, including: (1) legibility of

handwriting is not an issue, (2) sharing with others is easy, (3) the notebook can be kept in the

same (virtual) place as all other project files, (4) synchronization through the cloud allows

notebooks to be used on multiple devices, (5) documents are searchable, (6) external files can

be directly linked to the notebook, and (7) graphs, pictures, tables, code, and other documents

(e.g., spreadsheets, PDFs, presentations) can be inserted, cross-referenced, and annotated.

8

Another difference between laboratory and modelling notebooks results from

simulation experiments being “ephemeral” compared to empirical experiments: simulations

are usually fast and easily repeated, in principle. Therefore, simulation experiments can

investigate substantially more factors with substantially more treatments than field or

laboratory experiments (Kleijnen, 2015). Modellers often run thousands of simulations, so

documenting each experimental treatment separately would be impossible and not

meaningful. The task then is not to document each experimental treatment, but the overall

“design of experiment” (Lorscheid et al., 2012). While empirical research sometimes has the

same challenge (e.g., in automated laboratories), modellers especially need techniques for

documenting large experiments.

While the “design of experiment” approach is straightforward in systematic, scientific-

based analyses such as sensitivity analysis, heuristic analyses are more challenging to

document (Railsback and Grimm, 2019, Chapter 22). Heuristic analyses are important steps in

initial testing of model behaviour as well as in robustness analysis (Sect. 4.2.7, below).

Heuristic analyses, often informally referred to as “playing with” the model, frequently result

in important design decisions (just as preliminary experiments do in the empirical laboratory).

However, if such analyses are not documented the design will look ad hoc and may not

convince model users. Recording these heuristic analyses in a notebook is especially

important because details and results of such simulation experiments are otherwise very likely

to be lost; the more flexible and less well-defined a model analysis, the more important it is to

record its design, results, and consequences.

Besides experimental treatments and results, notebooks should document the details of

the materials and methods used. In modelling, this means documenting the development of a

model, including its design and underlying rationale. Model development is usually an

iterative process that includes starting with simple model versions (“prototypes”), learning

from them, and then systematically improving the model’s design until it is considered

realistic enough for its intended purpose. This “modelling cycle” (Grimm and Railsback,

2005) produces important details throughout, as we discuss in Sect. 4.1; documenting these

details in a notebook makes iteration through the cycle more efficient and less subject to

errors.

9

3. Documenting the modelling cycle: Model “evaludation” and the

TRACE documentation framework

Modelling notebooks are intended primarily for the modeller’s own use: they are for recording

any information that may be useful later, no matter how extensive or detailed. The problem

we address is that some but not all of this information is essential for documenting the

model’s usefulness and reliability for future users and decision-makers: how do we determine

what information from a modelling notebook needs to be turned into public documentation,

and what format should that documentation have?

These questions have been answered in the “evaludation” framework for assessing

good modelling practice (Augusiak et al., 2014) and, in turn, the TRACE model

documentation framework (Grimm et al., 2014), which are both explicitly based on the

modelling cycle (Figure 1). TRACE was first developed as a standard format for documenting

all elements of iterative model development (“TRAnsparent and Comprehensive Ecological

modelling”; Schmolke et al., 2010). Its purpose was to create transparency and quality

assurance and thereby help decision makers and other stakeholders understand the conditions

under which a simulation model can be used to support their decisions.

Fig. 1. Daily modelling activities are related to the iterative modelling cycle and documented in the

modelling notebook. TRACE documentation can be compiled from the daily notebook entries at any

stage of the project, in particular when a publication or report is generated.

In addition to its original purpose as a documentation framework, TRACE was found

to also facilitate good modelling practice. Augusiak et al. (2014) suggested a new structure

and terminology for the modelling cycle, centred around “evaludation”, defined as “the entire

process of establishing model quality and credibility throughout all stages of model

development, analysis, and application” (Augusiak et al., 2014, p.121). Grimm et al. (2014)

10

adopted this new terminology for the current version of TRACE, which now stands for

“TRAnsparent and Comprehensive model Evaludation” and is defined as: “a tool for planning,

performing, and documenting good modelling practice. TRACE documents should provide

convincing evidence that a model was thoughtfully designed, correctly implemented,

thoroughly tested, well understood, and appropriately used for its intended purpose.” (Grimm

et al., 2014, p.129). This makes the TRACE framework useful as a target for notebook

keeping: knowing that they will create a TRACE document from their modelling notebooks

tells modellers what needs to be recorded and guides them to produce useful, reproducible

simulation experiments.

TRACE documents are meant to provide comprehensive documentation of models

that can be submitted as supplementary material with scientific publications, reports, or

dossiers where models are presented to support decision making. TRACE provides a standard

format for organizing and documenting the elements of model evaludation so that (1)

modellers know where to present what kind of information, and (2) model users and

evaluators know exactly where to look for this information, guided by tables of contents and

executive summaries. At the same time, TRACE provides a checklist for modellers, which

helps them to make sure that they thoroughly addressed and documented issues that affect the

quality and usefulness of a model. A full TRACE document consists of eight elements: two

elements related to model development (problem formulation and model description) and six

related to model evaludation, which largely correspond to the elements of the modelling cycle

(Grimm and Railsback, 2005): data evaluation, conceptual model evaluation, implementation

verification, model output verification, model analysis and model output corroboration (Table

1). The model analysis element includes the model’s application to its intended purpose, such

as answering a research question, evaluating alternative management scenarios, or assessing

environmental risk.

TRACE element / MN

entry tag

MN keyword Provides supporting information on

1. Problem formulation Model purpose;

Research questions
“The decision-making context in which the model will be

used; the types of model clients or stakeholders addressed;

a precise specification of the question(s) that should be

answered with the model, including a specification of

necessary model outputs; and a statement of the domain of

applicability of the model, including the extent of

acceptable extrapolations.”

11

2. Model description Model development;

Design decisions
“The model. Provide a detailed written model description.

For individual/agent-based and other simulation models,

the ODD protocol is recommended as standard format. For

complex submodels it should include concise explanations

of the underlying rationale. Model users should learn what

the model is, how it works, and what guided its design.”

3. Data evaluation Parameterization;

Patterns
“The quality and sources of numerical and qualitative data

used to parameterize the model, both directly and inversely
via calibration, and of the observed patterns that were used

to design the overall model structure. This critical

evaluation will allow model users to assess the scope and

the uncertainty of the data and knowledge on which the

model is based.”

4. Conceptual model

evaluation
Conceptual design

decisions
“The simplifying assumptions underlying a model’s design,

both with regard to empirical knowledge and general, basic

principles. This critical evaluation allows model users to

understand that model design was not ad hoc but based on

carefully scrutinized considerations.”

5. Implementation

verification
Debugging (1) “Whether the computer code implementing the model

has been thoroughly tested for programming errors.”

 Software verification/

Testing
(2) “Whether the implemented model performs as indicated

by the model description.”

 Usability tools design (3) “How the software has been designed and documented

to provide necessary usability tools (interfaces, automation
of experiments, etc.) and to facilitate future installation,

modification, and maintenance.”

6. Model output

verification
Output verification/

Goodness-of-fit
(1) “How well model output matches observations.”

 Calibration;

Tests on environmental

drivers

(2) “How much calibration and effects of environmental

drivers were involved in obtaining good fits of model

output and data.”

7. Model analysis and

application
Sensitivity analysis;

Uncertainty analysis
(1) “How sensitive model output is to changes in model

parameters.”

 Robustness analysis;

Simulation experiment
(2) “How well the emergence of model output has been

understood.”

8. Model output

corroboration
Output corroboration /

Validation
“How model predictions compare to independent data and

patterns that were not used, and preferably not even known,

while the model was developed, parameterized, and

verified. By documenting model output corroboration,

model users learn about evidence which, in addition to

model output verification, indicates that the model is

structurally realistic so that its predictions can be trusted to

some degree.”

12

Table 1. Structure, terminology, and contents of TRACE documents, and their link to entries in the

modelling notebook (MN). The third column, describing the information provided by each TRACE

element, includes literal definitions provided by Grimm et al. (2014).

With TRACE as a standard for the modelling cycle documentation that will be

extracted from a notebook, it makes sense to design the notebook to facilitate distillation of its

contents into TRACE. In fact, the TRACE framework provides a coherent standard format

and terminology for modelling notebooks, and organizing a modelling notebook using the

TRACE terminology, in turn, makes the compilation of TRACE documents easier and more

efficient. Extracting the information and data needed to compile a TRACE document is

relatively straightforward if the standardized TRACE terminology is used to tag entries in the

notebook (Schmolke et al., 2010; Augusiak et al., 2014; Grimm et al., 2014; Fig. 2).

Fig. 2. Schematic figure explaining the relation between files in a modelling project, a

modelling notebook, and TRACE. Notebook entries are added chronologically with tags

provided by the terminology from the TRACE framework. Standardized tags and keywords,

in turn, facilitate the compilation of a TRACE document from the specific details included in

the notebook entries. Entries provide hyperlinks to all files related to a modelling task,

indicating their location in the archiving system; TRACE terminology should also be used to

organize and name files and folders.

13

4. Proposed structure of TRACE modelling notebooks

We suggest a TRACE-based approach to keeping modelling notebooks. We first list the types

of information that should be entered in a notebook and then present detailed examples of the

information to be provided for each modelling task in Tables 2 and 3.

4.1. What should be in a modelling notebook?

There are several ways of organizing a modelling notebook. Modellers can employ a fully

chronological format analogous to that of the laboratory notebook, with tags using TRACE

terminology and with entries chronological irrespective of their TRACE category (Box 1).

Alternatively, the notebook can have the same structure as a TRACE document with entries

made chronologically under the relevant TRACE element. For any organization, it is

fundamental to make entries chronological to make the notebook a “master log” of the daily

work. (Work on multiple tasks on the same day should of course be logged with separate

entries.)

Fundamental elements of any modelling notebook are a log of daily, dated entries

reporting what was done on the project and why, and what was accomplished; and the name,

location, and a brief description of all files relevant to the project (Box 1). An additional

important element is a “to-do” list of both critical issues to be addressed as soon as the task is

resumed and non-critical issues to be addressed when one has time.

1. Table of contents. A table with hyperlinks to each entry at the beginning of the notebook. The TOC

can be a chronological index with entries listed by date. In addition to the TOC, it is advisable to

include a topical index organized by the tags and keywords in Table 1 to hyperlink each TRACE

element and modelling task to related entries.

2. Master catalogue. A list of the locations of files most relevant to the project, with a description of

the file and folder taxonomy.

3. Work log. The main body of the notebook, composed of daily, dated entries. Each entry includes:

(a) General information (common to all entries): (i) date of the entry, (ii) author of the entry, (iii)

TRACE tag indicating the TRACE element the entry is linked to (Table 1), (iv) keyword indicating the

specific modelling task within the TRACE element (Table 1), (v) title, (vi) overview of what has been

done and what has been accomplished, and (vii) files linked to the entry (e.g., program code, script

used to generate the experiment, spreadsheet containing parameter values, model input files, output

files from experiments, summary files).

(b) Specific details, which depend on the specific modelling task (Tables 2 and 3).

14

Box 1. Proposed structure for modelling notebooks.

Different approaches to producing public documentation are possible; you can either:

(1) document everything in the notebook as you work, and then later prepare final documents

like ODD, TRACE, project reports, or a software user guide from the notebook; or (2) write

those documents as part of the workflow, entering information directly in them instead of in

the notebook. In the second case, the notebook should document both (a) where you were

working, i.e., what task you worked on, what document/code and section you worked in, the

version of the document/code that first contained this work and where it was archived, and

what was left to be done or fixed; and (b) any material you did not save anywhere else, and

consider unlikely to be included in a document but important for staying organized and

efficient. It is worth highlighting once again that modelling is an iterative process, so

modellers typically switch from task to task and go back to earlier tasks when they need to

modify something. The modelling notebook is important because it allows and even facilitates

such iterative work. Entries should be written so they contain all the information needed to

resume work efficiently.

Tagging the entries in the modelling notebook using TRACE terminology provides the

link between the notebook and TRACE documents (Fig. 2). Lower-level tags (keywords;

Table 1) refine the information about the specific task conducted within TRACE’s broad

categories (e.g., “sensitivity analysis” within the “model analysis” element); informative,

concise titles can further subdivide and organize entries. This TRACE-based workflow

organization can make a project more efficient even if a TRACE document is never prepared.

Each entry should start with a general overview of the work done, before getting into

details. It is critical to provide hyperlinks to (or at least names of) all files related to the entry.

The file list should include the version of the model and its corresponding code, the code and

input files (Box 1), any other relevant files not directly included in the notebook, and

comments on those files. All such files should be archived each time a substantial task is

completed to ensure that the exact files used for a particular analysis can be extracted from the

archive, using the notebook as an index of the archive. A master catalogue at the beginning of

the notebook should provide an overview of this archive (Box 1).

Finally, the specific details logged in an entry depend on the modelling task. This

information will be rather descriptive for some tasks (e.g., problem formulation,

parameterization, or conceptual model design), and rather technical for those that involve

15

running simulation experiments or tests (e.g., calibration, sensitivity analysis, or model output

corroboration). While these details can be incorporated in the notebook, it will often make

more sense to document them in the files related to the entry. For example: papers from which

ideas or data were extracted can be directly annotated in their PDF; code tests are most easily

documented with notes in the computer files where they were analysed; the design and

analysis of results from simulation experiments can be documented in the scripts used to run

them. If documentation is kept outside of the notebook, it is essential to write a concise

summary of documentation files: their purposes, how they are used, and where they are

archived. If applicable, external files may also be tagged by their date of creation or change,

to verify their match with the notebook entry.

To sum up: (1) the notebook is a daily log of your modelling work, should be based on

quick, short and concise notes, and thus is not a major additional workload; (2) the notebook

need not be redundant with other documents that each describe some of the modelling work,

but rather can be an index of all the work done on each modelling task and can document

material that does not belong elsewhere or will be intentionally excluded from public

documents; (3) whatever you do every day, log it in the notebook and tag it with TRACE

tasks and keywords; (4) keeping a notebook this way facilitates iterative work; and (5) the

notebook must be a master catalogue of the project’s file archive, which itself often includes

essential documentation.

4.2. Details for specific modelling tasks

In this section, we present details and checklists of the specific information that should be

logged for each task of the modelling cycle, following the structure and organization of

TRACE documents (the keywords in Table 1 are italicized here). The rationale of each

TRACE category is explained in the text while the specifics of how to fill out the notebook

are in Tables 2 and 3, which also provide examples of specific kinds of information to log. As

explained earlier, information does not need to be repeated in the modelling notebook if

recorded in files and documents appended and linked to it.

1. Problem formulation

The first element of TRACE describes the specific research or decision-making context in

which the model is to be employed, with reference to potential users and the type of audience

addressed. This element also specifies the precise basic or applied question(s) about an

environmental system that could be answered with the model and the outputs the model will

16

provide to address such questions. The exact question or problem to be addressed with a

model usually changes in early iterations of the modelling cycle. Sometimes initial questions

are too simple or too complex or too vague, or do not support management or implementation

decisions directly enough. Finding the right questions is an essential part of any modelling

project, and this process must be carefully documented in the notebook (Table 2).

2. Model description

A TRACE document includes a complete written description of the final model, which should

enable a full understanding and independent replication of the model. A “written” description

can include equations and algorithms but is for people who are not necessarily modellers, and

certainly not for computers. Since the ODD protocol (a standard for describing agent-based

and other types of simulation models; Grimm et al., 2020a) is recommended to describe

models in TRACE documents (Grimm et al., 2014), the ODD format, or an equivalent

comprehensive format, is also recommended for the notebook. The model description need

not be in the modelling notebook; indeed, it is typically more convenient to write it in another

document and link it to the notebook. However, the process of model development is

typically not reported in the model description but is important to document. Therefore, a

model’s notebook should describe its main features as they are implemented and tested,

including tests of alternative model structures or submodel implementations (Table 2). The

notebook should also document the approaches tried and abandoned and why they did not

work, so time is not wasted on them in the future.

3. Data evaluation

This TRACE element documents the modeller’s assessment of the quality of quantitative and

qualitative data: parameter values, input data (spatial data, time series), and patterns observed

in data; i.e., all data used for model design, parameterization, calibration, and model output

corroboration (Table 2). Note that methods used to inversely parameterize the model via

calibration belong in the “Model Output Verification” element. Data evaluation allows model

users to identify data sources (e.g., original data, expert knowledge, literature review) and

should provide a direct assessment of data variability and uncertainty.

4. Conceptual model evaluation

In this TRACE element, the modeller evaluates the simplifying assumptions underlying a

model’s design. This evaluation explicitly lists, discusses, and justifies in the notebook the

model’s most important conceptual decisions as they are made: selection of entities, relevant

processes and essential structures, spatial and temporal scales, imposed vs. emergent system

17

properties, use of stochasticity, spatial heterogeneity and environmental drivers, etc. (Table

2). The extent to which the model is built upon existing theories, concepts, or earlier models

should be also documented here.

MN entry tag MN

keyword

Document in the notebook/appended files:

Problem formulation

Research question(s) /

Model purpose

A summary of the background of the modelling project.

Preliminary notes regarding the question, problem, or hypothesis to be addressed, and

alternative pathways to solve it.

The relevant outcomes of discussions with teammates, advisors, clients, and

stakeholders or other potential end users, and what these outcomes mean for the further

direction of the modelling project.

Model description

Model development Written description of the model’s structure and elements as they are implemented and

tested.

Design decision(s) All technical details and data used for tests that contrast alternative model structures or

submodel implementations.

Data evaluation

Parameterization /

Patterns

All data sources, specifying where the data came from, when and where the data were

collected, under which conditions, and by whom; thus, include the literature references

or other sources, together with any relevant information that comes with it, e.g. where

exactly in a publication or report you found the data. Often, listing the original data will

make sense.

Why any data or information was rejected. This information is important but unlikely to

be reported elsewhere.

The exact steps taken (if any procedure or software was used) in preparing data, e.g. all

equations and scripts used.

Any (potential) problems with the availability of input data and patterns, or during the

parameterization process.

Conceptual model evaluation

Conceptual design Description of background information (with references) used to derive the initial

conceptual model at the beginning of modelling project.

18

decision(s) Any line of thought or literature research that leads or may lead to a specific

assumption, working hypothesis, or method used in the model. The basis for the

elements of the conceptual model can be statistical relationships, theories, probabilistic

empirical rules based on expert knowledge, or, most often, elements of existing models

addressing similar questions and systems.

The process, during the design of the model’s structure, taken to get to the final

decisions, including the choices that were considered but rejected and why they were.

Table 2. Specific details to be provided in the modelling notebook (MN) or appended files to

document problem formulation, model description, data evaluation, and conceptual model evaluation.

5. Implementation verification

This TRACE element is focused on (1) checking the computer code for errors, bugs, and

oversights (debugging), (2) assessing whether the code actually implements the model as

intended or described (software verification), and (3) documenting how the software’s design

(e.g., its interface, collection and visualization of outputs, automation of simulation

experiments, runtime-error reporting; usability tools design) makes it usable for its purpose.

In contrast to the first four elements, the modelling notebook entries for this and the following

elements will be more technical than descriptive (Table 3).

6. Model output verification

This TRACE element deals with the evaluation of (1) how well model outputs reproduce

observed patterns (output verification) and (2) the extent to which calibration and effects of

environmental drivers were involved in obtaining good fits between model outputs and data

(calibration and tests on environmental drivers). Model users need to know how much

calibration was involved to make the model reproduce observed patterns and whether the

fulfilment of verification criteria was driven by an in-depth study of the influence of

environmental drivers (e.g., weather, climatic conditions, chemical disturbances, food

availability; see Becher et al., 2014 for an example). Thus, calibration and other formal tests

should be fully documented in the modelling notebook or linked files (Table 3).

7. Model analysis and application

This TRACE element concerns (1) analysis of output uncertainty and sensitivity to inputs

(uncertainty and sensitivity analysis), and (2) further analyses (e.g., robustness analysis) to

better understand what mechanisms drive key model results. This element also includes model

19

application through controlled simulation experiments: using the model to address its original

purpose.

Sensitivity analysis (SA) explores the model’s response to changes in certain model

components—typically parameters, but also input data, initial conditions, or spatial

configuration (Ligmann-Zielinska et al., 2020). Uncertainty analysis (UA) is to understand

how the uncertainty in parameter values and the model’s sensitivity to parameters interact to

cause uncertainty in model outputs. Therefore, for UA the parameter values must not only

cover the full parameter space but also reproduce the expected probability distribution of

parameters (Railsback and Grimm, 2019, Chapter 23).

The aim of Robustness Analysis (RA) is to assess how robust the explanation provided

by a model is to major changes in its structure and parameter values; RA does so by exploring

the conditions under which the model’s ability to explain certain observations break down,

i.e., a key pattern is no longer reproduced (Grimm and Berger, 2016). Unlike SA, RA is not a

body of formal techniques but is currently a collection of heuristics (Grimm and Berger,

2016). Examples of RA are: (1) analysing unrealistic scenarios that cannot occur in nature or,

in general, “extreme” scenarios; (2) exploring simplified versions of the model or, in contrast,

adding complexity to it; and (3) detecting tipping points within the parameter space. Because

RA is less formalized, it is more important to record its methods fully.

Of course, a key element of model analysis is documenting the use of the model for its

intended purpose, i.e., model application. Once a model is complete, it can be applied by

different users to different situations, which leads to the important question of how to keep

modelling notebooks and produce TRACE documents when model developers and model

users are not the same persons or organizations. TRACE documents for different applications

of the same model can be identical for elements concerning model development, while model

application elements differ. For each model application, the TRACE document must be

updated to describe and justify the application’s simulation experiments. A technical solution

for doing so is to copy the original document, give a new name that refers to a new version,

and indicate both old text which refers to earlier applications and new text about the current

application by using different colours. The same solution was suggested for different versions

of ODD model descriptions (Grimm et al. 2020, Supplement S4). Alternatively, the TRACE

document could be version-controlled.

All simulation experiments, whether for model exploration, analysis, or application,

should be described as empirical experiments are, by stating their purpose and providing all

details required to replicate them. Together with the description of technical details listed in

20

Table 3, it is critical to enter in the notebook a summary of each experiment’s results and the

conclusions drawn from them.

8. Model output corroboration

This element documents any comparisons of model predictions to independent data and

patterns that were not used during model development, parameterization, or verification.

These independent data and patterns can be considered as secondary predictions, because the

model was not designed to reproduce them. Thus, output corroboration provides model users

evidence that the model is structurally realistic and that its predictions can be trusted. The

information to be provided in the notebook or linked documents and files is similar to that for

model output verification (Table 3).

MN entry tag MN

keyword

Document in the notebook/appended files:

Implementation verification

Debugging All debugging tests performed to check for, diagnose, and fix mistakes as the program

is written, indicating the code version being debugged, and describing which

hypotheses were made and how they were tested, how data were collected and

analysed.

Every significant mistake found in the code and how it was fixed.

Software verification /

Testing
Every verification test performed on each module/submodel or on the full model,

indicating whether the test is conducted on the final or on an intermediate version of the

module/full model, what tests (e.g., stress tests, test programs, statistical analysis of file

output, independent reimplementation of submodels; see Railsback and Grimm, 2019,

Chapter 6) are applied, the experiment settings, parameter ranges, and other technical

details. Briefly describe test results and conclusions.

If existing software is used for the analysis of test outputs, its version and exact steps

taken need to be documented.

Usability tools design All decisions regarding what results to observe and how (e.g., graphical displays, output

files) through the cycle of building, testing, and using the model.

Tools used to automate simulation experiments (e.g., external libraries, extensions, R

packages).

If relevant, design decisions about the format of input files (e.g., time series of

environmental variables, maps), runtime-error reporting (e.g., format and media), and

model usability.

Model output verification

21

Output verification/

Goodness-of-fit
A brief overview of methods or formal tests used to assess model accuracy, and why

they were chosen, including literature references. List the patterns used to verify the

outputs of the model (their full description belongs to the “Data Evaluation” element).

A description of quantitative or qualitative criteria used to decide whether a certain

pattern was matched by the model.

A summary of how well model outputs matched the patterns used for calibration or

model development.

If applicable, a brief overview of the software used to perform the analyses, and steps

taken to prepare observed data for the analyses.

Calibration The parameters that were calibrated and the reason why they were chosen for

calibration.

How parameters were calibrated, including: (1) whether parameters were calibrated in

the sub- or full model, and independently or simultaneously, (2) the range of values

tested for each parameter and method used to sample the entire parameter space, (3)
initial conditions and simulation settings (e.g., simulation length, spatial landscape, time

series of environmental drivers, values of non-calibrated parameters), (4) empirical

patterns to be matched by the model, (5) fitting criteria or metrics used to quantify how

well the model output matches the data (e.g., sum of squared standardized errors) and

strategy (e.g., best-fit, categorical calibration), and (6) other technical details such as

number of replicates of each parameter set and the software used to implement the

parameter space sampling algorithm or to analyse model fit.

A summary of results, including tables and figures if necessary.

Tests on

environmental drivers
All tests performed to assess the effects of driving environmental factors on goodness-

of-fit of model outputs, indicating the default and alternative settings of tested factors,

and how environmental driver input differed from default input (if applicable).

Model analysis and application

Sensitivity analysis Analyses performed to explore the sensitivity of outputs to parameters and other

components. Describe which model components (e.g., parameters, initial conditions,

input data, model configuration, submodels) were evaluated for sensitivity, under what

conditions, and which outputs were analysed.

For parameter sensitivity analysis (the most common SA), summarize the experimental

design, indicating: (1) whether a local or global analysis was performed; (2) which

parameters were assessed, over what values/ranges, or what parameter space sampling

method was used in the case of global analyses; (3) the analysis technique employed, in
detail; (4) settings of the other model components when this information is relevant, and

(5) other technical details, such as number of replicates and the software used for

statistical analysis (with links to the relevant files).

Uncertainty analysis Information analogous to that provided for SA, but additionally, for each parameter

analysed: (1) the distribution of its values (type, shape, and distribution parameters) that

describes the uncertainty it is believed to have, (2) the source of these probability

distributions, and (3) the algorithms used to draw random parameter values from the

distributions. Statistical tests (and software) used to analyse the distribution of model

results.

Robustness analysis The purpose and rationale of the simulation experiment(s) performed.

22

The pattern(s) tested.

The element(s) of the model that were modified, for example whether and how the

model’s structure, environmental settings, or process representation were simplified or

made more complex, or whether parameter values were varied and over what ranges.

Model application The purpose and rationale of each simulation experiment. Justification of scenarios

tested.

 If not fixed between experiments, the model structure and spatial and temporal settings.

 Other simulation settings (e.g., time step, simulation length, stop conditions, number of

replicates).

 The list of model inputs that are varied (e.g., parameters, initial values of state

variables, time series of environmental drivers, external maps).

 Any regime shifts, events or scheduled model forcing implemented in the simulations

(providing information about how those events are scheduled, at which predefined

times, to what values parameter sets/input data are changed, etc.).

 The outputs analysed, and analysis methods and results.

Model output corroboration

Output corroboration /

Validation
The empirical observations or theoretical patterns that model results were compared to

(including sources, references, etc.).

The simulation settings (e.g., simulation length, spatial configuration, environmental

input, initial conditions, parameter values) and number of replicates performed.

The tests and criteria used to assess whether observations or patterns were reproduced

by the model.

If applicable, the software used to perform the analyses, and steps taken to prepare

observed data for the analyses.

A brief description of how well model outputs match each pattern, and the

consequences of these results for the modelling project.

Table 3. Information to be provided in the modelling notebook (MN) or appended files to document

implementation verification, model output verification, model analysis, and model output

corroboration.

9. Software development

As discussed above, one of a modelling notebook’s primary purposes is recording information

that will not be in a final product but is still important for project efficiency and success.

23

Software development produces many kinds of such information. Consequently, notes on the

entire process of code design, implementation, and, perhaps, runtime optimization should be

logged in the notebook, describing:

Code design decisions. (1) The implementation approaches chosen (e.g., platforms or

languages, numerical methods), briefly explaining the reason why they were preferred over

alternative ones. It is especially useful to document any code designs that were tried and

abandoned, to remind the coder why the design did not work. (2) Any strategies for avoiding

code dependency problems. (3) Strategies for future code maintenance.

Code implementation. (1) Information about how routines are programmed (e.g., the source

code itself, or a link to a file and procedure names) and notes on specific implementations of

functions or model controls. Citations for code imported or adapted from elsewhere should

also be included here. (2) Notes about any (potential) problems with the model, specific

submodel(s), input data, etc, or ideas about possible further extensions or directions of the

model. Code implementation entries would often be accompanied by “model description”

entries, describing the purpose and rationale of implemented elements.

Optimization and profiling. Code profiling and optimization methods and results, including

what parts of the code were tested and changed and how each change affected execution

speed. Once again, it is also important to document what potential code improvements were

proven unhelpful.

5. Schedules, tools, and recommendations for keeping modelling

notebooks

5.1. Schedules

We recommend making one or more entries to the modelling notebook daily; otherwise,

important details can be forgotten or remembered in a distorted way. In addition, daily entries

have an emotional benefit, as a daily log provides a written record of all the small, slow

advances, which helps put seemingly minor accomplishments into perspective and increase

the modeller’s confidence on the modelling project. Within a day, entries can be made each

time a task (e.g., running an experiment) is completed or an important outcome has been

produced. A good strategy is to create an explicit list of “triggers”: well-defined events at

which progress is recorded. Example triggers for new notebook entries are (1) a non-trivial

24

information search is made and relevant results found; (2) an explicit design decision is made;

(3) a measurement is taken (e.g. when profiling or testing the effect of a parameter value); (4)

debugging tests for subtle problems are performed; (5) a piece of code or an entire submodel

is added, changed or optimized; or (6) an atypical model behaviour or a problem that needs

investigation is noticed. The list of triggers should grow with experience: a new trigger should

be generated any time you wish you had recorded something that you did not.

5.2. Tools

There is a wide range of complementary tools for keeping a modelling notebook. Which ones

are best for you will depend on standards used in your team and your own expertise and

skills. We list some tools that are currently common, knowing that some will become

outdated and new ones will appear.

5.2.1 Word processors

Word processing software is the simplest tool for keeping a modelling notebook. Word

processor features that could be useful for keeping a notebook include text formatting and

editing, autosaving, opening files from other software, the ability to create and use templates;

the ability to insert hyperlinks, equations, other documents, images, videos and other visual

content; and collaboration options (see basic characteristics of common word processors in

Wikipedia contributors, 2019).

5.2.2 Spreadsheets

Like word processors, spreadsheet programs are ubiquitous, simple, and relatively suitable for

keeping a notebook. The tabular format facilitates organization, e.g., with one log entry per

line and separate columns for date, TRACE task, model version, notes, to-do items, and links

to other documents that were modified (see basic characteristics of common spreadsheet

software in Wikipedia contributors, 2020a). Spreadsheet notebooks can be sorted to, e.g.,

assemble all the work on one task or all the unfinished to-do items.

5.2.3 Note-taking software

There is a growing number of note-taking packages and apps that are easy to set up and use.

Most of them can store notes in the cloud and synchronize them across multiple devices, and

some let users upload files, embed and edit external files or programming code, record audio,

snap pictures, and clip pages from the Internet (see the basic and advanced features of the

many available options in Wikipedia contributors, 2020b).

25

Microsoft OneNote and Evernote are probably the most popular digital note-taking

packages and, because of their wide variety of features, they are useful for modelling

notebooks. Microsoft OneNote and Evernote are programs for free-form information

gathering, organizing, and archiving, and they enable multi-user collaboration. Information is

saved in pages organized into sections within notebooks, and the notes can be tagged,

annotated, edited, searched, given attachments, and exported. Notes include not only text,

tables, pictures, and drawings, but also hyperlinks, multimedia recordings, and images

captured from cameras or websites. They allow offline data editing with later synchronization

and merging, which allows working on multiple machines and operating systems, and enables

collaboration among multiple users in a shared notebook even when they are offline.

Another interesting note-taking tool for keeping modelling notebooks is Org-mode. It

is an outline processor within the Emacs editor, designed for keeping notes, maintaining to-do

lists, and project planning with a plain-text markup language (see https://orgmode.org/). It has

tools that also facilitate reproducible research as Org files can include fully functional source

code blocks, which can be evaluated in place and their results can be captured in the file.

Therefore, a self-contained document combining problem formulation, original data, analyses,

and conclusions can be created in a way that can be reproduced by any reader using the same

software tools.

5.2.4 Cloud-based collaborative document-editing tools

Online real-time document-editing collaboration tools are useful when several modellers are

working on the same project and share a notebook. In this context, these tools are critical for

cooperative work, streamlining workflows, and eliminating inefficiencies. They allow

collaborators of the modelling project to view, edit, and work simultaneously on their

modelling notebook as they work on separate modelling tasks. Google Docs is currently

probably the most widely used collaborative document tool; however, the 2020 increase in

telecommuting has led to the development of numerous others, such as Microsoft Office

Online, Dropbox Paper, Bit.ai, Zoho Docs, and Framasoft.

5.2.5 Documentation generators

These are programming tools that assemble comments written in the code files into a

documentation file. They allow cross referencing of documentation and code, so the

document makes it easier to access and understand the code. If the programmer is good at

documenting code design and optimization, debugging, etc., in code comments, these tools

can be useful for assembling that documentation in the modelling notebook or a separate

https://orgmode.org/

26

document. Examples include Doxygen and Javadoc, and the basic features of available

software are described in Wikipedia contributors (2020c).

5.2.6 Computational notebooks

These are interactive computing environments that enable users to produce notebook

documents containing a complete record of a computation, including the computer code,

interactive widgets, plots, descriptive texts, equations, and multimedia resources. The idea for

the computational notebook can be traced back to the literate programming concept (Knuth,

1984) but has only become popular with the rise of data science. Currently the most widely

adopted systems are Mathematica, R Markdown, and, especially, Jupyter Notebooks. Each of

these computing environments allows for both performing analyses and combining code,

results in multiple formats, and explanatory text into a self-contained computational narrative,

which can be shared with and explored and rerun by other scientists, facilitating reproducible

computational research (Perkel, 2018, Rule et al., 2019). Each notebook document keeps a

historical (and dated) record of the analysis being performed and, in some cases, it can be

version controlled. Computational notebooks are powerful for performing and documenting

model analyses and simulation experiments, but as we have discussed throughout this paper,

those are only a part of the modelling cycle and the model evaludation framework. Remember

that critical details of all elements of model development (from problem formulation to

conceptual model evaluation) must also be documented, either in the computational notebook

or in a linked document.

5.2.7 Version control systems

Version control systems (VCSs) help software developers manage changes to source code and

its documentation over time. Version control systems keep track of and uniquely identify

modifications to the code, as requested by a user, from correction of a small typo to a

complete redesign. VCSs generally work by maintaining a “repository” to which code updates

are “committed.” When a change is committed, the user includes text describing the code

modifications. Committing small incremental changes allows the software developers to go

back to any previous version at any time. Hence, if a mistake is made by a contributor, earlier

versions of the code can be compared to help fix the bug while minimizing disruption to other

collaborators. In addition, since VCSs track every change made by each contributor, they

prevent simultaneous work from conflicting. Thus, a good VCS provides file backups,

synchronization, both short- and long-term undo, change tracking, and ownership, sandboxing

(testing environments isolated from the repository), branching (creating a copy of the

27

repository that can be modified without altering the main branch) and merging (integrating

two branches into one), bug tracking, and reporting. Currently, SVN, Mercurial, and,

especially, Git are widely adopted VCSs.

Perez-Riverol et al. (2016) provide useful guidelines for using version control in

scientific research. As pointed out by Rule et al. (2019), version control can complement

notebook keeping because it provides the capability, when the inevitable bugs are found, to

determine which model analyses or simulation experiments it affected. Online platforms such

as Github, Bitbucket, and Gitlab and user interface software for these platforms (e.g., Github

desktop and Gitkraken) make VCSs much easier to use. Simple structured texts (e.g., using

Markdown syntax) stored in the same repository as the model code and scripts for analyses

can keep track of the whole history of the modelling process and hence serve as a modelling

notebook.

5.3. Recommendations

We provide the following recommendations for keeping modelling notebooks. The

recommendations are primarily for inexperienced modellers and students and their instructors,

but potentially valuable to any modeller not yet in the habit of keeping a notebook.

Choose the right tools. Use tools (see previous section) that suit your skills and experience as

well as those of your collaborators.

Use the TRACE terminology. Using the terminology (tags and keywords) provided in Table 1

will help you organize the notebook, remember what tasks remain in the modelling cycle, and

facilitate production of TRACE documents to support your work and publications. This

terminology should be also used to name and organize project files.

Keep it readable. Remember that the modelling notebook must be understood not only by you

but by any collaborator in the modelling project. It must be readable by people, not by

machines. In particular, TRACE documents need to be useful to clients without profound

modelling knowledge.

Document as you proceed, not afterwards. Otherwise, relevant information and details can be

forgotten and thus never documented (see Section Schedules).

Treat your notebook as append-only. Add each new entry at the end of the log to keep them in

chronological order, and do not edit previous entries as the modelling project evolves. The

notebook’s purpose is to document the modelling experience, not to have a perfect finished

28

piece of documentation. Documentation is cleaned up during production of a TRACE

document or other formal products.

Never modify or remove anything. You never know what information can be useful in the

future, or if seemingly incorrect information could be actually correct. Instead, when you

modify or replace part of the model or analysis, note in the new notebook entry which old

entry it updates. You can add also a note in the old entry indicating that it has been updated

and when.

Create templates for each TRACE element/specific modelling task. Create templates that can

be easily accessed and loaded to speed up the documentation process.

Insert graphs, equations, videos, images, and other visual content. Visual information is often

easier to follow and understand than written descriptions.

Embed external documents. Sometimes it can be useful to embed external documents (e.g., a

spreadsheet with parameter values, an R script, a code snippet, etc.) instead of hyperlinking

them (e.g., if the notebook is meant to be shared). In this case, make sure that linked

documents cannot alter the notebook.

Take advantage of OCR search. Optical Character Recognition can be used to search and

retrieve information from hand-written images (scans or pictures from old paper notebooks,

notes from meetings, etc.), figures, or graphs.

Keep automatic backups, and use the notebook to remind you to archive other files. Back up

the notebook to avoid losing its information. Use backup technology you are comfortable

with, but make sure you can always access the current version if you use multiple devices.

This access is critical for collaborative teams (see collaborative tools in the previous section).

The notebook should remind you to record which code and document versions you worked

on, which can remind you to archive those files regularly.

Use VCS on your modelling notebook document. If you are comfortable with VCS, use it to

back up and track modifications to your notebook.

Keep an efficient folder structure. Design a smart archiving system at the first stages of work.

Keep files that are linked to the notebook organized, which will make it easier to reference,

hyperlink, back up, and version control them. Use the terminology provided in Table 1 (tags

and keywords) to organize and name folders.

Design a reproducible research workflow. When performing large or repeated simulation

experiments, develop, document, and automate end-to-end workflows from raw inputs to

publication-ready outputs (Kitzes et al., 2018, Essawy et al., 2020).

29

5.4. How to produce a TRACE document from a modelling notebook

Compiling a TRACE document of any modelling project can increase the chances that the

work will be accepted (for publication, decision-making, or other purposes), used as intended,

and reused for future projects. This is the step that distils information useful to others from the

notebook. Grimm et al. (2014) provided a template and a short user guide on the TRACE

framework. Each element in the TRACE document starts with an executive summary and

then, if needed, a table of contents. TRACE documents are not meant to be read from cover to

cover but selectively, so it is critical that the table of contents facilitates navigation. Similarly,

a hyperlinked subject index is also worth producing. When compiling a TRACE document

from the modelling notebook, emphasis is of course on the final model version used to obtain

the results reported in a publication or report. In some cases, it may also be important to

describe the evolution of key submodels and design decisions. Two example TRACE

documents are provided in Supplement S1.

The key steps in compiling a TRACE document from a modelling notebook are: (1)

Extract notebook entries by their TRACE tags, focusing on the model version used for the

final results. The notebook software should make this easy. (2) Retrieve corresponding

information from linked files. (3) Organize the documentation for each TRACE tag into a

coherent section on its modelling tasks (using the keywords in Table 1). (4) Edit the text,

figures, and tables into a coherent format. (5) Check the TRACE document for completeness.

Steps 1 and 2 (and even 3) are greatly simplified by using TRACE to organize the modelling

notebook (see section 4.1).

TRACE, like any standard, serves as a checklist of tasks for model development,

testing, analysis, and application, and thereby provides quality assurance. Often the process of

compiling a TRACE document reveals that important tests or analyses are missing; they can

then be completed and recorded in the notebook. However, another important benefit of using

TRACE terminology in modelling notebooks is being exposed to this checklist sooner instead

of later.

While keeping a notebook facilitates the compilation of a TRACE document, this is

just one of its many benefits—keeping a notebook is beneficial whether or not a TRACE

document is produced. However, some kind of distillation process is necessary to compile a

useful snapshot of a project’s status at, e.g., the time when major deliverables are produced.

Using TRACE organization, instead of a fully chronological format, can facilitate such a

process. Some modellers might therefore choose, as pointed out in Section 4.1., to keep a

30

modelling notebook that has the structure of a TRACE document. Entries are thus

chronological only within each of the TRACE elements. This approach has the benefit of

having notebook entries grouped by the elements of the modelling cycle, but makes it harder

to follow the incremental development of a model and its rationale. There are certainly

multiple strategies for organizing information over the course of a project, all likely to be

more efficient than the lack of such a strategy.

6. Discussion

We propose a standard terminology and document structure, based on the TRACE

framework, to keep notebooks that document the development process of a modelling project,

and describe tools and routines that can make project documentation easier. Keeping a

notebook has direct and indirect benefits that exceed its costs in time and effort. We have

emphasized why modellers should make the effort of keeping an organized notebook:

(1) The main benefit is increased efficiency of the workflow by facilitating iterative work;

task management (e.g., knowing what has and has not been done); rapid access to the

information, outcomes, files, and documentation generated along the project; and reuse of

successful methods while avoiding time lost by repeating unsuccessful approaches.

(2) It increases long-term productivity by helping modellers apply successful methods to new

data and contexts and even to reuse processes or code for new projects.

(3) It facilitates collaborative work in projects involving multiple modellers and software

developers, for example by tracking the work done by each team member and giving

members access to each others ’work; however, collaborative documentation can require more

sophisticated procedures and tools, such as documentation standards and tools to deal with

parallel editions.

(4) It enables reproducible—and therefore more credible—computational research by fully

documenting simulation experiments, including the exact input, code, and quantitative

analyses, and all technical details of the experiments, which are likely to be lost if not

recorded promptly. While reproducibility in complex simulation studies can be achieved by

tools that encapsulate the end-to-end workflow, from raw data to final publication-ready

outputs (e.g., containerized virtual environments), documentation that fully describes the

analysis is fundamental (Essawy et al., 2020).

(5) Importantly, it allows modellers to easily assemble and produce TRACE documentation of

their model (i.e., “writing your TRACE document in 15 minutes per day”). A TRACE

31

document extracted and distilled from the notebook supports a model, and publications and

decisions based on the model, by documenting the entire modelling cycle in a standard format

intended for public use.

(6) Last and perhaps most importantly, as indicated in the motto of this article, keeping a

notebook forces modellers to continuously reflect upon lessons learned, sharpen their

questions, question assumptions, develop their stories, and make scientific writing an integral

part of the daily work.

As environmental science becomes more computational, modellers need to merge the

management practices of traditional science with those of data and computer science and

software development. Environmental computational research must not only be reproducible

but also adhere to high standards of modelling practice (e.g., EFSA, 2014). Environmental

modellers must provide convincing evidence that their simulation models are thoughtfully

designed, correctly implemented, thoroughly tested and validated, and that model limitations

are well understood. Providing such evidence is the purpose of the TRACE documentation

framework and TRACE modelling notebooks. To meet these high-level standards, modellers

can borrow methods, techniques and tools for software development and software quality

control from software engineers, and adopt data science principles to streamline the analytic

workflow (see Lowndes et al. 2017). But the real challenge goes even further and lies in the

thorough documentation of the entire modelling cycle.

Science based on modelling would be markedly improved by an established culture of

keeping modelling notebooks that are routinely turned into TRACE documents in

publications and reports. Transparency, reproducibility, and reliability would reach a new

level, coherence within and across disciplines (Ayllón et al., 2018) would be increased, and

theory development (Lorscheid et al., 2019) would be facilitated. Instead of developing

models from scratch, based on ad hoc design decisions, modellers would learn from each

other by speaking the same language (Vincenot et al., 2018) and using the same checklists.

The most efficient way to establish such a new culture in environmental modelling is to

introduce the basic principles and best practices of keeping modelling notebooks in modelling

curricula. We consider early adoption of this new culture an important (but not the only) step

to ensure good modelling practice in future environmental modelling. To this end, beginning

modellers must be trained to keep notebooks just as students are in the field and wet

laboratory.

We suggested here a particular structure and practice for keeping modelling

notebooks. How well these suggestions work, for self-taught beginners, modelling students

32

and instructors, and also for more experienced modellers, remains to be tested. As with the

ODD protocol (Grimm et al. 2006; 2010; 2020), we hope to learn from the experience of

notebook and TRACE users and welcome users to provide feedback by contacting the lead

author. To allow us to track, improve, and update our guidance and recommendations, we ask

users to add this text to the Methods section of relevant publications: “Model development,

implementation, testing, analysis, and application was documented in a modelling notebook

according to Ayllón et al. (2020), and a corresponding TRACE document (Schmolke et al.,

2010: Grimm et al., 2014). The TRACE document is available in the Supplementary Material

and provides evidence that the model was thoughtfully designed, correctly implemented,

thoroughly tested, well understood, and appropriately used for its intended purpose.”

To conclude, as a relatively new scientific approach, simulation modelling has

continuously evolving techniques; however, common documentation standards are

independent of techniques and in fact are made more important by the rapid pace of

technological change. The modelling cycle (Grimm and Railsback, 2005) summarises the key

steps of model development, ODD (Grimm et al., 2006, 2010, 2020a) provides a protocol for

describing a model, TRACE (Grimm et al., 2014) sets guidance for documenting model

development, testing, analysis, and application, and finally the modelling notebook format we

propose here is based on and designed to support all these standards. These four components

provide a complete framework for organizing and documenting modelling projects, and

facilitate good modelling practice throughout.

Acknowledgements

D. Ayllón was financially supported by the Spanish Ministry of Economy, Industry and

Competitiveness through the research project CGL2017-84269-P. S. Charles is participating

under the umbrella of the Graduate School H2O’Lyon (ANR-17-EURE-0018) and “Université

de Lyon” (UdL), as part of the program “Investissements d'Avenir” run by “Agence Nationale

de la Recherche” (ANR). C. Piou participated under the funding from ANR-JCJC PEPPER

(ANR-18-CE32-0010-01). J. G. Polhill receives funding from the Scottish Government Rural

Affairs Food and Environment Strategic Research Programme. We thank four anonymous

reviewers for helpful comments that improved the quality of the manuscript.

33

7. References

Ayllón, D., Grimm, V., Attinger, S., Hauhs, M., Simmer, C., Vereecken, H., Lischeid, G.

2018. Cross-disciplinary links in environmental systems science: Current state and

claimed needs identified in a meta-review of process models. Science of the Total

Environment 622-623: 954-973.

Augusiak, J., Van Den Brink, P.J., Grimm, V. 2014. Merging validation and evaluation of

ecological models to ‘evaludation’: A review of terminology and a practical approach.

Ecological Modelling 280: 117-128.

Badham, J., Elsawah, S., Guillaume, J. H., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., et al.

2019. Effective modeling for Integrated Water Resource Management: a guide to

contextual practices by phases and steps and future opportunities. Environmental

modelling & software 116: 40-56.

Becher, M.A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P.J., Osborne, J.L. 2014.

BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore

multifactorial causes of colony failure. Journal of Applied Ecology 51: 470-482.

Crook, S.M., Davison, A.P., Plesser, H.E. 2013. Learning from the Past: Approaches for

Reproducibility in Computational Neuroscience. In Bower J. (Ed.), 20 Years of

Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9.

New York: Springer.

Dirnagl, U., Przesdzing, I. 2016. A pocket guide to electronic laboratory notebooks in the

academic life sciences. F1000Research 5: 2.

Donkin, E., Dennis, P., Ustalakov, A., Warren, J., Clare, A. 2017. Replicating complex agent

based models, a formidable task. Environmental Modelling & Software 92: 142-151.

EFSA. 2014. Scientific Opinion on good modelling practice in the context of mechanistic

effect models for risk assessment of plant protection products. EFSA Journal

12(3):3589, 92 pp.

EFSA. 2018. Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic

(TKTD) effect models for regulatory risk assessment of pesticides for aquatic

organisms. EFSA Journal 16(8):5377, 188 pp.

Elsawah, S., Pierce, S. A., Hamilton, S. H., Van Delden, H., Haase, D., Elmahdi, A.,

Jakeman, A. J. 2017. An overview of the system dynamics process for integrated

modelling of socio-ecological systems: Lessons on good modelling practice from five

case studies. Environmental Modelling & Software 93: 127-145.

Essawy, B.T., Goodall, J.L., Voce, D., Morsy, M.M., Sadler, J.M., Choi, Y.D., ... et al. 2020.

A taxonomy for reproducible and replicable research in environmental modelling.

Environmental Modelling & Software, 104753.

Grimm, V., Railsback, S.F. 2005. Individual-based Modeling and Ecology. Princeton

University Press, Princeton, NJ.

34

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. 2006. A

standard protocol for describing individual-based and agent-based models. Ecological

Modelling 198: 115-126.

Grimm, V., Berger, U., Deangelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F. 2010. The

ODD protocol: A review and first update. Ecological Modelling 221: 2760-2768.

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., et al. 2014.

Towards better modelling and decision support: Documenting model development,

testing, and analysis using TRACE. Ecological Modelling 280: 129-139.

Grimm, V., Berger, U. 2016. Robustness analysis: Deconstructing computational models for

ecological theory and applications. Ecological Modelling 326: 162-167.

Grimm V., Railsback S.F., Vincenot C.E., Berger U., Gallagher C., DeAngelis D.L., et al.

2020a. The ODD protocol for describing agent-based and other simulation models: a

second update to improve clarity, replication, and structural realism. Journal of

Artificial Societies and Social Simulation 23(2), 7.

Grimm, V., Johnston, A.S.A., Thulke, H.H., Forbes, V.E., Thorbek, P. 2020b. Three

questions to ask before using model output for decision support. Nature

Communications.

Kanare, H.M. 1985. Writing the Laboratory Notebook. American Chemical Society,

Washington D.C.

Kanza, S., C. Willoughby, N. Gibbins, R. Whitby, J. G. Frey, J. Erjavec, et al. 2017.

Electronic lab notebooks: can they replace paper? Journal of Cheminformatics 9: 31.

Kitzes, J., Turek, D., Deniz, F. (Eds.). 2018. The Practice of Reproducible Research: Case

Studies and Lessons from the Data-Intensive Sciences. University of California Press,

Oakland, CA.

Kleijnen, J.P.C. 2015. Design and Analysis of Simulation Experiments, 2nd edition.

International Series in Operations Research & Management Science 230. Springer

International Publishing, Cham.

Knuth, D.E. 1984. Literate programming. The Computer Journal 27: 97-111.

Lorscheid, I., Heine, B.-O., Meyer, M. 2012. Opening the ‘black box ’of simulations:

increased transparency and effective communication through the systematic design of

experiments. Computational & Mathematical Organization Theory 18: 22-62.

Lorscheid, I., Berger, U., Grimm, V., Meyer, M. 2019. From cases to general principles – a

call for theory development through agent-based modeling. Ecological Modelling 393:

153-156.

Lee, K.S. 2003. Good laboratory notebook practices. Drug Information Journal 37: 215-219.

Ligmann-Zielinska, A., Siebers, P.-O., Magliocca, N., Parker, D.C., Grimm, V., Du, J., et al.

2020. "One Size Does Not Fit All": A Roadmap of Purpose-Driven Mixed-Method

35

Pathways for Sensitivity Analysis of Agent-Based Models. Journal of Artificial

Societies and Social Simulation, 23, 6.

Lowndes, J.S.S., Best, B.D., Scarborough, C., Afflerbach, J.C., Frazier, M.R., O’Hara, C.C, et

al. 2017. Our path to better science in less time using open data science tools. Nature

Ecology & Evolution 1: 0160.

Milkowski, M., Hensel, W.M., Hohol, M. 2018. Replicability or reproducibility? On the

replication crisis in computational neuroscience and sharing only relevant detail.

Journal of Computational Neuroscience 45: 163-172.

Monks, T., Currie, C.S., Onggo, B.S., Robinson, S., Kunc, M., & Taylor, S.J. 2018.

Strengthening the reporting of empirical simulation studies: Introducing the STRESS

guidelines. Journal of Simulation 13: 55-67.

Nickla, J.T., Boehm, M.B. 2011. Proper laboratory notebook practices: protecting your

intellectual property. Journal of Neuroimmune Pharmacology 6: 4-9.

Peng, R.D. 2011. Reproducible Research in Computational Science. Science 334: 1226-1227.

Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., Leprevost, F.d.V., et

al. 2016. Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS

Computational Biology 12: e1004947.

Perkel, J.M. 2018. Why Jupyter is data scientists ’computational notebook of choice. Nature

563: 145-146.

Railsback, S.F., Grimm, V. 2019. Agent-based and Individual-based Modeling: A Practical

Introduction. Second edition. Princeton University Press, Princeton, N.J.

Rougier, N.P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L.A., Benureau, F.C., et al.

2017. Sustainable computational science: the ReScience initiative. PeerJ Computer

Science 3: e142.

Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.-C., Knigh, R., et al. 2019. Ten

simple rules for writing and sharing computational analyses in Jupyter Notebooks.

PLoS Computational Biology 15: e1007007.

Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E. 2013. Ten Simple Rules for Reproducible

Computational Research. PLOS Computational Biology 9: e1003285.

Schmolke, A., Thorbek, P., DeAngelis, D.L., Grimm, V. 2010. Ecological models supporting

environmental decision making: a strategy for the future. Trends in Ecology &

Evolution 25: 479-486.

Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M., Kneis, D., et al.

2019. How to make ecological models useful for environmental management.

Ecological Modelling 411: 108784.

Stillman, R.A., Railsback, S.F., Giske, J., Berger, U. Grimm, V. 2015. Making Predictions in

a Changing World: The Benefits of Individual-Based Ecology. Bioscience 65: 140-150.

36

Vincenot, C.E. 2018. How new concepts become universal scientific approaches: insights

from citation network analysis of agent-based complex systems science. Proceedings of

the Royal Society B: Biological Sciences 285: 1874.

Wikipedia contributors. 2019. September 25. Comparison of word processors. In Wikipedia,

The Free Encyclopedia. Retrieved 05:56, May 22, 2020, from

https://en.wikipedia.org/w/index.php?title=Comparison_of_word_processors&oldid=9

17729583

Wikipedia contributors. 2020a. May 11. Comparison of spreadsheet software. In Wikipedia,

The Free Encyclopedia. Retrieved 06:00, May 22, 2020, from

https://en.wikipedia.org/w/index.php?title=Comparison_of_spreadsheet_software&oldi

d=956099192

Wikipedia contributors. 2020b. April 25. Comparison of note-taking software. In Wikipedia,

The Free Encyclopedia. Retrieved 06:01, May 22, 2020, from

https://en.wikipedia.org/w/index.php?title=Comparison_of_note-

taking_software&oldid=953002478

Wikipedia contributors. 2020c. May 12. Comparison of documentation generators. In

Wikipedia, The Free Encyclopedia. Retrieved 06:03, May 22, 2020, from

https://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators

&oldid=956291012

Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., et al. 2020. A

standard protocol for reporting species distribution models. Ecography. In press.

