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Abstract

The formulation of Topology Optimisation (TO) problems related to dynam-
ics is particularly challenging, due to some intrinsic difficulties of mathemat-
ical and numerical nature. This paper deals with the integration of specific
physical quantities, such as eigen-frequencies and dynamic compliance, in a
special TO algorithm, which combines a classical pseudo-density field with
Non-Uniform Rational Basis Spline (NURBS) entities. In this framework,
wherein some of the NURBS continuous parameters (i.e. control points and
weights) are the new design variables, important advantages can be exploited.
In particular, beyond the reduction of the number of design variables and the
definition of an implicit filter zones, the post-processing phase involving the
CAD reconstruction of the optimised geometry is immediate for 2D prob-
lems and needs few operations in 3D. Classical TO problems dealing with
structural dynamics, as the maximisation of the first eigen-frequency and
the minimisation of the dynamic compliance, are formulated in the NURBS
framework. Accordingly, the analytical expressions of the gradients of the
considered physical quantities are derived in closed form. In order to show
the effectiveness of the proposed approach, an exhaustive numerical cam-
paign is proposed and the algorithm is applied to both 2D and 3D bench-
marks. Moreover, a sensitivity analysis of the final optimised solutions to
the NURBS discrete parameters is provided as well.
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1. Introduction

Topology Optimisation (TO) identifies a specific class of optimisation
algorithms, wherein the aim is to find the optimal material lay-out in a pre-
scribed design domain. The material is distributed in order to minimise an
objective/cost function by satisfying some additional requirements. Pioneer-
ing TO algorithms made use of the homogenisation technique [1]. Nowadays,
TO analyses are carried out mainly through three well-established families
of methods: density-based methods [2], Level-Set Methods (LSMs) [3, 4] and
the so called Evolutionary Structural Optimisation (ESO) [5]. Regardless
of the specific algorithm, the mostly tackled problem in bibliography is the
minimisation of the compliance of a structure subject to an equality con-
straint on the volume. However, practitioners and academics soon started
considering other physical responses, in order to fully exploit the potential
of TO in design [6].

TO problems dealing with structural dynamics are often addressed be-
cause of their prime importance in the design of structures. Particularly,
in the last decades, eigen-frequencies and harmonic responses have been in-
tegrated in TO algorithms. Dealing with these quantities in TO is a real
challenge because some issues of numerical nature arise and they can affect
the result even in the simplest case, where non-linearity is neglected.

Handling natural frequencies in structural optimisation presents several
common features to linear buckling problems [2, 7]. In TO, the so-called
“mode switch” often occurs: since the topology is not set a priori, the most
critical mode (i.e. that related to the first eigen-value) can change during
the optimisation. If the problem at hand involves the maximisation of the
first eigen-frequency or the maximisation of the gap between two consecutive
eigen-frequencies [8], the mode switch causes a jump in the evaluation of
the objective function and of its gradient, with detrimental effects on con-
vergence. Some techniques are available in the literature to circumvent this
phenomenon. For instance, a suitable bound-formulation is proposed in [9].
The idea of a weighted mean eigen-frequency is suggested in [10]: rather
than maximising the first eigen-frequency, a weighted mean eigen-frequency
(involving several modes) is maximised. Among these two techniques, the
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bound-formulation has been proven to be very useful and efficient [2], whereas
the mean eigen-frequency could be more sensitive to the choice of the weights.
Other more sophisticated strategies to improve the algorithm robustness con-
sist of a sensitivity analysis provided through the mathematical perturbations
technique [11, 12] or the Modal Assurance Criterion [13], which measures the
correlation between two modes and assures a good control on the shape of
the considered eigen-modes.

An issue of different nature can affect density-based methods and all
those LSMs that make use of a “weak” material phase to evaluate dynamic
responses. In low-density regions, the penalisation on the stiffness matrix
is stronger than the penalisation on the mass matrix and this fact results
in spurious/slack vibrating modes. They are characterised by an extremely
low eigen-frequency and a localised displacement field. In density-based ap-
proaches, increasing the lower bound of the pseudo-density is a common
practice to avoid spurious localised modes [14], but this fact invalidates the
original TO problem, which becomes a reinforcement problem. To avoid this
shortcoming, different penalisation schemes for the stiffness matrix can be
used (polynomial, piece-wise differentiable functions, etc.), assuring a finite
ratio between structural mass and structural stiffness in low density elements
[12, 15, 16]. In the framework of LSMs, a particular body-fitted meshing
strategy is used in [17] to avoid the weak material phase and only fully dense
material properties are assigned to the Finite Element (FE) model.

The mutual penalisation scheme of stiffness and mass matrices plays a
fundamental role in any dynamic problem in TO, including those involving
the steady state response of a structure subject to a time-harmonic load
[18]. A typical problem in TO deals with the minimisation of a global dy-
namic response and several objective functions can be considered, as detailed
in [19]. Among them, the so-called dynamic compliance [2] has been widely
employed. The related TO analyses and derivatives computation can be car-
ried out by neglecting or by considering damping effects, as shown in [20].
It has been observed that the minimisation of the dynamic compliance pro-
vides similar results to the classic stiffness maximisation problem, when the
driving frequency is lower than the first eigen-frequency. Conversely, special
attention should be paid in case of a higher driving frequency or if the dy-
namic response is evaluated on a range of frequencies (spanning more than
one natural frequency of the structure) [6].

Although all the aforementioned complications, solutions to some chal-
lenging problems involving dynamics in TO have been proposed in bibliogra-
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phy. A standard ESO formulation is enhanced in [21] by including stress and
frequency constraints in order to properly design suspension bridges. An in-
teresting application concerning the optimised design of phononic band-gap
materials is provided in [22]. Dynamics-related phenomena have been consid-
ered also in the framework of multi-objective formulations: eigen-frequencies
and static requirements have been successfully taken into account in [23],
whilst the problem of attenuating vibrations by maximising the modal damp-
ing ratio is faced in [24]. These concepts have been applied to the design of
specific components such as vehicle doors [25]. Eigen-frequencies have been
considered in the context of multi-scale problems as well [16]. Other applica-
tions involving eigen-frequencies include two-material structures [26], couple-
stress continuum [27], geometrically non-linear structures [28]. Cutting-edge
problems have been solved also by minimising the harmonic response of a
structure: dedicated design strategies of piezoelectric energy harvesting de-
vices [29], the response of structures to wind and seismic loads [30, 31] and the
TO optimisation of the interface between acoustic and structural domain [32]
have been proposed in the literature.

Beyond the previously discussed numerical issues, a fundamental aspect
in TO is the consistency between the optimised configuration and the actual
reassembled geometry in a CAD environment. This issue is common to what-
ever problem formulation in TO (involving static compliance, displacements,
eigen-value problems, dynamic responses, etc.) and it needs to be properly
overcome in order to achieve a full integration of TO in a design strategy.
Several TO methods (SIMP, LSM) make use of FE to carry out the optimisa-
tion and the resulting topology is available in the form of an “element-wise”
description. Usually, at the end of the optimisation process, a further step is
needed for retrieving a smooth iso-contour of the optimised structure. This
happens even in the case of LSMs, because the Level-Set Function (the ge-
ometric descriptor) is affected by the underlying mesh. This phase is far
from being trivial and often implies some approximations, depending on the
user’s experience. To overcome this difficulty, some authors formulated TO
problems in the framework of isogeometric analysis (IGA) [33]. The NURBS
curves and surfaces [34] are combined with TO algorithms (SIMP, LSM,
ESO) and are used both to describe the geometry being optimised and as a
tool to solve the governing equations of the problem at hand [35–38]: accord-
ingly, this constitutes one of the most important advantages of IGA-based
TO. On the other hand, the possibility of using the classic FE method to
perform TO analyses is still attractive because allows dealing with relatively
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complex problems, typical of the industrial environment, taking advantage
from robust widespread FE software. This is the reason why an approach
similar to IGA-based TO (but substantially different) has been recently pro-
posed in [39–42]: the well-established SIMP method and the NURBS the-
ory [34] are combined in order to develop a geometry-based TO algorithm.
The main idea behind the SIMP method based on NURBS entities is to
embed the whole structure in a suitable design domain and to define the
pseudo-density via a NURBS entity of dimension D + 1, where D is the
dimension of the TO problem. This method has proven to be particularly
effective when constraints of different technological/geometrical nature are
included in the formulation of the optimisation problem [40, 43, 44]. FE
are used to evaluate mechanical responses, whilst the NURBS entity of di-
mension D + 1 describes the topology. The intrinsic CAD-compatibility of
NURBS entities allows for simplifying the post-processing phase at the end
of the optimisation. Since NURBS surfaces can be directly imported in any
CAD environment, retrieving the boundary of the optimised structure (and
not the pixelised/voxelised one) is a trivial task in 2D and facilities can be
provided for the 3D case. Moreover, the NURBS formalism guarantees for
a reduction of design variables and there is no need to define artificial filter
zones to avoid ill-conditioning phenomena (i.e. the so-called checker-board
effect), typical of the classical density-based approaches.

The major contribution of this work is the integration of design require-
ments involving dynamical responses (eigenfrequencies and harmonic analy-
sis) into the NURBS-based SIMP method. Accordingly, it is shown that the
method is sound, robust and not limited to the classical problem of compli-
ance minimisation subject to an equality constraint on the volume [40, 41].
All numerical issues related to dynamic problems are efficiently handled by
combining classic methodologies with the NURBS formalism. The poten-
tial of NURBS entities is fully exploited in terms of CAD-compatibility as
well, since the post-processing phase to reassemble the optimised structures
in the CAD environment is simplified. Performances of the reassembled
structures are compared to those of the corresponding pseudo-density map:
results emphasise that the method is globally conservative, in the sense that
the configurations reassembled after the post-processing phase have a better
objective function than that of the corresponding density maps.

The paper follows this outline. Section 2 gives the fundamentals about the
NURBS theory. Section 3 introduces the main concepts and consequences of
the NURBS-based SIMP method and it includes the mathematical statement
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of some dynamics problems in this theoretical framework. Details about the
numerical implementation and the advantages of this formalism in the post-
processing phase are given in Section 4. The effectiveness of the proposed
approach is shown on several 2D and 3D benchmarks in Section 5: a sensitiv-
ity analysis of solutions to the NURBS discrete parameters has been carried
out too. Finally, Section 6 ends the paper with some meaningful conclusions
and prospects.

2. The NURBS hyper-surfaces theory

The fundamentals of NURBS entities are briefly introduced in the most
general case of NURBS hyper-surfaces. Curves and surfaces formulae, widely
discussed in [34, 45–47], can be easily deduced from the following rela-
tions. A NURBS hyper-surface is a polynomial-based function, defined over
a parametric space (domain), taking values in the NURBS space (codomain).
Therefore, if N is the dimension of the parametric space and M is the dimen-
sion of the NURBS space, a NURBS entity is defined as H : RN −→ R

M .
For example, one scalar parameter (N = 1) can describe both a plane curve
(M = 2) and a 3D curve (M = 3). In the case of a surface, two scalar param-
eters are needed (N = 2) together with, of course, three physical coordinates
M = 3. The mathematical formula of a generic NURBS hyper-surface is

H(u1, . . . , uN) =

n1∑

i1=0

· · ·

nN∑

iN=0

Ri1,...,iN (u1, . . . , uN)Pi1,...,iN , (1)

where Ri1,...,iN (u1, . . . , uN) are the piecewise rational basis functions, which
are related to the standard Bernstein’s polynomials Nik,pk(uk), k = 1, . . . , N
by means of the relationship

Ri1,...,iN (u1, . . . , uN) =
wi1,...,iN

∏N
k=1Nik,pk(uk)

∑n1

j1=0 · · ·
∑nN

jN=0

[
wj1,...,jN

∏N

k=1Njk,pk(uk)
] . (2)

In Eqs. (1) and (2) , H(u1, . . . , uN) is a M-dimension vector-valued ra-
tional function, (u1, . . . , uN) are scalar dimensionless parameters defined in
the interval [0, 1], whilst Pi1,...,iN are the so called control points. The j-th

control point coordinate (X
(j)
i1,...,iN

) is stored in the array X(j), whose dimen-
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sions are (n1 + 1)× · · · × (nN + 1). The explicit expression of control points
coordinates in R

M is:

Pi1,...,iN = {X
(1)
i1,...,iN

, . . . , X
(M)
i1,...,iN

},

X(j) ∈ R
(n1+1)×···×(nN+1), j = 1, . . . ,M.

(3)

For NURBS surfaces, Pi1,i2 = {X
(1)
i1,i2

, X
(2)
i1,i2

, X
(3)
i1,i2

} and each coordinate

is arranged in a matrix defined in R
(n1+1)×(n2+1). The control points layout

is referred as control polygon for NURBS curves, control net for surfaces and
control hyper-net otherwise [34]. The generic control point does not actually
belong to the NURBS entity but it affects the NURBS shape by means of
its coordinates. A suitable scalar quantity wi1,...,iN (called weight) is related
to the respective control point Pi1,...,iN . The higher is the weight wi1,...,iN ,
the more the NURBS entity is attracted towards the control point Pi1,...,iN .
Nik,pk(uk) are also called blending functions. For each parametric direction
uk, k = 1, . . . , N , a specific degree pk is assigned. The recursive definition of
the blending function Nik ,pk(uk) is

Nik,0(uk) =

{
1 if U

(k)
ik

≤ uk < U
(k)
ik+1,

0 otherwise,
(4)

Nik,q(uk) =
uk−U

(k)
ik

U
(k)
ik+q−U

(k)
ik

Nik,q−1(uk) +
U

(k)
ik+q+1−uk

U
(k)
ik+q+1−U

(k)
ik+1

Nik+1,q−1(uk),

q = 1, ..., pk,
(5)

where each constitutive blending function is defined on the knot vector

U(k) = {0, . . . , 0︸ ︷︷ ︸
pk+1

, U
(k)
pk+1, . . . , U

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, (6)

whose dimension is mk + 1, with

mk = nk + pk + 1. (7)

Each knot vector U(k) is a non-decreasing sequence of real numbers that
can be interpreted as a discrete collection of values of the related dimen-
sionless parameter uk. The blending functions are characterised by several
interesting properties: the interested reader is addressed to [34] for a deeper
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insight into the matter. Here, only the local support property is recalled be-
cause it is of paramount importance for the NURBS-based SIMP method
[39–41]:

Ri1,...,iN (u1, . . . , uN) 6= 0

if (u1, . . . , uN) ∈
[
U

(1)
i1

, U
(1)
i1+p1+1

[
× · · · ×

[
U

(N)
iN

, U
(N)
iN+pN+1

[
.

(8)

Eq. (8) means that each control point (and the respective weight) affects
only a precise zone of the parametric space, that is precisely referred as local
support or influence zone.

3. The NURBS-based SIMP algorithm for topology optimisation

3.1. Generalities

Standard TO problems involving static analyses have been formulated
in the NURBS-based SIMP framework in [39–41]. Here, the most relevant
aspects of the method are recalled in order to provide a clear understanding
of the formulation of dynamics-related problems in the new context based on
NURBS entities. Without loss of generality, the discussion is focused on 3D
problems. Let D ⊂ R

3 be the design domain, i.e. a compact subset in the
3D Euclidean space, in which a Cartesian orthogonal frame O(x1, x2, x3) is
defined:

D = {(x1, x2, x3) ∈ R
3 : x1 ∈ [0, a1], x2 ∈ [0, a2], x3 ∈ [0, a3]}, (9)

where a1, a2 and a3 are three reference lengths of the domain, defined along
x1, x2 and x3 axes, respectively. The pseudo-density determining the optimal
material distribution in D is represented by means of a continuous pseudo-
density function ρ(x) = ρ(x1, x2, x3) ∈ [0, 1] defined on D. Particularly, ρ is
evaluated at the centroid xe of each element constituting a predefined mesh:
ρ(xe) = ρe = 1 means fully dense bulk material, whereas ρ(xe) = ρe = 0
means void phase. The pseudo-density function affects the physical responses
of the problem at hand, namely the stiffness tensor Eijkl and the material
density γ:

Eijkl(ρ(x1, x2, x3)) = fω (ρ(x1, x2, x3))E
0
ijkl, i, j, k, l = 1, 2, 3, (10)
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γ(ρ(x1, x2, x3)) = ρ(x1, x2, x3)γ
0. (11)

In Eqs. (10)-(11), E0
ijkl and γ0 are the stiffness tensor and the density,

respectively, of the bulk isotropic material. It is noteworthy that the actual
density γ is linearly penalised, whilst the stiffness tensor is penalised accord-
ing to a specific law fω (ρ(x1, x2, x3)). Often, especially in SIMP methods,
fω is a simple power law. However, more suited penalisation schemes can
be used in dynamics problem to overcome the numerical issue of spurious
modes. These aspects are discussed in details in Section 4.

As far as the eigen-frequencies problem is concerned, when the structural
damping is neglected, the governing state equation reads:

(
K− ω2

iM
)
ψi = 0, i = 1, ..., Nm, (12)

where K is the global stiffness matrix of the structure, M is the global mass
matrix, whilst ψi is the i-th mode (eigenvector) related to the corresponding
eigen-frequency ωi (Nm is the number of considered modes).

The equation governing the response of a structure undergoing a harmonic
load depends, of course, on the time instant. If the transitory behaviour of
the structure is neglected and only the steady state response is taken into
account, such an equation can be written in a simplified form in the frequency
domain as follows

(
K− Ω2M

)
d = f . (13)

In Eq. (13), Ω is the driving frequency of the external harmonic load vec-
tor f , while d identifies the steady state response in terms of generalised
displacements resulting from the harmonic solicitation.

The global stiffness matrix and the global mass matrix are related to the
element stiffness matrix Ke and to the element mass stiffness matrix Me,
respectively, through

K =
Ne∑

e=1

Ke =
Ne∑

e=1

fω(ρe)K
0
e, (14)

M =
Ne∑

e=1

Me +ML =
Ne∑

e=1

ρeM
0
e +ML, (15)
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which constitute the FE version of Eqs. (10)-(11). In Eq. (14), K0
e is the

non-penalised element stiffness matrix (accounting for the stiffness tensor
of the bulk material) expanded over the whole structure and expressed in
the global reference frame of the FE model. Considering Eq. (15), M0

e is
the non-penalised element mass matrix, whilst ML is the matrix related to
lumped non-structural masses, i.e. those masses which do not contribute to
the global stiffness matrix; of course, also these matrices are expanded over
the full set of degrees of freedom (DOFs) of the model and are expressed in
the global frame of the analysis.

In the NURBS-based TO method, the pseudo-density field (i.e. the topo-
logical descriptor) is represented through a suitable NURBS entity. There-
fore, a NURBS surface is used for 2D problems:

ρ(u1, u2) =

n1∑

i1=0

n2∑

i2=0

Ri1,i2(u1, u2)ρ̂i1,i2, (16)

while a NURBS hyper-surface is necessary for 3D problems:

ρ(u1, u2, u3) =

n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

Ri1,i2,i3(u1, u2, u3)ρ̂i1,i2,i3 . (17)

In Eqs. (16) and (17), Ri1,i2(u1, u2) and Ri1,i2,i3(u1, u2, u3) are the NURBS
rational basis functions, defined according to Eq. (2). Of course, ρ(u1, u2)
(N = 2) of Eq. (16) represents only the third coordinate of a 3D array (M =
3): the three coordinates in the NURBS space are the two spatial coordinates
and the pseudo-density. Similarly, ρ(u1, u2, u3) of Eq. (17) constitutes the
fourth coordinate of the array H(u1, u2, u3) in the special case of N = 3 and
M = 4. Moreover, the dimensionless parameters u1, u2, and u3 are directly
related to the physical coordinates as follows:

uj =
xj

aj
, j = 1, 2, 3. (18)

Control points ρ̂i1,i2 are organised in a 2D array (two indices), whilst
ρ̂i1,i2,i3 are normally set in a 3D array, according to the NURBS surfaces and
hyper-surfaces algorithms [34].

As stated above, there are many parameters affecting the shape of NURBS
entities intervening in Eqs. (16) and (17). Among them, the pseudo-density at
control points and the related weights are identified as design variables. They
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are arranged in the arrays ξ2D1 ∈ R
[(n1+1)(n2+1)]×1 and ξ2D2 ∈ R

[(n1+1)(n2+1)]×1

for 2D problems:

ξ2D1
T
= {ρ̂0,0, . . . , ρ̂n1,0, ρ̂0,1, . . . , ρ̂n1,1, . . . , ρ̂n1,n2},

ρ̂i1,i2 ∈ [ρ̂min, ρ̂max], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2,
(19)

ξ2D2
T
= {w0,0, . . . , wn1,0, w0,1, . . . , wn1,1, . . . , wn1,n2},

wi1,i2 ∈ [wmin, wmax], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2.
(20)

Analogously, the pseudo-density at control points and weights are collected
in the arrays ξ3D1 ∈ R

[(n1+1)(n2+1)(n3+1)]×1 and ξ3D2 ∈ R
[(n1+1)(n2+1)(n3+1)]×1 for

3D applications:

ξ3D1
T
= {ρ̂0,0,0, . . . , ρ̂n1,0,0, ρ̂0,1,0, ρ̂n1,1,0, . . . , ρ̂n1,n2,0, . . . , ρ̂0,0,n3, . . . , ρ̂n1,n2,n3},

ρ̂i1,i2,i3 ∈ [ρ̂min, ρ̂max], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2, ∀i3 = 0, ..., n3,

(21)

ξ3D2
T
= {w0,0,0, . . . , wn1,0,0, w0,1,0, wn1,1,0, . . . , wn1,n2,0, . . . , w0,0,n3, . . . , wn1,n2,n3},

wi1,i2,i3 ∈ [wmin, wmax], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2, ∀i3 = 0, ..., n3.

(22)
For the sake of synthesis, it is useful to define the following array:

Ξ(l) =

{
ξ2Dl if N = 2,

ξ3Dl if N = 3,
l = 1, 2. (23)

The other NURBS parameters are set at the beginning of the TO analysis and
are not optimised. Here below, a concise discussion on the expected effect of
these parameters on the final optimum topology is given (more details can
be found in [40, 41]).

• The degrees : the greater the degree the grater the local support.

• The control points number : the greater the number of control points
the smaller the local support. On the one hand, this implies smaller
topological features, thus better performances can be achieved. On the
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other hand, the number of design variables increases and, consequently,
an increased computational burden is expected. Of course, the total
number of control points is ntot = (n1 + 1)(n2 + 1) in 2D and ntot =
(n1 + 1)(n2 + 1)(n3 + 1) in 3D.

• The knot vector : the non-trivial knot vectors components appearing in
Eq. (6) have been uniformly distributed on the interval [0, 1] for both
2D and 3D problems.

• Spatial coordinates of control points : The idea is to distribute control
points in the Euclidean space in such a way that the NURBS evaluation
along the xj coordinate coincides exactly with xj , j = 1, 2, 3. When
B-Spline entities are employed, this requirement can be met thanks to
the so-called Greville’s abscissae for control points spatial coordinates,
i.e. 




X
(1)
I1,∗,∗

= a1
p1

∑p1−1
k=0 U

(1)
I1+k+1, I1 = 0, ..., n1,

X
(2)
∗,I2,∗

= a2
p2

∑p2−1
k=0 U

(2)
I2+k+1, I2 = 0, ..., n2,

X
(3)
∗,∗,I3

= a3
p3

∑p3−1
k=0 U

(3)
I3+k+1, I3 = 0, ..., n3.

(24)

wherein the symbol ∗, replacing two of the three indices, means that
the considered Greville’s abscissa depends only upon the corresponding
knot vector. Eq. (24) holds for 3D problems, whilst only the first two
equations must be considered.

3.2. Formulation of the Dynamics Problems-related Requirements

In this subsection, four dynamics problems are stated in the NURBS-
based SIMP framework. Their general formulation is

min
Ξ(1),Ξ(2)

Fl(Ξ
(1),Ξ(2)), l = 1, 2, 3, 4,

subject to:




state equation,

V (Ξ(1),Ξ(2))

Vref

=

∑Ne

e=1 ρeVe

Vref

= v,

Ξ
(1)
k ∈ [ρ̂min, ρ̂max], Ξ

(2)
k ∈ [wmin, wmax],

∀k = 1, ..., ntot.

(25)
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In Eq. (25), Fl(Ξ
(1),Ξ(2)), l = 1, 2, 3, 4, is a general objective function that

needs to be specified according to the problem at hand.
The problem of maximising the first eigen-frequency subject to an equal-

ity constraint on the volume of the structure can be stated by setting

F1(Ξ
(1),Ξ(2)) = −

ω1(Ξ
(1),Ξ(2))

ωref

, (26)

in problem (25) and by using Eq. (12) with Nm = 1 as a state equation. In
Eq. (26), ωref is the reference eigen-frequency evaluated through the initial
guess of design variables.

For some specific applications, the main requirement is the maximisation
of the gap between the first and the second eigen-frequencies, to enlarge
the frequency range wherein vibration cannot be induced in the structure.
Accordingly, the objective function of problem (25) becomes

F2(Ξ
(1),Ξ(2)) = −

(
ω2(Ξ

(1),Ξ(2))− ω1(Ξ
(1),Ξ(2))

∆ωref

)2

. (27)

The state equation is still Eq. (12) with Nm = 2. The quantity ∆ωref

appearing in Eq. (27) is the difference between the two first eigen-frequencies
at iteration 0, and it is used to obtain a dimensionless objective function.

Instead of maximising solely the first eigen-frequency, it could be inter-
esting to maximise the mean value of the first Nf frequencies of a structure:

F3(Ξ
(1),Ξ(2)) = −

1

ωref

∑Nf

i=1 ωi(Ξ
(1),Ξ(2))

Nf

. (28)

The main advantage of the formulation of Eq. (28) is that convergence is not
as sensitive as in the case of Eq. (26) to the modes switch phenomenon. In
Eq. (28), ωref is a reference mean frequency, evaluated at iteration 0.

A different kind of problem addressed in TO is related to the harmonic
response. In this article, the so-called dynamic compliance cdyn is considered
as a global response of the structure to the harmonic external load. It can be
interpreted as the virtual work of the harmonic external load on the steady
state array of DOFs. The objective function of problem (25) reads

F4(Ξ
(1),Ξ(2)) =

(
cdyn(Ξ

(1),Ξ(2))

cdyn−ref

)2

=

(
fTd(Ξ(1),Ξ(2))

cdyn−ref

)2

, (29)
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whilst the state equation is given by Eq. (13). In Eq. (29), cdyn−ref is a
reference dynamic compliance.

The optimisation of Eq. (25) is subject to an equality constraint on the
volume. V represents the volume of the structure, Ve is the volume of element
e and Vref is a reference volume. The generic element pseudo-density ρe is
the pseudo-density evaluated via Eqs. (16)-(17) at the element centroid. Of
course, the penalisation schemes in the form of Eqs. (14) and (15) are still
active. It is noteworthy that the new design variables of problem (25) are
the pseudo-densities at the NURBS control points and weights, no longer the
element densities like in standard density-based formulations. In the prob-
lem statement, ρ̂min and ρ̂max represent lower and upper bounds for control
points, whereas wmin and wmax are lower and upper bounds for weights. The
initial guess is defined such that, at the first iteration, ρe = v, ∀e = 1, ..., Ne,
(where v is the imposed volume fraction): this fact assures that the equality
constraint on the volume is met (feasible starting point).

A deterministic algorithm is used to perform the solution search for prob-
lem (25). Therefore, the computation of the derivatives of both objective
and constraint functions with respect to the design variables in closed form
is needed. This task is achieved by exploiting the NURBS local support prop-
erty and the simple chain rule for derivatives calculation. In particular, the
local support related to control point ρ̂I1,I2 in 2D or ρ̂I1,I2,I3 in 3D can be
defined as

Sτ =




SI1,I2 =

[
U

(1)
I1

, U
(1)
I1+p1+1

[
×
[
U

(2)
I2

, U
(2)
I2+p2+1

[
, if N = 2,

SI1,I2,I3 =
[
U

(1)
I1

, U
(1)
I1+p1+1

[
×
[
U

(2)
I2

, U
(2)
I2+p2+1

[
×
[
U

(3)
I3

, U
(3)
I3+p3+1

[
, if N = 3.

(30)
In Eq. (30), the triplet of capital indices (I1, I2, I3) identifies a specific control
point or weight with linear index τ given by

τ =

{
I1 + I2(n1 + 1), if N = 2,

I1 + I2(n1 + 1) + I3(n1 + 1)(n2 + 1), if N = 3.
(31)

Let Q be a generic scalar function to be considered in a TO problem whose
gradient with respect to the generic element pseudo-density, i.e. ∂Q

∂ρe
, is

known. In particular, the derivatives ∂Fl

∂ρe
can be easily carried out by means of

∂ωi

∂ρe
and

∂cdyn
∂ρe

, which are available in the literature (see, for instance [12, 48])
and reported in Appendix A for the sake of completeness.
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In the framework of the NURBS-based SIMP approach, it is required to
determine the explicit expressions of ∂Q

∂Ξ
(1)
τ

and ∂Q

∂Ξ
(2)
τ

that read

∂Q

∂Ξ
(l)
τ

=
∑

e∈Sτ

∂Q

∂ρe

∂ρe

∂Ξ
(l)
τ

, l = 1, 2. (32)

In Eq. (32), only those elements falling into the local support of control point

Ξ
(1)
τ give a non-null contribution to the derivatives. It can be proven [40, 41]

that the derivatives of the NURBS entity with respect to an assigned control
point and the related weight take the form

∂ρe

∂Ξ
(1)
τ

= Re
τ , (33)

and
∂ρe

∂Ξ
(2)
τ

=
Re

τ

Ξ
(2)
τ

(
Ξ(1)
τ − ρe

)
. (34)

The scalar quantity Re
τ appearing in Eqs. (33)-(34) is simply the NURBS

rational basis function of Eq. (2), related to control point Ξ
(1)
τ , evaluated

at the element centroid. If Q is replaced by the function at hand, the final
expressions of derivatives related to the problems proposed in this paper can
be obtained. Therefore, the result of the sensitivity analysis applied to F1 is
given by

∂F1

∂Ξ
(1)
τ

= −
1

2κ
(1)
tot

ω1

ωref

∑

e∈Sτ

(
∂fω
∂ρe

1

fω
ǫ(1)e −

1

ρe
κ(1)
e

)
Re

τ , (35)

∂F1

∂Ξ
(2)
τ

= −
1

2Ξ
(2)
τ κ

(1)
tot

ω1

ωref

∑

e∈Sτ

(
∂fω
∂ρe

1

fω
ǫ(1)e −

1

ρe
κ(1)
e

)(
Ξ(1)
τ − ρe

)
Re

τ . (36)

If F2 is considered, the derivatives read

∂F2

∂Ξ
(1)
τ

= −
2 (ω2 − ω1)

(∆ωref)2

∑

e∈Sτ

Re
τ

(
∂fω
∂ρe

δω
(1,2)
ǫ−e

fω
−

δω
(1,2)
κ−e

ρe

)
, (37)

∂F2

∂Ξ
(2)
τ

= −
2 (ω2 − ω1)

Ξ
(2)
τ (∆ωref)2

∑

e∈Sτ

Re
τ

(
Ξ(1)
τ − ρe

)
(
∂fω
∂ρe

δω
(1,2)
ǫ−e

fω
−

δω
(1,2)
κ−e

ρe

)
, (38)
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where δω
(i,j)
ǫ−e δω

(i,j)
κ−e are defined as follows:

δω
(i,j)
ǫ−e =

1

2

(
ωjǫ

(j)
e

κ
(j)
tot

−
ωiǫ

(i)
e

κ
(i)
tot

)
, (39)

δω
(i,j)
κ−e =

1

2

(
ωjκ

(j)
e

κ
(j)
tot

−
ωiκ

(i)
e

κ
(i)
tot

)
. (40)

As far as F3 is concerned, the expressions of the derivatives are

∂F3

∂Ξ
(1)
τ

= −
1

ωrefNf

∑

e∈Sτ

Re
τ




Nf∑

i=1

ωi

2κ
(i)
tot

(
∂fω
∂ρe

1

fω
ǫ(i)e −

1

ρe
κ(i)
e

)
 , (41)

∂F3

∂Ξ
(2)
τ

= −
1

Ξ
(2)
τ ωrefNf

∑

e∈Sτ

Re
τ

(
Ξ(1)
τ − ρe

)



Nf∑

i=1

ωi

2κ
(i)
tot

(
∂fω
∂ρe

1

fω
ǫ(i)e −

1

ρe
κ(i)
e

)
 .

(42)
Finally, the sensitivity analysis of the dynamic compliance related to F4 gives

∂F4

∂Ξ
(1)
τ

= −
4cdyn

c2dyn−ref

∑

e∈Sτ

Re
τ

(
∂fω
∂ρe

1

fω
ǫe −

1

ρe
κe

)
, (43)

∂F4

∂Ξ
(2)
τ

= −
4cdyn

Ξ
(2)
τ c2dyn−ref

∑

e∈Sτ

Re
τ

(
Ξ(1)
τ − ρe

)(∂fω
∂ρe

1

fω
ǫe −

1

ρe
κe

)
. (44)

In Eqs. (35)-(42), κ
(i)
tot represents the kinetic energy of the whole structure

vibrating at ωi. Under the same conditions, κ
(i)
e and ǫ

(i)
e are the contributions

given by element e to the total kinetic energy and to the total strain energy,
respectively. In Eqs. (43)-(44), the upper script disappears because the ki-
netic energy and the strain energy are related to the structure vibrating at
the driving frequency Ω.

The derivatives of the volume with respect to the NURBS control points
and weights are trivial and reported here below for the sake of completeness:

∂

∂Ξ
(1)
τ

(
V

Vref

)
=

1

Vref

∑

e∈Sτ

VeR
e
τ , (45)

16



∂

∂Ξ
(2)
τ

(
V

Vref

)
=

1

VrefΞ
(2)
τ

∑

e∈Sτ

(Ξ(1)
τ − ρe)VeR

e
τ . (46)

4. Numerical strategy

The NURBS-based TO algorithm is called SANTO (SIMP And NURBS
for Topology Optimisation). Two versions are available: the kernel routines
have been implemented in both MATLAB and PYTHON environments at
the I2M laboratory in Bordeaux. The evaluation of mechanical responses
is carried out thanks to external FE software. In this work, the ANSYSR©

Parametric Design Language (APDL) has been used to implement the FE
model of the structure. However, the modular structure of the algorithm
allows for easily interfacing the core routines with any external FE software.
The post-processing phase needs a CAD environment and the CATIAR© soft-
ware has been chosen. A synthetic scheme of the algorithm is provided in
the followings. For a deeper insight into the details of SANTO, the reader is
addressed to [41].

1. Problem Setting. The objective/constraints functions of the problem
at hand are set. The regular domain (rectangular in 2D, prismatic in
3D) embedding the structure is chosen.

2. NURBS Parametrisation. The TO analysis can be run by using a
B-Spline or a NURBS entity.

3. FE Model Information. The FE model corresponding to the struc-
ture to be optimised is built into a dedicated software and relevant
information (elements identifiers, centroids coordinates) is transferred
to the main core.

4. Design domain definition. Some regions of the design domain can be
disregarded during the optimisation: holes (void zones) or functional
surfaces (material zones) are usually defined as Non-Design Regions
(NDRs). This step guarantees also the possibility to deal with irregular
design domains: whatever domain can be embedded in a rectangular or
a prismatic compact in 2D and 3D, respectively. Then, zones without
matter can be just considered as NDRs [39–41].

5. Symmetries Application. Symmetry conditions can be imposed on
the NURBS entity even if the mesh of the FE model is not symmetric
at all.
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6. Reference Quantities. Some geometrical/mechanical quantities are
defined to get dimensionless values of the objective/constraints func-
tions. This is basic to obtain a consistent stopping criterion for the
optimisation algorithm.

7. Deterministic Optimisation. The deterministic optimisation is car-
ried out through the “active-set” algorithm [49]. In this paper, the
fmincon package of Matlab is used [50].

8. Post-processing. This phase is necessary in order to retrieve the
boundary of the optimised structure at the end of the optimisation
process and it is carried out through a threshold operation. The pro-
cedure is illustrated in Fig. 1 and summarised in the followings.

 

 
2D 

Optimisation 

output

 
.igs ile

 
NURBS 

surface

 
Threshold plane

 
Optimised 2D Topology

 
Results check: FE analysis of the 2D optimised structure

 
.igs ile

 
3D 

Optimisation 

output

 
NURBS hyper-surface

 
.stl ile

 
Results check: FE analysis of the 3D optimised structure

 
Threshold operation  

NURBS-based 

Surface Fitting

 
CAD operations

 
.stp ile

 
Matlab/Python

 
FE code

 
Postprocessing software

 
Exchange iles

Figure 1: Post-processing phase in SANTO

.

The post-processing is trivial for 2D structures. Firstly, the 3D NURBS
surface representing the pseudo-density field is transferred to a CAD
software through a standard IGS file. Secondly, a rectangular domain
(size a1 × a2) is drafted at an altitude corresponding to the thresh-
old value for the density. This threshold value ρth is chosen in such a
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way that the optimisation constraints are met. Finally, the rectangular
domain and the NURBS surface are intersected. The final result is
fully CAD-compatible and it does not require further geometric oper-
ations. Eventually, the consistency of the results can be easily checked
by transferring the 2D optimised geometry to the FE solver via a new
IGS file.
In 3D, the complexity of the intersection operation increases. The
4D NURBS/B-Spline hyper-surface must be intersected with a suit-
able hyper-plane corresponding to ρth. While for 2D structures the
intersection takes place in a CAD environment and the results are di-
rectly available in terms of geometric entities (the boundary lines), for
3D components such an intersection can be easily performed only in
a dedicated environment (e.g. MATLAB/Python) and the result is
a Delaunay triangulation, which is saved in an STL file. Since the
STL file originated from a NURBS hyper-surface, it is characterised
by high-quality triangles, without aberrations. This kind of STL files
constitutes the basis for a very general and semi-automated surface ap-
proximation technique, formulated as an optimisation problem. In this
framework, the goal is the minimisation of the distance between a set
of sampling points belonging to the 3D topology boundary and those
belonging to a set of pertinent NURBS/B-Spline surfaces opportunely
connected (in order to correctly describe the boundary). Nevertheless,
the most complicated aspect when dealing with such a problem is the
determination of a proper surface parametrisation for the boundary
surfaces of genus n [51]. Surface parametrisation for a general sur-
face of genus n is a very challenging problem which does not present a
unique solution. Inasmuch as good results can be achieved for open sur-
faces [52], whatever triangulation can be split in several patches (with
suitable continuity conditions among them) and a local parametrisa-
tion can be provided. Then, the surface fitting is performed through
a poly-NURBS entity, where continuity conditions among patches are
automatically set. This procedure is detailed in [53].

Some details about the aforementioned points are here discussed for the
solution of dynamics problems. Unlike classic SIMP approaches, where the
accuracy of the topology description is characterised by the size of the el-
ements of the mesh, the NURBS discrete and continuous parameters are
predominant in this method and they have the highest impact on the de-
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sign [44]. As far as symmetry conditions are concerned, it is remarked that
imposing a symmetry on the NURBS is deeply different from imposing sym-
metries on the FE model. As a matter of fact, imposing a symmetry in the
FE framework means, in practice, modelling just one half of the structure
and setting suitable boundary conditions (BCs) on the nodes located on the
symmetry plane. This implies, on the one hand, that computational time is
saved because of the cheaper FE model and, on the other hand, that some
information could be lost. In the specific case of eigen-frequencies in TO,
if symmetries conditions are set, only symmetric modes are extracted and,
consequently, the analysis can be invalidated. Contrariwise, if the whole
FE model is considered and symmetry conditions are set on the NURBS
representing the pseudo-density, the result will be a symmetric topology un-
dergoing both symmetric and non-symmetric vibrating modes. Furthermore,
the symmetry of the NURBS allows for saving computational time because
it halves the number of design variables. A synthetic flow-chart of SANTO
is provided in Fig. 2.

The first step consists of the NURBS evaluation at the centroids of the
elements. Then, the interface between the core of the algorithm and the
FE model is handled through some dedicated exchange files, in order to
correctly evaluate mechanical quantities and their derivatives with respect
to the elements of the mesh. In the case of dynamics-related problems, these
derivatives can be written in a very effective way, as shown in Appendix A.
This fact implies a very simple structure for the data-exchange files, which do
not stock huge stiffness or mass matrices. In the FE software, the penalisation
of the mass matrix and of the stiffness matrix are performed by means of
a linear law and the polynomial law fω(ρe), respectively. If the standard
SIMP power law is chosen, the spurious modes issue discussed in Section 1
is not prevented because the stiffness-to-mass ratio goes to zero as ρα−1

e .
Inasmuch usually α = 3, the local stiffness goes to zero faster than the
local mass and, consequently, the result is a spurious, low-frequency mode
involving low density regions of the design domain. Without considering an
adequate numerical strategy to prevent this phenomenon, the spurious mode
is identified as the first eigen-mode and this fact flaws the TO analysis.

In order to overcome this issue, the stiffness matrix is penalised according
to the formula suggested in [16]:

fω(ρe) = 1.1ρ3e − 0.2ρ2e + 0.1ρe. (47)
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Figure 2: Flow-chart of SANTO for dynamics problems.

As it can be observed from Fig. 3, the ratio fω/ρe goes to a finite quantity
when ρe goes to zero. This fact prevents the occurrence of spurious modes
and it allows the topology to correctly evolve during the iterations.

As highlighted in Fig. 2, the sensitivity analysis exploits the NURBS local
support property to evaluate the analytical form of the gradient, regardless of
the nature of the variables at hand. Such a property defines an implicit filter
zone, whose size depends on the size of the local support of the blending
functions, i.e. on the components of the knot vectors, on the number of
control points as well as on the degrees of the basis functions. TO filters
create an artificial mutual dependency among the elements densities, i.e. the
design variables in the standard SIMP formulation. Conversely, in the case of
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Figure 3: The fω/ρe ratio.

NURBS, the inter-dependence is automatically provided due to the NURBS
local support, without the need of defining a filter on the mesh elements
densities [40, 41]. Finally, the convergence is achieved when constraints are
met (or barely met, i.e. the optimum solution is on the boundary of the
search domain) and one of the following conditions occurs: (a) the predicted
change of the objective function is lower than a prescribed tolerance (10−6);
(b) the norm of the gradient of the Lagrangian functional related to the
problem at hand is very close to zero; (c) the predicted change of design
variables is lower than a prescribed threshold value (10−6); (d) a maximum
value of iterations (set by the user) has been attained. The upper boundary
on the iterations number is 400 for the benchmarks discussed in the next
section. All these parameters are set in the options of the fmincon function.

5. Results

Results provided in this section are related to three benchmarks, which are
described hereafter. The aim of the proposed numerical campaign is twofold:
on the one hand, the effects of the NURBS parameters on the solution of
the TO analysis are investigated. On the other hand, the effectiveness of the
presented strategy is shown on 2D and on 3D problems.
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5.1. Benchmarks description

5.1.1. A simple plane-stress problem (BK1)

The first benchmark consists of a thin plate, clamped at both lateral sides.
The out-of-plane behaviour is disregarded and a plane-stress formulation is
used. An exhaustive description of the problem is provided in Fig. 4 and in
its caption. When P4 is solved, a harmonic load Ph is applied as shown in
Fig. 4b and the related exciting frequency is Ω.

a1

a
2

x2

x1 mns

(a) Benchmark BK1 settings in the case of
P1, P2 and P3.

a1

a
2

x2

x1 mns

Ph

(b) Benchmark BK1 settings in the case of
P4. Ph = 100 N, Ω = 100 Hz.

Figure 4: Benchmark BK1. Geometry: a1 = 800 mm, a2 = 100 mm, Thickness 1 mm.
Material: Young Modulus E = 70000 MPa, Poisson Modulus ν = 0.33, Density γ =
2.7 ∗ 10−9 tons/mm3, Non-structural mass mns = 0.001 tons. Mesh: 160× 20 PLANE182
Ansys elements.

5.1.2. A shell structure (BK2)

The second benchmark is a 2D square plate accounting for the out-of-
plane mechanical behaviour (shell formulation). The plate is clamped along
all the four sides, as shown in Fig. 5. Complementary information about the
benchmark are collected in the caption of the same figure. The red zones
highlighted in Fig. 5 constitute NDRs, i.e. material zones that are neglected
during the optimisation. A non-structural mass mns is associated to the
central node of the structure when P1, P2 and P3 are solved. Considering
the solution of P4, the non-structural mass is replaced by a harmonic pressure
ph (driving frequency Ω) applied to the green zone shown in Fig. 5b.

5.1.3. A 3D bridge (BK3)

A 3D benchmark is proposed in order to emphasise the generality of the
procedure outlined in this paper. The test-case is represented in Fig. 6: the
upper part of the design domain (in red) is a Non-Design Region and only
two small zones are clamped in the bottom part of the design domain.
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(a) Benchmark BK2 settings in the case of
P1, P2 and P3. mns = 0.01 tons.
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(b) Benchmark BK2 settings in the case of
P4. ph = 1 MPa, Ω = 50 Hz.

Figure 5: Benchmark BK2. Geometry: a1 = 320 mm, a2 = 320 mm, Thickness 2 mm,
d = 20 mm. Material: Young Modulus E = 200000 MPa, Poisson Modulus ν = 0.30,
Density γ = 7.8 ∗ 10−9 tons/mm3. Mesh: 64× 64 SHELL181 Ansys elements.
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(a) Benchmark BK3 settings in the case of
P1, P2 and P3.
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(b) Benchmark BK3 settings in the case of
P4. ph = 1 MPa, Ω = 50 Hz.

Figure 6: Benchmark BK3. Geometry: a1 = 600 mm, a2 = 100 mm, a3 = 200 mm, d = 20
mm. Material: Young Modulus E = 200000 MPa, Poisson Modulus ν = 0.30, Density
γ = 7.8 ∗ 10−9 tons/mm3. Mesh: 90× 15× 30 SOLID185 Ansys elements.

Only in the case of P4, a harmonic pressure ph (driving frequency Ω) is
applied on the green zone shown in Fig. 6b.

5.2. Sensitivity of the optimised topology to NURBS discrete parameters for
benchmark BK1

The complete set of considered optimisation problems (P1, P2, P3 and
P4) is solved several times on benchmark BK1 by choosing different com-
binations of the NURBS discrete parameters (number of control points and
degrees). The goal is to understand the impact of these parameters on the
final topologies and to determine which is the real added value of NURBS
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entities with respect to B-Spline entities. Particularly, the TO is carried out
for each combination of the following parameters:

• degrees: pk = 2, 3, k = 1, 2;

• number of control points (n1+1)× (n2+1) = 64×8, 80×10, 96×12;

• weights: inactive (B-Spline), active (NURBS).

The number of design variables depends on the number of control points.
Considering the intrinsic symmetry condition of benchmark BK1, the number
of design variables is 256, 400, 576 in case of B-Spline entities and 512, 800,
1152 in case of NURBS entities. The number of elements used for the mesh is
3200, and it would correspond to an overall number of 1600 design variables,
if a standard SIMP method were used to solve the same problem. Therefore,
as remarked in previous studies on the topic [39–41, 44], the NURBS-based
SIMP method guarantees for a reduction of design variables. This reduction
is at least 28% for benchmark BK1, corresponding to the most detailed design
(a NURBS surface with 96×12 control points). If a NURBS surface with 80×
10 control points is chosen, the reduction in the number of design variables
is 50%.

In the framework of this sensitivity analysis, density map solutions and
iso-level solutions are compared:

• The density-map solution represents the final pseudo-density function,
in the form of Eq. (16), which is related to the optimised configuration
retrieved at the end of the TO calculation. All the elements of the
original mesh are kept and penalised according to the corresponding
value of pseudo-density. For each element e, the values of (ue

1, u
e
2),

appearing in Eq. (16), are related to the coordinates of the element
centroid, i.e. (xe

1, x
e
2), through Eq. (18).

• The iso-level solution represents the optimised structure after the post-
processing phase: in this case, the objective function is evaluated again
on a free mesh built up just on those zones of the design domain related
to the solid phase. No penalisation schemes are applied in the case of
the iso-level solution.

To facilitate the understanding of the above concepts, the synthetic graphs
of Figs. 7, 11, 14 and 18 resume the results: namely, the iso-level solution is
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represented as a function of the density-map solution. In this particular kind
of graph, the plane bisector identifies a critical boundary, which separates
two regions of the domain. In the case of problems P1, P2 and P3 (maximi-
sation of a quantity), the upper part of the domain is a conservative region,
because the value of the objective function evaluated on the iso-level solu-
tion (the actual structure) is higher than that evaluated on the density map
solution. Contrariwise, when dealing with the minimisation problem P4, the
conservative zone is, of course, the lower part of the domain. In Figs. 7, 11, 14
and 18, the dark grey part of the graph identifies the non-conservative zone.

For each problem, only the most remarkable configurations are reported
in this paragraph, whilst the whole set of results is provided in Appendix
B to improve the readability of the paper. Finally it must be noticed that,
for the sake of brevity, the sensitivity analysis has been carried out only for
benchmark BK1.

5.2.1. Solutions of P1

The first eigen-frequency has been evaluated for each optimised topology
on the density-map solution and on the iso-level solution. B-Spline solutions
are given in Fig. B.1, whilst NURBS solutions are shown in Fig. B.2. The
synthesis of numerical results is illustrated in Fig. 7. The reference eigen-
frequency is ωref = 2.485 Hz.
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Figure 7: Summary of solutions of P1.
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Density-map solutions and iso-level solutions represented in Fig. 7 exhibit
some differences in terms of performances. In fact, the points on the graph
are not exactly superposed to the plane bisector. This fact is intrinsic to the
SIMP method and it is due to the weak phase representing the void in the
density map solution. However, it is noteworthy that all the solutions are
in the upper part of the domain: therefore, when the threshold operation
is performed, the iso-level solution is more efficient than the density-map
solution. This is a conservative result.

As far as the sensitivity of the optimised topology to the NURBS discrete
parameters is concerned, a NURBS solution offers, in general, better perfor-
mances than the respective B-Spline solution. This aspect is evident on the
graph of Fig. 7 by comparing circle markers and star markers of the same
colors. This behaviour is always manifested, except in the case of 64 × 8
control points and degrees 3. This combination of control points and degrees
corresponds to the largest size of the local support of the NURBS blending
function and, consequently, to the largest size of the filter zone. Under these
conditions, solutions exhibit smoother boundaries but convergence is more
difficult to achieve. Since one of the stopping criterion of the algorithm is the
maximum number of iterations, it can be stated that the NURBS solution
characterised by 64× 8 control points and degree 3 stopped prematurely. It
is interesting to remark that the best solution is obtained through a NURBS
with 96× 12 control points and degree 2, which is shown in Fig. 8.

(a) Density map, ω1 = 4.8541 Hz.
0 100 200 300 400 500 600 700 800

0

50

100

(b) Iso-level solution, ω1 = 5.2705 Hz.

Figure 8: Solution of P1. NURBS, p1 = p2 = 2, (n1 + 1)× (n2 + 1) = 96× 12.

When the parametrisation is carried out by means of a B-spline with a
too low number of control points, the optimal topology is different and less
efficient, as illustrated in Fig. 9.

As a final remark, the solution corresponding to a B-Spline with (n1 +
1) × (n2 + 1) = 80 × 10 and p1 = p2 = 3 (reported in Fig. 10) shows
the worst performances. In particular, a small free-hanging part can be
observed in the iso-contour solution of Fig. 10b. This is a clear symptom of
a critical size of the filter zone. On the one hand, this size is small enough
to promote a more efficient design (with smaller topological details); on the
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(a) Density map, ω1 = 4.3794 Hz.
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(b) Iso-level solution, ω1 = 4.9681 Hz.

Figure 9: Solution of P1. B-Spline, p1 = p2 = 2, (n1 + 1)× (n2 + 1) = 64× 8.

other hand it is still too large to have a fast convergence. Inasmuch as
the maximum number of iterations has been set to 400 in this numerical
campaign, increasing this limit would surely provide better performances
and would probably eliminate the free-hanging part. However, beyond this
aspect, both the eigen-frequency and the shape of the vibrating mode have
been checked and they are consistent.

(a) Density map, ω1 = 4.2242 Hz.
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(b) Iso-level solution, ω1 = 4.5909 Hz.

Figure 10: Solution of P1. B-Spline, p1 = p2 = 3, (n1 + 1)× (n2 + 1) = 80× 10.

5.2.2. Solutions of P2

The gap between the second and the first eigen-frequencies (∆ω = ω2−ω1)
is computed for optimised topology run on the density-map solution and on
the iso-level solution. Results in terms of B-Spline and NURBS solutions are
provided Figs. B.3-B.4. Numerical results are summarised in Fig. 11. The
value of ∆ωref is 4.265 Hz.

In this case, the points appearing on the graph are less scattered and closer
to the plane bisector. Moreover, it can be stated that a NURBS solution is
always more efficient than the B-Spline counterpart. Finally, if the best
configuration (obtained through a NURBS, (n1 + 1) × (n2 + 1) = 96 × 12,
p1 = p2 = 3) is compared to the worst configuration (B-Spline solution,
(n1 + 1)× (n2 + 1) = 64 × 8, p1 = p2 = 3), there is no evident difference in
terms of topologies and the numerical values of ∆ω are close as well. The
best and the worst solutions are represented in Figs. 12 and 13, respectively.

5.2.3. Solutions of P3

The mean eigen-frequency for benchmark BK1 is just the mean value
of the first two eigen-frequencies, i.e. ω = (ω1 + ω2)/2. All results of the
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Figure 11: Summary of solutions of P2.

(a) Density map, ∆ω = 12.871744 Hz.

0 100 200 300 400 500 600 700 800
0

50

100

(b) Iso-level solution, ∆ω = 13.0357 Hz.

Figure 12: Solution of P2. NURBS, p1 = p2 = 3, (n1 + 1)× (n2 + 1) = 96× 12.

(a) Density map, ∆ω = 12.1551 Hz.
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(b) Iso-level solution, ∆ω = 12.7451 Hz.

Figure 13: Solution of P2. B-Spline, p1 = p2 = 3, (n1 + 1)× (n2 + 1) = 64× 8.

numerical campaign are collected in Fig. 14. The optimised topologies are
illustrated in Figs. B.5-B.6. The reference mean frequency is ωref = 4.617
Hz.

When looking at the graph of Fig. 14, it can be observed that many
NURBS solutions are clustered around almost the same point. Further-
more, being the optimum topology simple, the higher value of the mean
eigen-frequencies is obtained through a rather poor NURBS parametrisa-
tion, characterised by just 64×8 control points and degrees 3. In fact, under
these conditions, the boundary of the optimised configuration is very smooth
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Figure 14: Summary of solutions of P3.

(refer to Fig. 15) and there is no need to exploit a rich (and computationally
burdensome) NURBS parametrisation of the computational domain. In con-
trast, the worst solution, corresponding to a B-Spline parametrisation with
p1 = p2 = 2 and (n1 + 1)× (n2 + 1) = 64× 8, is reported in Fig. 16.

(a) Density map, ω = 9.65795 Hz.
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(b) Iso-level solution, ω = 10.0633 Hz.

Figure 15: Solution of P3. NURBS, p1 = p2 = 3, (n1 + 1)× (n2 + 1) = 64× 8.

(a) Density map, ω = 9.41785 Hz.
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(b) Iso-level solution, ω = 9.93755 Hz.

Figure 16: Solution of P3. B-Spline, p1 = p2 = 2, (n1 + 1)× (n2 + 1) = 64× 8.

For the sake of completeness, the trend of the two first eigen-frequencies
is represented in Fig. 17 for problems P1, P2 and P3. The graphs are related
to the NURBS solution with 96×12 control points and degree 2. Each trend
is consistent with the related objective function.
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Figure 17: Eigen-frequencies trends - NURBS solution, 96× 12 control points, degree 2.

5.2.4. Solutions of P4

The dynamic compliance is computed for both the density-map solution
and for the iso-level solution. A synthetic overview of results is given in
Fig. 18. The related optimised configurations are shown in Figs. B.7-B.8.
The reference dynamic compliance is cdyn−ref = 17.164 Nmm.

Two aspects deserve a particular attention: firstly, there are several solu-
tions (NURBS and B-Spline) identified by different cdyn of the density map
solutions and by an almost identical cdyn of the iso-level solutions. All of them
are actually equivalent also in terms of topologies. An example is provided
here below in Fig. 19. Secondly, one configuration is not on the conservative
part of the domain on the graph of Fig. 18. In fact, the iso-level solution
obtained by means of a B-Spline with 64× 8 control points and degrees 3 is
not only the less efficient, but it is also less performing than the respective
density-map solution, as highlighted by Fig. 20.
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Figure 18: Summary of solutions of P4.

(a) Density map, cdyn = 4.0228 Nmm. (b) Iso-level solution, cdyn = 3.4572
Nmm.

Figure 19: Solution of P4. NURBS, p1 = p2 = 2, (n1 + 1)× (n2 + 1) = 96× 12.

(a) Density map, cdyn = 5.1502 Nmm. (b) Iso-level solution, cdyn = 5.1743
Nmm.

Figure 20: Solution of P4. B-Spline, p1 = p2 = 3, (n1 + 1)× (n2 + 1) = 64× 8.

5.3. Numerical results for benchmark BK2

In this subsection, the algorithm is applied to benchmark BK2. The
solutions of the four problems discussed in this paper are reported in terms
of density-map solutions and illustrated in Fig. 21 (NDRs are highlighted in
red). All solutions have been obtained by the means of a NURBS surface
with (n1 + 1)× (n2 + 1) = 32× 32 and p1 = p2 = 2. The physical quantities
related to the optimal configurations are given in the captions of the sub-
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figures together with the values of the reference quantities. As far as the
problem P3 is concerned, the first four eigen-frequencies are considered to
evaluate ω.

(a) P1, ωref = 14.9493 Hz, ω1 =
23.1018 Hz.

(b) P2, ∆ωref = 220.98 Hz, ∆ω =
404.60 Hz.

(c) P3, ωref = 192.87 Hz, ω =
333.03 Hz.

(d) P4, cdyn−ref = 2609 Nmm,
cdyn = 877, 75 Nmm.

Figure 21: Solutions of benchmark BK2 obtained through a NURBS, (n1+1)× (n2+1) =
32× 32, p1 = p2 = 2.
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5.4. Numerical results for benchmark BK3

In this section, results related to benchmark BK3 are shown. The versa-
tility and the effectiveness of the proposed algorithm are proven by solving
all the optimisation problems P1, P2, P3 and P4. Numerical and qualitative
results are provided Figs. 22-25. All solutions have been carried out by using
a B-spline hyper-surface ((n1 + 1) × (n2 + 1) × (n3 + 1) = 60 × 10 × 20,
p1 = p2 = 2). Since shapes and topologies of 3D optimised structures are not
straightforward to show, two views have been proposed for each problem. In
the case of P3, ω = 1/2(ω1 + ω2).

(a) View 1, (b) View 2,

Figure 22: Solutions of P1 on benchmark BK3 obtained through a B-Spline, (n1 + 1) ×
(n2 + 1)× (n3 + 1) = 60× 10× 20, p1 = p2 = 2, ωref = 185.2 Hz, ω1 = 805.47 Hz.

(a) View 1, (b) View 2,

Figure 23: Solutions of P2 on benchmark BK3 obtained through a B-Spline, (n1 + 1) ×
(n2 + 1)× (n3 + 1) = 60× 10× 20, p1 = p2 = 2, ∆ωref = 269.65 Hz, ∆ω = 897.382 Hz.
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(a) View 1, (b) View 2,

Figure 24: Solutions of P3 on benchmark BK3 obtained through a B-Spline, (n1 + 1) ×
(n2 + 1)× (n3 + 1) = 60× 10× 20, p1 = p2 = 2, ωref = 632.55 Hz, ω = 1017.52 Hz.

(a) View 1, (b) View 2,

Figure 25: Solutions of P4 on benchmark BK3 obtained through a B-Spline, (n1 + 1) ×
(n2 + 1) × (n3 + 1) = 60 × 10 × 20, p1 = p2 = 2, cdyn−ref = 63.288 Nmm, cdyn = 10.4
Nmm.

6. Conclusions

This work has shown that TO problems related to structural dynam-
ics can be successfully integrated in an innovative SIMP algorithm based
on NURBS entities. In particular, this paper focuses on solving TO prob-
lems involving eigen-frequencies and the dynamic compliance. The proposed
method exploits both the versatility of NURBS entities and the robustness
of the standard finite element method. If compared to IGA, the presented al-
gorithm does not need any ad hoc routines to evaluate mechanical responses
and it can be easily interfaced with whatever FE software. Meanwhile, the
combination of both the NURBS local support property and the classical
functional derivatives allows for carrying out the analytical expression of the
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gradient of the objective function with respect to the new sets of design vari-
ables, i.e. the pseudo-density at the control points and the related weights.

The following main points need to be highlighted:

• The new NURBS formalism does not introduce any limitation: eigen-
frequencies and dynamic compliance can be easily taken into account
to perform TO analyses in 2D and in 3D. Well-known numerical issues
characterising eigen-values problems in density-based TO algorithms
(spurious modes, mode switching) can be handled by using classical
techniques.

• Two main advantages of the NURBS formalism can be clearly identi-
fied: when compared to the classical SIMP approach, the number of
design variables is reduced, whilst a filter to avoid the checker-board ef-
fect is automatically and implicitly provided through the local support
of the NURBS blending functions and the CAD reconstruction phase
is straightforward.

• A sensitivity analysis of the optimised topology to the NURBS discrete
parameters has been performed. Results confirm that an enhanced
parametrisation allows for better performances. However, an excellent
trade-off between computational cost and effectiveness of the final so-
lution can be achieved by using a number of design variables equal to
a half of the number of the mesh elements.

• The comparison of density-map solutions to the iso-level counterparts
reveals that the NURBS-based algorithm provides conservative and
consistent solutions. This means that the performances of the actual
structure reassembled in the CAD environment are better than those
of the related density-map solution and that the equality constraint on
the volume is systematically fulfilled on both the density map solution
and on the iso-level solution.

As far as prospects are concerned, this paper is far from being exhaustive
on the topic of dynamics in TO. As a first step, the NURBS-based approach
should be applied to trickier problems, involving transient responses. More-
over, the TO algorithm based on NURBS entities should be extended in or-
der to take into account requirements related to impact dynamics (both high

36



speed and ballistic regimes). An interesting prospect of this study consists of
further exploiting the potential of the NURBS formulation in order to avoid
some numerical issues related to dynamics. Particularly, the NURBS formal-
ism could allow for precisely tracking the boundary of the optimised structure
(like in the LSM). Therefore, the weak phase causing spurious modes would
be suppressed and TO would be carried out in an easier way. The crucial
condition to take these advantages consists of setting up an effective strategy
to update the underlying mesh according to the evolution of the NURBS
boundary. Research is ongoing on these aspects.
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Appendix A: Expression of the gradient of dynamic responses

The gradient of the i-th eigen-frequency with respect to the pseudo-
density field evaluated at the element centroid, i.e. ∂ωi

∂ρe
, is derived here below.

To this purpose, the following relation is inferred from Eq. (12):

ψT
i

(
K− ω2

iM
)
ψi = 0. (A.1)

Therefore, Eq. (A.1) is derived with respect to the generic element pseudo-
density:

∂ψT
i

∂ρe
(K− ω2

iM)ψi +ψ
T
i

∂ (K− ω2
iM)

∂ρe
ψi+

+ψT
i (K− ω2

iM)
∂ψi

∂ρe
= 0.

(A.2)

Taken into account the symmetry of the matrices K and M and considering

the original Eq. (12), the derivatives
∂ψT

i

∂ρe
and ∂ψi

∂ρe
multiply identically null

arrays. Consequently Eq. (A.2) simplifies into

ψT
i

∂ (K− ω2
iM)

∂ρe
ψi = 0, (A.3)

that can be expanded as

ψT
i

∂K

∂ρe
ψi − 2ωi

∂ωi

∂ρe
ψT

i Mψi − ω2
iψ

T
i

∂M

∂ρe
ψi = 0. (A.4)

Moreover, the strain energy and the kinetic energy of the structure vi-
brating at ωi can be defined as

ǫ
(i)
tot =

1

2
ψT

i Kψi =
Ne∑

e=1

ǫ(i)e =
Ne∑

e=1

1

2
ψT

i Keψi, (A.5)

and

κ
(i)
tot =

ω2
i

2
ψT

i Mψi =

Ne∑

e=1

κ(i)
e =

Ne∑

e=1

ω2
i

2
ψT

i Meψi, (A.6)

respectively. In the light of Eqs. (14)-(15), it is straightforward to arrange
Eq. (A.4) and to obtain

4κi
tot

ωi

∂ωi

∂ρe
=

∂fω
∂ρe

1

fω
ψT

i Keψi −
1

ρe
ω2
iψ

T
i Meψi. (A.7)

38



Finally, the gradient of the i-th eigen-frequency can be expressed as

∂ωi

∂ρe
=

ωi

2κi
tot

(
∂fω
∂ρe

1

fω
ǫie −

1

ρe
κi
e

)
, e = 1, . . . , Ne. (A.8)

By following a similar procedure, the expression of
∂cdyn
∂ρe

can be easily
inferred. The first step is

∂

∂ρe

(
cdyn

cdyn−ref

)2

= 2
cdyn

c2dyn−ref

∂cdyn
∂ρe

. (A.9)

The term
∂cdyn
∂ρe

appearing in Eq. (A.9) can be evaluated by the definition of
cdyn:

∂cdyn
∂ρe

=
∂

∂ρe

(
fTd

)
= fT

∂d

∂ρe
. (A.10)

In Eq. (A.10), it has been assumed that the vector of external harmonic
loads does not depend on the element density. By differentiating the state
equation (13), one obtains

(
∂K

∂ρe
− Ω2∂M

∂ρe

)
d+

(
K− Ω2M

) ∂d

∂ρe
= 0. (A.11)

It is straightforward to show, by combining Eq. (A.11) with Eq. (A.10), that

∂cdyn
∂ρe

= −dT

(
∂K

∂ρe
− Ω2∂M

∂ρe

)
d, (A.12)

and, recalling Eqs. (14)-(15), the final expression of the derivative of the
square of the dynamic compliance with respect to the element density is

∂

∂ρe

(
cdyn

cdyn−ref

)2

= −4
cdyn

c2dyn−ref

(
∂fω
∂ρe

1

fω
ǫe −
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κe

)
, e = 1, ..., Ne. (A.13)
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Appendix B: Complete set of results on benchmark BK1

(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ω1 = 4.3794 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 + 1) = 64× 8, ω1 = 4.9681 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ω1 = 4.3675 Hz.
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(d) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 80× 10, ω1 = 5.1602 Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ω1 = 4.5494 Hz.
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(f) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 96× 12, ω1 = 5.1534 Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ω1 = 4.2349 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 64× 8, ω1 = 4.9867 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ω1 = 4.2242 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 80× 10, ω1 = 4.5909 Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ω1 = 4.4009 Hz.
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(l) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 96× 12, ω1 = 5.1555 Hz.

Figure B.1: B-Spline solutions of P1.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ω1 = 4.5172 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 + 1) = 64× 8, ω1 = 5.1558 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ω1 = 4.7126 Hz.
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(d) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 80× 10, ω1 = 5.2362 Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ω1 = 4.8541 Hz.
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(f) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 96× 12, ω1 = 5.2705 Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ω1 = 4.3272 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 64× 8, ω1 = 4.9272 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ω1 = 4.5569 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 80× 10, ω1 = 5.2087 Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ω1 = 4.7226 Hz.
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(l) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 96× 12, ω1 = 5.2604 Hz.

Figure B.2: NURBS solutions of P1.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ∆ω = 12.5085 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2+1) = 64×8, ∆ω = 12.8936 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ∆ω = 12.6882 Hz.

0 100 200 300 400 500 600 700 800
0

50

100

(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, ∆ω = 12.8798
Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ∆ω = 12.7687 Hz.

0 100 200 300 400 500 600 700 800
0

50

100

(f) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 96 × 12, ∆ω = 12.9742
Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ∆ω = 12.1551 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2+1) = 64×8, ∆ω = 12.7451 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ∆ω = 12.5452 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 80 × 10, ∆ω = 12.8118
Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ∆ω = 12.6596 Hz.
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(l) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2+1) = 96×12, ∆ω = 12.927 Hz.

Figure B.3: B-Spline solutions of P2.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ∆ω = 12.80633 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2+1) = 64×8, ∆ω = 12.9605 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ∆ω = 12.8812 Hz.
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(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, ∆ω = 13.0331
Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ∆ω = 12.934 Hz.
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(f) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 96 × 12, ∆ω = 13.0168
Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ∆ω = 12.6818 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2+1) = 64×8, ∆ω = 12.8858 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ∆ω = 12.817 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 80 × 10, ∆ω = 12.9993
Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ∆ω = 12.871744 Hz.

0 100 200 300 400 500 600 700 800
0

50

100

(l) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 96 × 12, ∆ω = 13.0357
Hz.

Figure B.4: NURBS solutions of P2.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ω = 9.41785 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 + 1) = 64× 8, ω = 9.93755 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ω = 9.5944 Hz.
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(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, ω = 10.01165
Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ω = 9.53065 Hz.
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(f) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 96× 12, ω = 9.96075 Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ω = 9.15945 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 64× 8, ω = 9.96765 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ω = 9.45955 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 80× 10, ω = 9.9793 Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ω = 9.5984 Hz.
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(l) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 96× 12, ω = 10.005 Hz.

Figure B.5: B-Spline solutions of P3.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, ω = 9.7527 Hz.
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(b) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 + 1) = 64× 8, ω = 10.0482 Hz.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, ω = 9.7233 Hz.
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(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, ω = 10.02585
Hz.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, ω = 9.7758 Hz.
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(f) Iso-level solution, p1 = p2 = 2, (n1 +
1)× (n2 +1) = 96× 12, ω = 10.0388 Hz.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, ω = 9.65795 Hz.
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(h) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 + 1) = 64× 8, ω = 10.0633 Hz.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, ω = 9.76615 Hz.
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(j) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 80× 10, ω = 10.0527 Hz.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, ω = 9.7374 Hz.
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(l) Iso-level solution, p1 = p2 = 3, (n1 +
1)× (n2 +1) = 96× 12, ω = 10.0388 Hz.

Figure B.6: NURBS solutions of P3.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, cdyn = 4.8948 Nmm.

(b) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 64 × 8, cdyn = 3.5396
Nmm.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, cdyn = 4.4921 Nmm.

(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, cdyn = 3.5336
Nmm.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, cdyn = 4.2427 Nmm.

(f) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 96 × 12, cdyn = 3.4876
Nmm.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, cdyn = 5.1502 Nmm.

(h) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 64 × 8, cdyn = 5.1743
Nmm.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, cdyn = 4.7506 Nmm.

(j) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 80 × 10, cdyn = 3.5725
Nmm.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, cdyn = 4.4555 Nmm.

(l) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 96 × 12, cdyn = 3.4717
Nmm.

Figure B.7: B-Spline solutions of P4.
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(a) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 64× 8, cdyn = 4.4440 Nmm.

(b) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 64 × 8, cdyn = 3.9313
Nmm.

(c) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 80× 10, cdyn = 4.1928 Nmm.

(d) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 80 × 10, cdyn = 3.4658
Nmm.

(e) Density map, p1 = p2 = 2, (n1 + 1) ×
(n2 + 1) = 96× 12, cdyn = 4.0228 Nmm.

(f) Iso-level solution, p1 = p2 = 2, (n1 +
1) × (n2 + 1) = 96 × 12, cdyn = 3.4572
Nmm.

(g) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 64× 8, cdyn = 4.6973 Nmm.

(h) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 64 × 8, cdyn = 3.9800
Nmm.

(i) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 80× 10, cdyn = 4.4297 Nmm.

(j) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 80 × 10, cdyn = 3.4842
Nmm.

(k) Density map, p1 = p2 = 3, (n1 + 1) ×
(n2 + 1) = 96× 12, cdyn = 4.2048 Nmm.

(l) Iso-level solution, p1 = p2 = 3, (n1 +
1) × (n2 + 1) = 96 × 12, cdyn = 3.4592
Nmm.

Figure B.8: NURBS solutions of P4.
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