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This study presents an original metamodelling technique based on Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces. The proposed approach is able to t general nonconvex sets of target points (TPs) by extending the NURBS formalism to the N-dimensional (N-D) case. The shape of such a hyper-surface is tuned by several parameters: the number of control points (CPs), their coordinates and the related weights, the degrees of the blending functions and the knot-vector components dened along each direction. The goal of the proposed strategy is to automatically determine (i.e. without the user's intervention) the full set of parameters dening the NURBS hyper-surface approximating a given set of TPs, without considering simplifying hypotheses. To this purpose, the problem is formulated as a constrained nonlinear programming problem (CNLPP) wherein the optimization variables are all the parameters tuning the shape of the NURBS hyper-surface. Nevertheless, when the number of CPs and the degrees of the basis functions are included among the design variables, the resulting problem is dened over a space having a changing dimension. This problem is solved by means of an original genetic algorithm able to determine, simultaneously, the optimum value of both the design space size (related to the integer variables of the NURBS hyper-surface) and the NURBS hyper-surface continuous parameters. The eectiveness of the proposed approach is shown by means of two meaningful test case. In addition, the proposed method has been applied to a benchmark taken from the literature and the results have been compared to those provided by the PGD approach.

Introduction

The computer performances signicantly increased over the last two decades mainly due to the enhancement of the number of processors transistors. Although these performances are widely used to improve simulation complexity, there are still many scientic and engineering problems that remain intractable because either of their numerical complexity or their peculiar requirements, such as real-time processing. This is the case of inverse problems (and, in a more general sense, of all optimization problems), which need to compute the outputs of a model a huge number of times, or the case of deployed platforms, such as virtual and / or augmented reality, or on-line control of Multiple-Input Multiple-Output (MIMO) systems, that require real-time processing capabilities. To deal with this kind of problems, metamodelling techniques (also called surrogate modelling techniques) are well-established methods, which allow reducing the computational costs, without degrading too much the accuracy level required for the problem at hand. The metamodelling process consists of dening a suitable surrogate model requiring less resources to be executed than the original model from which it is obtained. The meaning of resources depends on the problem at hand. As an example, image reduction aims to reduce the number of data needed to evaluate the metamodel [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF], while a metamodel used within an optimization process aims to reduce the computatonal eort (i.e. the elapsed time) to evaluate the outputs for a given set of inputs [START_REF] Wang | Review of Metamodeling Techniques in Support of Engineering Design Optimization[END_REF][START_REF] Bisagni | Post-buckling optimisation of composite stiened panels using neural networks[END_REF]. It is noteworthy that all current methods need a calibration phase that is excluded when evaluating the overall computational eort. For some complex real-world engineering problems, the calibration step can require a huge amount of time: in these circumstances the engineer should carefully evaluate the opportunity of formulating a metamodel. Consider a MIMO system characterized by N inputs and M outputs dened as:

R N → R M z : x → z(x), (1) 
where x = x (1) , . . . , x (N ) is the vector collecting the N inputs of the system and z(x) = z (1) (x), . . . , z (M ) (x) is the transfer function of the MIMO system containing the M outputs. In some cases, this function may be completely known but, for real-world engineering problems, this is not always true. From a mathematical viewpoint, the metamodelling process consists of determining a function ẑ(x) that needs less resources to be evaluated than z(x):

R N → R M ẑ : x → ẑ(x) = z(x) + ε(x), (2) 
where ẑ(x) is the function approximating the real transfer function z(x) and ε(x) is the approximation error at point x. The function ε(x) is a bounded function, whose bounds are linked to the desired accuracy.

Metamodelling strategies can be classied into a priori and a posteriori methods. The only known a priori method is the Proper Generalised Decomposition (PGD) that builds a surrogate model without the need of a database resulting from the original model [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF]. However, to achieve this task, a suitable mathematical formulation of the problem at hand is needed. This approach is based on a separated representation of the space: the basis functions are iteratively enhanced by adding terms until a given accuracy is reached [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF][START_REF] Myers | Response Surface Methodology: Process and Product Optimization Using Designed Experiments[END_REF]. This method has been successfully applied to inverse problems [START_REF] Ammar | Solving parametric complex uids models in rheometric ows[END_REF], to composite damage prediction [812], to structural optimization problems [START_REF] Ammar | Parametric solutions involving geometry: A step towards ecient shape optimization[END_REF][START_REF] Leygue | A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization[END_REF] and also to quantum chemical problems [START_REF] Chinesta | On the use of proper generalized decompositions for solving the multidimensional chemical master equation[END_REF], by overcoming the so-called curse of dimensionality. Despite the wide range of applications, the main limitations of this approach are essentially four: (a) the user must dene a discretization of the space and the nature of the basis functions, as well; (b) an interpolation (or approximation) technique must be foreseen to get the values that are not in the discretization step (which are generally evaluated with an accuracy worse than that aecting those falling into the discetization step); (c) in relation to the previous point, PGD gives less accurate results for nonlinear problems; (d) inasmuch as PGD is based upon variable separation, it is not suited for non-convex sets of data points.

Among the a posteriori metamodelling techniques, the Proper Orthogonal Decomposition (POD) [START_REF] Berkooz | The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows[END_REF][START_REF] Chatterjee | An introduction to the proper orthogonal decomposition[END_REF] and the kriging [1820] are the most common methods available in the literature. POD aims to provide a reduced order problem of dimension K, by solving an eigenvalue problem and by keeping only the most representative modes of the original problem of dimension M K [START_REF] Chatterjee | An introduction to the proper orthogonal decomposition[END_REF][START_REF] Iuliano | Proper Orthogonal Decomposition, surrogate modelling and evolutionary optimization in aerodynamic design[END_REF]. The most representative eigenvalues are set by means of a suitable criterion and the method can automatically t the given data. This approach is massively employed in computational uid dynamics problems [START_REF] Berkooz | The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows[END_REF]2128], but it has also been used in inverse problems [START_REF] Banks | Nondestructive evaluation using a reduced-order computational methodology[END_REF][START_REF] Hamim | Proper Orthogonal DecompositionRadial Basis Function Surrogate Model-Based Inverse Analysis for Identifying Nonlinear Burgers Model Parameters From Nanoindentation Data[END_REF] and pattern recognition [START_REF] Fukunaga | Introduction to Statistical Pattern Recognition[END_REF]. The main limitation is that the online phase is related to the inversion of matrix of dimension K, which can be costly even if K M . Kriging [START_REF] Krige | A statistical approach to some basic mine valuation problems on the Witwatersrand[END_REF], is known as the best unbiased linear predictor and has been developed by Matheron [33,[START_REF] Matheron | Le krigeage disjonctif[END_REF]. Initially developed in the framework of geostatistics, the basis of this approach is to consider the spatial dependency structure of the data. One of the rst applications of kriging is related to the well-known Design and Analysis of Computer Experiments (DACE) [START_REF] Martin | On the Use of Kriging Models to Approximate Deterministic Computer Models[END_REF]3537], which focuses on the covariance computation by means of an user-dened Spatial Correlation Function (SCF). Although kriging is known to be an unbiased method because no bias is introduced during the computation, it must be stressed that some bias is inevitably introduced when the user must sets the SCF parameters. As far as the choice of the SCF is concerned, two approaches are used: cross validation and maximum likelihood that may require a big amount of time for the calibration phase of the surrogate model when the number of data points becomes important. Moreover, this method is not able to reduce the number of data points and the on-line phase requires the inversion of a matrix, whose size is directly linked to the number of data points. These limitations made this method suitable for small sets of data points.

Currently, Radial Basis Functions (RBFs) [START_REF] Buhmann | Radial basis functions[END_REF][START_REF] Viennet | Réseaux à fonctions de base radiales[END_REF] and Articial Neural Networks (ANNs) [START_REF] Yegnanarayana | [END_REF][START_REF]Applications of Mathematics in Models, Articial Neural Networks and Arts[END_REF] are the only methods able to deal with problems characterized by hundreds of inputs. In particular, ANNs have been used to build surrogate models in optimization of microwave circuits [START_REF] Rayas-Sanchez | EM-Based Optimization of Microwave Circuits Using Articial Neural Networks: The State-of-the-Art[END_REF], predictions on water salinity concentrations due to groundwater extraction [START_REF] Sreekanth | Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models[END_REF], or injection molding process simulations [START_REF] Shi | Optimization of injection molding process parameters using integrated articial neural network model and expected improvement function method[END_REF]. The main limitations characterizing ANNs are mainly related to their intrinsic algorithmic complexity. Three steps are necessary to build an ANN: selecting the function to include (i.e. the number and the nature of neurons); selecting the neural architecture (i.e. the number of layers and the number of neurons within each layer); and training the ANN (i.e. the calibration phase, that is called learning step in the case of ANN). These tasks are anything but trivial and, even if some rules are proposed in the literature to nd an appropriate neural architecture [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF], they are mostly based on trial and error approaches that increase the time needed for the learning phase. Some nonlinear optimization methods exist to nd the ANN parameters, but the solution is not unique and strongly problem-dependent [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF]. Moreover, ANNs can suer from the over-tting phenomenon [START_REF] Myers | Response Surface Methodology: Process and Product Optimization Using Designed Experiments[END_REF].

As a general remark, setting the number and the value of the parameters tuning the behaviour of classical metamodelling techniques could be a quite dicult task, which often needs a trial-and-error approach. For instance, improving arbitrarily the number of layers and/or neurons for ANNs, or improving the modes number for PGD, can lead to overtting.

The metamodelling approach proposed in this study relies on the utilisation of Mdimension (M -D) Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces, dened on an a N -D parametric space, to t a given set of data points, also called target points (TPs). Up to now, only few research works focus on the formulation/implementation of surrogate models based on the NURBS formalism [4749]. NURBS curves and surfaces are standard geometrical entities widely used in Computer Aided Design (CAD) software [START_REF] Farin | Curves and Surfaces for CAGD[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF]. This particular feature made them of particular interest in the eld of shape optimization, known as isogeometric shape optimization [5255]. NURBS hyper-surfaces represent a generalisation of these entities. A NURBS hyper-surface is dened through the number of dimensions (related to the size of the problem at hand), the degree of blending-functions along each dimension, the overall number of control points (CPs), the coordinates of each CPs and the related weights, the knot vector components along each dimension. The large number of parameters tuning the shape of a NURBS hyper-surface makes it a versatile tool for many mathematical and engineering applications, not only for formulating surrogate models [5663]. However, the signicant amount of parameters dening the NURBS hyper-surface shape also constitutes its main drawback: it is very hard to properly tune all these parameters without making some simplifying assumptions or preliminary choices, as done in [4749]. Up to now, hyper-surface tting problems are solved by means of iterative procedures generalising those used in the surface tting framework [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF]. These procedures can be grouped into two categories. On the one hand, some procedures start from a minimal number of (CPs), which is iteratively increased until the algorithm reaches a given accuracy. On the other hand, some procedures make use of the opposed approach, i.e. they start from the maximum allowable number of CPs, which are iteratively removed without degrading too much (i.e. within reasonable limits) the desired accuracy.

To go beyond the aforementioned restrictions, the metamodelling approach based on NURBS hyper-surfaces is here coupled with a special genetic algorithm (GA) [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF][START_REF] Montemurro | Optimal design of advanced engineering modular systems through a new genetic approach[END_REF] able of determining both the number and the value of the parameters aecting the NURBS hyper-surface shape, without introducing simplyng hypotheses or empirical rules to set the values of both integer and continuous variables. In particular, when the number of parameters is included among the unknowns, the hyper-surface tting problem can be formulated as a Constrained NonLinear Programming Problem (CNLPP) dened over a space , whose dimension is included among the variables of the problem at hand. Of course, when dealing with such a problem, a particular care must be put in the choice of the proper numerical tool to perform the solution search. To this purpose, in this study, the ERASMUS code (EvolutionaRy Algorithm for optimiSation of ModUlar Systems) [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF], which is able to deal with problems characterized by a variable number of design variables, is used as an optimization tool. The eectiveness of the proposed approach is illustrated through two meaningful benchmarks.

The paper is organized as follows: the theoretical framework of NURBS hyper-surfaces and the literature survey on NURBS entities used to build metamodels are presented in Section 2. The mathematical formulation of the CNLPP is given in Section 3, while the hybrid optimization tool used to perform the solution search is briey presented in Section 4. Numerical results on two benchmarks are shown in Section 5, whilst Section 6 ends the paper with some concluding remarks and prospects.

A NURBS-based surrogate model

The NURBS hyper-surfaces theory

The fundamentals of NURBS entities are briey provided in the most general case of NURBS hyper-surfaces. Curves and surfaces formulae, widely discussed in [START_REF] Farin | Curves and Surfaces for CAGD[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF][START_REF] Bézier | Courbes et surfaces[END_REF][START_REF] De Boor | A Practical Guide to Splines[END_REF], can be easily deduced from the following relations. A NURBS hyper-surface is a polynomial-based function (H : R N → R M ), dened over a parametric space (domain), taking values in the NURBS space (codomain). The mathematical formula of a generic NURBS hyper-surface is

H u (1) , ..., u (N ) = n 1 i 1 =0 • • • n N i N =0 N k=1 N i k ,p k u (k) × ω i 1 ,...,i N P i 1 ,...,i N n 1 j 1 =0 • • • n N j N =0 ω j 1 ,...,j N N k=1 N j k ,p k u (k) , (3) 
where H u (1) , ..., u (N ) is a M -dimension vector-valued rational function, u (1) , ..., u (N ) are scalar dimensionless parameters dened in the interval [0, 1], whilst P i 1 ,...,i N are the so called control points and ω i 1 ,...,i N are the associated weights. The j-th control point coordinate (P (j) i 1 ,...,i N ) is stored in the array P (j) , whose dimension is

(n 1 +1)ו • •×(n N +1
). The explicit expression of control points coordinates in R M is:

P i 1 ,...,i N = {P (1)
i 1 ,...,i N , . . . , P (M ) i 1 ,...,i N },

P (j) ∈ R (n 1 +1)ו••×(n N +1) , j = 1, . . . , M. (4) 
In Eq. ( 3), N i k ,p k (u (k) ) is the k-th blending function of degree p k [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF] recursively determined as follows:

N i k ,0 u (k) = 1 if U (k) i k ≤ u (k) < U (k) i k +1 , 0 otherwise, N i k ,q u (k) = u (k) -U (k) i k U (k) i k +q -U (k) i k N i k ,q-1 u (k) + U (k) i k +q+1 -u (k) U (k) i k +q+1 -U (k) i k +1 N i k +1,q-1 u (k) , q = 1, ..., p k . ( 5 
)
where each constitutive blending function is dened on the knot vector

U (k) =    0, • • • , 0 p k +1 , U (k) p k +1 , • • • , U (k) m k -p k -1 , 1, • • • , 1 p k +1    , (6) 
whose dimension is m k + 1, with

m k = n k + p k + 1. (7) 
For more details on NURBS hyper-surfaces the reader is addressed to [START_REF] Costa | NURBS hyper-surfaces for 3D topology optimization problems[END_REF][START_REF] Rodriguez | Structural displacement requirement in a topology optimization algorithm based on isogeometric entities[END_REF].

NURBS hyper-surfaces as metamodels: a brief literature survey

The rst attempt of using NURBS hyper-surfaces to formulate suitable metamodels goes back to the works of Turner [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Steuben | Inverse characterization of composite materials via surrogate modeling[END_REF]. In particular, in [START_REF] Steuben | Inverse characterization of composite materials via surrogate modeling[END_REF] a NURBS-based surrogate model used in the framework of the characterization of composite material properties is presented. In this background, Turner and Crawford developed an iterative procedure for the hyper-surface tting problem focusing on the determination of a suitable number of CPs for the NURBS hyper-surface. However, the method proposed by Turner and Crawford is based upon an empirical rule to determine the position of new CPs that are added on the basis of the value of the cost function of the problem at hand (typically the maximum approximation error). Indeed, their approach is characterized by some restrictions:

• the degrees of the NURBS blending functions are set a priori;

• the knot vectors components are uniformly distributed or calculated by means of simple empirical rules;

• the weights are evaluated through empirical formulae and only for those CPs whose local support contains TPs aected by a relative error greater than a given threshold.

Of course, these empirical rules (and the parameters tuning the behaviour of the related formulae) are strongly problem-dependent and the user must have a deep knowledge of the problem at hand and of the NURBS hyper-surfaces fundamentals, as well.

In this paper, a dierent approach is used to build the surrogate model based on a NURBS hyper-surface for approximating the behaviour of a MIMO system. The proposed method aims to provide the function ẑ(x), approximating the real transfer function z(x) of the MIMO system, as follows:

E = x (1) min , x (1) max × . . . × x (N ) min , x (N ) max → R M ẑ : x → H (f (x)) . (8) 
where x = x (1) , . . . , x (N ) is the vector collecting the N inputs of the system, H (f (x)) = X (1) (x), . . . , X (M ) (x) is the vector containing the M approximated outputs and f (x) is a bijective function realising the mapping of the space E into the parametric domain [0, 1] N of the NURBS hyper-surface, i.e.

E → [0, 1] N f : x → f (X) = f (1) X (1) , . . . , f (N ) X (N ) = u, (9) 
where u = u (1) , . . . , u (N ) are the parametric coordinates of the NURBS hyper-surface related to the inputs x and f (k) x (k) are the bijective functions dened as,

x

→ [0, 1] f (k) : x (k) → f (k) x (k) = x (k) -x (k) min x (k) max -x (k) min = u (k) , k = 1, ..., N. (k) min , x (k) max 
Here the goal is to formulate a surrogate model based on NURBS entities without introducing neither simplifying hypotheses nor empirical rules to set all the parameters aecting the shape of the NURBS hyper-surface. Only in this way, it is possible to implement a problem-independent metamodelling strategy: this point constitutes the kernel of the proposed approach.

As explained in the Section 3, this ambitious goal can be achieved through a pertinent formulation of the metamodel generation problem. Such a problem is formulated as a constrained hyper-surface tting problem and the surrogate model based on NURBS hypersurfaces is eciently coupled to a special GA [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF][START_REF] Montemurro | Optimal design of advanced engineering modular systems through a new genetic approach[END_REF] able of determining both the number and the value of the parameters involved in the denition of the NURBS hyper-surface.

Problem formulation

Design variables

Eq. [START_REF] Bisagni | Post-buckling optimisation of composite stiened panels using neural networks[END_REF] shows that the parameters involved in the denition of a NURBS hyper-surface are of dierent nature:

• integer variables, like the number of both knot vector components and CPs, (m k + 1) and (n k + 1) respectively, as well as the degrees of the blending functions p k along each dimension;

• continuous variables, like internal knot vector values U (k)

p k +1 , ..., U (k) m k -p k -1 , CPs co- ordinates P i 1 ,...,i N , weights ω i 1 ,...,i N and the dimensionless parameters u (k)
s at which the NURBS hyper-surface is evaluated. Some of these parameters are interdependent, whereas other can be smartly chosen. In particular, as far as the dimensionless parameters are concerned, i.e. u (k) s , they are obtained by applying Eq. ( 10) to the inputs of the MIMO for each TP, i.e.

u (k) s = x (k) s -x (k) min x (k) max -x (k) min , k = 1, . . . , N, s = 1 . . . , n T P , (11) 
where n T P is the overall number of TPs. Therefore, the NURBS dimensionless parameters do not belong to the set of design variables. Moreover, the number of CPs along each parametric direction can be determined once the size of the knot vector and the degree of the blending functions along the same direction are known, according to Eq. ( 7). Accordingly, the number of CPs is excluded from the design variables vector.

The determination of the optimum value of CPs coordinates is carried out by a dedicated algorithm. In particular, when the size of the knot vector as well as its internal components along each direction are known, if the degree of the blending functions (along each direction) is given and if the values of u (k) s have been computed by means of Eq. ( 11), nding the optimum value of the CPs coordinates is a quite trivial task. Indeed, the NURBS hyper-surface tting problem is convex in terms of CPs coordinates. In the case of B-Spline hyper-surface tting, it can be shown that the optimum value of the CPs coordinates can be determined by generalizing the well-known surface tting algorithm A9.7, presented in [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF], to the N -D case. However, two cases must be considered. If TPs are collected into a sorted set, i.e.

Q sort : Q s 1 ,...,s N = Q (1) s 1 ,...,s N , . . . , Q (M ) s 1 ,...,s N , s k = 0, . . . , r k , k = 1, . . . , N , (12) 
the algorithm structure is very simple and it is illustrated in Fig 1 . In Eq.( 12), Q s 1 ,...,s N is the generic TP of the set and (r k + 1) is the number of TPs along the direction k. For the sake of brevity, it can be stated that the optimum value of CPs coordinates can be computed as a succession of curve tting problems along each direction. In particular, Fig.

1 highlights that temporary CP coordinates are recursively computed along each direction.

The nal CPs coordinates are stored in the array P. More details can be found in [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF].

When considering the tting in direction l, the size of the temporary CPs coordinates array P (l-1) is reduced from (r l + 1) to (n l + 1) in the next temporary CPs coordinates array P (l) . This is achieved by solving

(n 1 + 1) × • • • × (n l-1 + 1) × (r l+1 + 1) × • • • × (r N + 1)
times the following problem:

N T l N l P (l) i 1 ,...,i l-1 ,:,s l+1 ,...,s N = N T l P (l-1) i 1 ,...,i l-1 ,:,s l+1 ,...,s N , (13) 
where P (l) i 1 ,...,i l-1 ,:,s l+1 ,...,s N is the matrix collecting the temporary CPs coordinates at iteration l given by

P (l) i 1 ,...,i l-1 ,:,s l+1 ,...,s N =     P (l,1) i 1 ,...,i l-1 ,0,s l+1 ,...,s N • • • P (l,M ) i 1 ,...,i l-1 ,0,s l+1 ,...,s N . . . . . . . . . P (l,1) i 1 ,...,i l-1 ,n l ,s l+1 ,...,s N • • • P (l,M ) i 1 ,...,i l-1 ,n l ,s l+1 ,...,s N     , i k = 0, ..., n k , k = 1, ..., l -1 ; s k = 0, ..., r k , k = l + 1, ..., N, (14) 
whilst P (l-1) i 1 ,...,i l-1 ,:,s l+1 ,...,s N is the matrix collecting the temporary CPs coordinates at iter- 

P (l-1,1) i 1 ,...,i l-1 ,r l ,s l+1 ,...,s N • • • P (l-1,M ) i 1 ,...,i l-1 ,r l ,s l+1 ,...,s N     , i k = 0, ..., n k , k = 1, ..., l -1 ; s k = 0, ..., r k , k = l + 1, ..., N. (15) 
In Eq. ( 13), the matrix N l collects the B-Spline basis functions as follows

N l =      N 0,p l u (l) 0 • • • N n l ,p l u (l) 0 . . . . . . . . . N 0,p l u (l) r l • • • N n l ,p l u (l) r l      , l = 1, ..., N. (16) 
It is noteworthy that when l = 1, P

:,s 2 ,...,s N is directly given by the TPs coordinates (i.e. Q :,s 2 ,...,s N ), while P (N ) i 1 ,...,i N -1 ,: gives directly the CPs coordinates when l = N . The problem becomes more dicult when the TPs cannot be stored in a sorted set along each dimension. In particular, let L < N be the number of dimensions along which TPs cannot be arranged in a sorted set and (r L + 1) the number of the related TPs. In this case, which can be considered as a hybrid situation, the structure, of the algorithm is presented in Fig. 2. The main dierence is that the temporary values of CPs coordinates, at the rst iteration, are computed as a succession of L-D hyper-surface tting problems instead of curve tting problems. Fig. 2 shows that the rst temporary array of CPs coordinates P (L) reduces the size of the TPs set Q from (r L + 1) to

(n 1 + 1) × • • • × (n L + 1)
along the L rst directions. This implies to solve (r L+1 + 1) × • • • × (r N + 1) times the following problem

N T N P (L) :,...,:,s L+1 ,...,s N = N T Q :,s L+1 ,...,s N , (17) 
where P (L) :,...,:,s L+1 ,...,s N is the matrix collecting the temporary CPs coordinates at the rst iteration (i.e. the L-D hyper-surface) given by

P (L) :,...,:,s L+1 ,...,s N =     P (L,1) 0,...,0,s L+1 ,...,s N • • • P (L,M ) 0,...,0,s L+1 ,...,s N . . . . . . . . . P (L,1) n 1 ,...,n L ,s L+1 ,...,s N • • • P (L,M ) n 1 ,...,n L ,s L+1 ,...,s N     , s k = 0, ..., r k , k = L + 1, ..., N, (18) 
while Q :,s L+1 ,...,s N is the matrix of TPs coordinates:

Q :,s L+1 ,...,s N =     Q (1) 0,s L+1 ,...,s N • • • Q (M ) 0,s L+1 ,...,s N . . . . . . . . . Q (1) r L ,s L+1 ,...,s N • • • Q (M ) r L ,s L+1 ,...,s N     , s k = 0, ..., r k , k = L + 1, ..., N. (19) 
In Eq. ( 17), the matrix N collects the B-Spline basis functions products as follows

N =      N 0,p l u (l) 0 × • • • × N 0,p L u (L) 0 • • • N n l ,p l u (l) 0 × • • • × N n L ,p L u (L) 0 . . . . . . . . . N 0,p l u (l) r L × • • • × N 0,p L u (L) r L • • • N n l ,p l u (l) r L × • • • × N n L ,p L u (L) r L      . ( 20 
)
When the rst temporary CPs coordinates array P (L) is assessed, the algorithm of Fig. 2 computes the next temporary CPs coordinates array P (l) according to the strategy illustrated in Fig. 1. This results in a succession of curve tting problems, solving Eq. ( 13) for l = L + 1, ..., N . Note that the special case L = N implies to directly realize the hyper-surface tting which can be very costly when compared to the proposed algorithms.

Finally, for both cases, the independent parameters tuning the NURBS hyper-surface shape are:

• the N degrees p k ; • the N knot lengths m k + 1; • the m k -2p k -1 internal components of the knot vector U (k) , k = 1, ..., N ; • the n CP = N k=1 (n k + 1) weights ω i 1 ,...,i N .
These parameters are collected in the vector of design variables ξ as It is noteworthy that the number of independent parameters dening the NURBS hypersurface is given by the following equation

ξ = p 1 , . . . , p N , m 1 , . . . , m N , U (1) 
p 1 +1 , . . . , U (1) 
m 1 -p 1 -1 , . . . , U (N ) p N +1 , . . . , U (N ) m N -p N -1 , ω 0,...,0 , . . . , ω n 1 ,...,n N . (21)
n var = 2N + N k=1 (m k -2p k -1) + N k=1 (n k + 1) , (22) 
which depends upon the integer variables of the hyper-surface.

Problem formulation

The goal of the proposed approach is to obtain an optimized surrogate model based on NURBS hyper-surfaces. Therefore, a pertinent choice would be to formulate the metamodelling problem as a hyper-surface tting problem by minimizing the Euclidean distance (in M dimensions) between the NURBS hyper-surface and the set of TPs. Nevertheless, the main idea is to search for the best value of the parameters tuning the shape of the NURBS hyper-surface by optimizing the overall number of CPs (n CP ) and blending functions degrees, by keeping a sucient accuracy (according to the problem requirements). Of course, the number of CPs is related to the number of data needed to evaluate the outputs of the metamodel, whereas the blending function degrees are related to the processing time of the metamodel (recall that the NURBS blending functions are recursively evaluated according to Eq. ( 5)). Accordingly, the objective function is dened as:

Φ(ξ) = a N k=0 n k n kmax + (1 -a) N k=0 p k p kmax , ( 23 
)
where a is a suitable weighting coecient balancing the number of CPs and the NURBS hyper-surface processing time (via the degrees). As stated above, the idea is to obtain an optimized surrogate model minimizing the number of resources by ensuring a given level of accuracy. The requirement on the model accuracy can be formalized as:

ε (j) max (ξ) ≤ ε (j) th , j = 1, . . . , M, (24) 
where ε

(j)
th is the maximum relative error threshold related to the required accuracy for the j-th output of the surrogate model, whilst ε (j) max (ξ) is the maximum relative error for the NURBS hyper-surface, i.e.

ε (j) max (ξ) = max us ε (j) (u s ) , (25) 
where ε (j) (u s ) is the relative error at parametric coordinates u s = u

s , ..., u

(N ) s
given by

ε (j) (u s ) = |H (j) (u s ) -z (j) (x s ) | z (j) max -z (j) min , j = 1, . . . , M, s = 1, ..., n T P . (26) 
In Eq. ( 26), z (j) (x s ) is the j-th output of the s-th TP at inputs

x s = x (1) s , . . . , x (N ) s 
, while H (j) (u s ) is the j-th counterpart evaluated by the metamodel (i.e. the j-th coordinate of the NURBS hyper-surface) at the parametric coordinates u s = u The hyper-surface tting problem can be stated in the form of an unconventional CNLPP as:

min ξ Φ(ξ) = a N k=0 n k n kmax + (1 -a) N k=0 p k p kmax , subject to :              ε (j) max (ξ) ≤ ε (j) th , j = 1, . . . , M, 0 ≤ U (k) l k ≤ 1, l k = p k + 1, . . . , m k -p k + 1, k = 1, . . . , N, U (k) l k ≤ U (k) l k +1 , l k = p k + 1, . . . , m k -p k + 1, k = 1, . . . , N, n k -p k ≥ 0, k = 1, . . . , N, ω i 1 ,...,i N ≥ 0, i k = 0, . . . , n k . (27) 
Problem ( 27) is a non-standard CNLPP for dierent reasons. Firstly, unlike the methods available in the literature [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF], the proposed strategy aims at providing all the design variables ξ without introducing neither simplifying hypotheses nor empirical rules on the parameters involved in the NURBS hyper-surface denition. Secondly, the number of design variables is integrated into the design variables vector ξ and depends upon the integer parameters of the NURBS hyper-surface. As explained in [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF], the CNLPP ( 27) can be eciently stated as an optimization problem of modular systems belonging to different families. Generally speaking, a modular system is composed by elementary units, i.e. the modules. Each module is characterized by the same vector of unknowns, i.e. the design variables of the module, which can take, a priori, dierent values for every module (in the most general case of dierent modules). For problem [START_REF] Rempfer | Dynamics of three-dimensional coherent structures in a at-plate boundary layer[END_REF], two dierent classes of modules can be identied: the knot vector components and the weights. CNLPPs dealing with modular systems are unconventional because they are dened over a domain having a dimension which depends upon a linear combination of the integer variables characterizing the modular system. In particular, for problem [START_REF] Rempfer | Dynamics of three-dimensional coherent structures in a at-plate boundary layer[END_REF] the problem dimension is given by Eq. ( 22).

Numerical strategy

Considering the peculiar nature of problem ( 27) a hybrid optimization tool developed at I2M laboratory in Bordeaux and called HERO (Hybrid EvolutionaRy Optimization) has been developed. It is composed of a genetic algorithm ERASMUS (EvolutionaRy Algorithm for optimiSation of ModUlar Systems) [START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF], interfaced with active-set algorithm of MATLAB fmincon family, available in the MATLAB optimization toolbox [START_REF]Optimization Toolbox User's Guide[END_REF], see Fig. As shown in Fig. 3, the optimization procedure for problem [START_REF] Rempfer | Dynamics of three-dimensional coherent structures in a at-plate boundary layer[END_REF] is split in two phases. During the rst step, solely the GA ERASMUS is employed to perform the solution search and the full set of design variables is taken into account. ERASMUS is a special GA able to deal with optimization problems characterized by a non-constant number of design variables, and more specically, optimization problems of modular systems. This goal can be achieved thanks to the original representation of information in ERASMUS, i.e. the individual's genotype, which is organized in modular parts, each one composed of chromosomes which are in turn made of genes (each gene codes a specic design variable).

In agreement with the paradigms of natural sciences, individuals characterized by a dierent number of chromosomes (i.e. modular structures composed of a dierent number of modules) belong to dierent species. ERASMUS has been conceived for crossing also dierent species, thus making possible (and without distinction) the simultaneous optimization of species and individuals. This task can be attained thanks to some special genetic operators that have been implemented to perform the reproduction phase between individuals belonging to dierent species: the general architecture of ERASMUS is illustrated in Fig. 4. Accordingly, ERASMUS is able to optimize both the number of modules (for each class of modules) and the values of the design variables characterizing each module simultaneously. The eectiveness of ERASMUS has been shown on a large number of real-world engineering problems [5759, 7075]. Due to the strong nonlinearity of problem [START_REF] Rempfer | Dynamics of three-dimensional coherent structures in a at-plate boundary layer[END_REF], the aim of the genetic calculation is to provide a potential sub-optimal point in the design space, which constitutes the initial guess for the subsequent phase, i.e. the local optimization performed via the active-set algorithm. During this second phase, only the components of the knot vector along each dimension and the weights are considered as design variables, see Fig. 3. The second phase of HERO allows nding a local minimum for the number of parameters resulting from the rst GA exploration of the design space.

Meta-heuristic exploration

As stated above, when the number of internal knots and the degree along each parametric direction are included among the design variables, problem ( 27) is dened over a space of changing dimension. Moreover, this CNLPP is characterized by a large number of design variables. In particular, when all the weights are included into the design variables vector, the computational cost could become prohibitive. To this purpose, a dedicated strategy able to determine which weights should be integrated in the optimization process has been developed. This task is achieved by splitting the exploration of the design space into two steps. In the rst step, all weights are set to one, i.e. only B-Spline hyper-surfaces are used to t the set of TPs. Then, if the error threshold is no satised, the local support property [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF] of NURBS hyper-surfaces is used to assess the weights that must be integrated as design variables for the second step of the exploration. If the approximation error is satised after the rst step, all weights are kept equal to one and the B-Spline hypersurface obtained by ERASMUS is used as a starting point for the subsequent deterministic optimization.

Meta-heuristic exploration: rst step

In this rst step, all weights ω i 1 ,...,i N are set to one and only B-Spline entities are used to t the TPs. As a result, the CNLPP is stated as:

min ξ I Φ(ξ I ) = a N k=0 n k n kmax + (1 -a) N k=0 p k p kmax , subject to                      ε (j) max (ξ I ) ≤ ε (j) th , j = 1, . . . , M, 0 < U (k) l k < 1, l k = p k + 1, ..., m k -p k + 1, k = 1, ..., N, U (k) l k ≤ U (k) l k +1 , l k = p k + 1, ..., m k -p k , k = 1, ..., N, n k -p k ≥ 0, k = 1, ..., N, ω i 1 ,...,i N = 1, i k = 0, ..., n k , k = 1, ..., N. (28) 
The vector ξ I collects the optimization variables as follows,

ξ I = p 1 , . . . , p N , m 1 , . . . , m N , U (1) 
p 1 +1 , . . . , U (1) 
m 1 -p 1 -1 , . . . , U (N ) p N +1 , . . . , U (N ) m N -p N -1 . (29)
It is noteworthy that a B-Spline hyper-surface can be considered as a modular system, where m k and p k are standard design variables, whilst each knot vector U (k) represents the generic module, whose variables are

U (k) l k , l k = p k + 1, ..., m k -p k -1, k = 1, ..., N .
This system is thus composed of N modules corresponding to the N knot vectors of the B-Spline hyper-surface. The individual genotype of ERASMUS, for problem [START_REF] Mifsud | A high-delity low-cost aerodynamic model using proper orthogonal decomposition[END_REF], is given in Fig. 5, where n (k) c,l is the number of chromosomes of the k-th modular part (related to the knot vector U (k) ) of the l-th individual. This quantity corresponds to the number of internal components of the knot vector U (k) and is related to m k and p k by the following relation:

n (k) c,l = m k -2p k -1. (30) 
This step aims at setting up the number of optimization variables (i.e. the number of the NURBS hyper-surface parameters). Thus, the degrees p I k and the knot vector lengths m I k + 1 given by ERASMUS remain constant for the rest of the optimization process. Moreover, by means of the user-dened error threshold ε (j) th and the local support property of NURBS hyper-surfaces, the following set Ω can be dened

Ω = ω i 1 ,...,i N , i k = 0, ..., n k | ∃u s ∈ U ∩ S (i 1 ,...,i N ) , (31) 
where S (i 1 ,...,i N ) is the local support of control point P i 1 ,...,i N (and therefore of the weight ω i 1 ,...,i N ) dened as follow

S (i 1 ,...,i N ) = U (1) i 1 , U (1) 
i 1 +p 1 +1 × ... × U (N ) i N , U (N ) i N +p N +1 , ( 32 
)
while U is the set of TPs at which the maximum relative error does not meet the userdened threshold

U = u s , s = 1, ..., n T P | ∃j ∈ [1, M ] : ε (j) (u s ) > ε (j) th . ( 33 
)
If Ω is not empty, the weights that belong to Ω are introduced in the optimization process for the second step of the exploration. Therefore, our approach is able to automatically switch between B-Spline and NURBS formalism to best t the set of TPs. Moreover, if Ω is empty, the second step of the meta-heuristic exploration does not occur since no optimization variables are added to the optimization process.

It is noteworthy that function Φ of Eq. ( 27) depends only upon the integer parameters of the NURBS hyper-surface m k and p k . As a result, this function cannot be used within a deterministic algorithm because these parameters are set equal to the values provided by the genetic step. Moreover, deterministic algorithms are not able to deal with modular systems optimization. To this purpose, a dierent problem formulation is used during the local optimization carried out by means of active-set algorithm.

Meta-heuristic exploration: second step

During the second step of the meta-heuristic exploration, the number of optimization variables is set (because the number of knot vector components and the degree along each direction are the result of the rst optimization step). Therefore, only continuous design variables are considered at this stage, namely the weights belonging to the set Ω as well as the knot vectors components. They are grouped as follows:

ξ II = U (1) p 1 +1 , . . . , U (1) 
m 1 -p 1 -1 , . . . , U (N ) p N +1 , . . . , U (N ) m N -p N -1 , Ω . ( 34 
)
This step takes place only if the set Ω is not empty and aims at providing a potential sub-optimal point constituting the initial guess for the subsequent phase, i.e. the local optimization performed via the deterministic algorithm. When Ω is empty, the solution provided by ERASMUS at the end of the rst step is used as the starting point for the deterministic algorithm. For this second step the CNLPP reads:

min ξ II ψ (χ) (ξ II ) = 1 M M j=1 n T P s=1 H (j) ξ II (u s ) -Q (j) s χ ( 1 χ 
)

n T P s=1 H (j) I (u s ) -Q (j) s χ ( 1 χ ) , subject to          0 < U (k) l k < 1, l k = p k + 1, ..., m k -p k + 1, k = 1, ..., N, U (k) l k ≤ U (k) l k +1 , l k = p k + 1, ..., m k -p k , k = 1, ..., N, ω i 1 ,...,i N ≥ 0, i k = 0, ..., n k . (35) 
In Eq. ( 35), ψ (χ) is the χ-norm function used to approximate the maximum relative error, while H I is the hyper-surface given by the rst step exploration. This approximation gives good results for χ ≥ 20. Obviously, the hyper-surface H I , corresponding to the optimization variables given by ξ (opt) I found at the end of the rst step, is introduced among the initial population of this second step.

Deterministic optimization: third step

If the set Ω is not empty, the pseudo-optimal solution found at the end of the second step ξ opt II is used as initial guess for the deterministic optimization phase. Also in this case, only continuous design variables are considered. The resulting CNLPP is

min ξ III ψ (χ) (ξ III ) = 1 M M j=1 n T P s=1 H (j) ξ III (u s ) -Q (j) s χ ( 1 χ 
)

n T P s=1 H (j) II (u s ) -Q (j) s χ ( 1 χ ) , subject to          0 < U (k) l k < 1, l k = p k + 1, ..., m k -p k + 1, k = 1, ..., N, U (k) l k ≤ U (k) l k +1 , l k = p k + 1, ..., m k -p k , k = 1, ..., N, ω i 1 ,...,i N ≥ 0, i k = 0, ..., n k , ( 36 
)
where H II is the NURBS hyper-surface associated to the vector of optimization variables ξ

(opt) II

given by ERASMUS at the end of the second exploration step. Note that when Ω = ∅, ξ (opt) II = ξ (opt) I and the vector ξ III collects design variables as ξ II does. Solving the CNLPP (36) via a deterministic method allows nding a local minimizer from the starting point provided by the meta-heuristic exploration.

Numerical results

The eectiveness of the proposed metamodelling strategy is here shown by means of three test cases: the rst two benchmarks belong to the eld of solid mechanics, whilst the last one belongs to the eld of image reduction. These benchmarks have been chosen to illustrate some interesting properties of the surrogate model based on NURBS hypersurfaces.

The rst example deals with the approximation of the displacement eld of a thin plate under plane stress hypothesis. The goal is to approximate the displacement eld of the plate when varying, as input data, the thickness and the force applied. Of course, the displacement eld depends also upon the Cartesian coordinates x and y. In this case the metamodel is characterized by two outputs: the components of the displacement eld along x and y axis, respectively. The peculiar feature of this example is that the applied load (i.e. one boundary condition) has been included among the inputs of the metamodel.

The second benchmark focuses on nding the displacement eld of a thin plate with a hole: in this case the input data of the metamodel are the plate thickness, the hole radius and the Cartesian coordinates x and y. The outputs are the components of the displacement eld. The interesting feature of this benchmark is related to the topology of the TPs used to formulate the hyper-surface tting problem, which varies when changing the hole radius.

The results have been compared to those provided by the iterative procedure presented in [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Turner | N-Dimensional Nonuniform Rational B-Splines for Metamodeling[END_REF] by using basis function of degree 2 and empirical rules to assess the knot vector components by means of the TPs parametric coordinates:

d k = r k + 1 n k -p k + 1 , l k = j k d k , α k = j k d k -l k , U (k) 
p k +j k = (1 -α k ) u (k) l k -1 + α k u (k) l k , j k = 1, ..., n k -p k , k = 1, ..., N, ( 37 
)
where • is the oor function. As far as the iterative procedure is concerned, starting from the minimal number of CPs, some CPs are added until the desired accuracy is achieved. CPs are added in the parametric direction k with the following ratio:

q k = n k r k , k = 1, ..., N. ( 38 
)
q k is a measure of the loading pressure of CPs in the direction k, thus CPs are added in the direction with the lowest loading pressure. More details about the CPs addition/deletion strategies are available in [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF]. The last benchmark is taken from the literature and deals with an image reduction problem [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF]. This benchmark has been solved by using both the proposed strategy and the PGD-based approach presented in [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF]. The aim of this test case is to compare the results provided by the surrogate model based on NURBS hyper-surfaces to those provided by the PGD. The geometry of the thin plate is illustrated in Fig. 6. The plate along x and y axes are L x = 0.2m and L y = 0.1m, respectively. The thickness t varies in the range [t min , t max ], with t min = 0.001m and t max = 0.01m. A force is applied along the negative direction of y axis, at location (x, y) = L x 2 , 0 , while the plate is clamped at x = -L x 2 . The intensity of the force F varies in the interval [F min , F max ], with F min = 50N and F max = 200N.

Test case 1

The metamodelling process aims at providing the displacement eld of the plate for the dierent values of the thickness t and the force intensity F , as follows:

ẑ(x, y, t, F ) = ûx (x, y, t, F ) ûy (x, y, t, F ) , (39) 
where ẑ(x, y, t, F ) is the surrogate model function approximating the real displacement eld of the plate, while ûx and ûy are the approximated displacement components along x and y axes, respectively.

The MIMO system here is, hence, characterized by N = 4 inputs and M = 2 outputs. The TPs have been obtained through a nite element (FE) static analysis carried out via tha ANSYS code. The mesh of the FE model is composed of 126 × 30 PLANE182 fournode elements. Of course, a preliminary sensitivity analysis of the displacement eld to the mesh size has been conducted, but it is not reported here for the sake of brevity. Fig. 7 shows the displacement eld components for a thickness t = 0.001m and a force intensity F = 50N. It is noteworthy that, due to the NURBS formalism, derivatives of the NURBS hyper-surface can be easily obtained, thus strain and stress elds can be directly computed from the approximated displacement eld.

The database of TPs is composed by the displacement eld components u x and u y computed for dierent values of x, y, t and F and are collected in a 4-D array Q as follows: The dimensionless parameters u (k) are dened as: Table 2: Optimization parameters of the active-set algorithm for test cases 1, 2 and 3.

Q s 1 ,s 2 ,s 3 ,s 4 = (u x (x s 1 , y s 2 , t s 3 , F s 4 ) , u y (x s 1 , y s 2 , t s 3 , F s 4 )) , s k = 0, . . . , r k , k = 1, ..., N. (40) 
u (1) = x - -L x 2 L x 2 - -L x 2 , x ∈ -L x 2 , L x 2 , (41) 
u (2) = y - -L y 2 L y 2 - -L y 2 , y ∈ -L y 2 , L y 2 , (42) 

Genetic parameters

u (3) = t -t min t max -t min , t ∈ [t min , t max ] , (43) 
u (4) = F -F min F max -F min , F ∈ [F min , F max ] . (44) 
The parameters of the GA ERASMUS, used to solve problem [START_REF] Rempfer | Dynamics of three-dimensional coherent structures in a at-plate boundary layer[END_REF], are listed in Table 1. Selection is performed by the roulette-wheel operator and optimization constraints are handled via Automatic Dynamic Penalisation (ADP) method [START_REF] Montemurro | The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms[END_REF]. The parameters of the active-set algorithm, used to solve problem [START_REF] Bettinger | Inversion d'un système par krigeage: application à la synthèse des catalyseurs à haut débit[END_REF], are listed in Table 2. The whole optimization process requires a computational time of approximately 6000s on a machine with a four cores intel i7 processor (2.9 GHz). 

HERO p k 4 4 1 1 43 500 4.11e -3 (ERAS- MUS) 3.20e -3 (ERAS- MUS) 1.08e -4 (ERAS- MUS) (fmin- con) 8.46e -4 (fmin- con) 1.95e -5 (fmin- con) 4.25e -5 (fmin- con) 
2.09e -4 (ERAS-MUS) n k 28 24 14 3 2.33e -3 (fmincon)

3.02e -3 (fmincon)

9.42e -5 (fmincon)

2.09e -4 (fmincon)

Table 3: Comparison of results provided by HERO and those resulting from the iterative procedure [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF].

The results of the NURBS hyper-surface tting process are shown in Table 3. A maximum relative error of ε (ux) th = ε (uy) th = 5e -3 has been used for both HERO and the iterative procedure in [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF]. It is noteworthy that, for this benchmark, the set Ω was empty after the rst genetic exploration, i.e all weights are equal to 1, thus a B-Spline hyper-surface is used in the subsequent deterministic optimization.

As it can be seen on Table 3, the proposed strategy is able to strongly reduce the number of CPs when compared to the iterative procedure: 43 500 when using HERO vs.

1 062 423 when the strategy presented in [START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF] is employed. This result is quite expected since the empirical rules used in [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF] was conceived to make computation faster and not for minimising the number of NURBS entity parameters. To highlight the fact that using empirical rules leads to non-optimal solutions, the same third step, i.e. problem [START_REF] Bettinger | Inversion d'un système par krigeage: application à la synthèse des catalyseurs à haut débit[END_REF] is solved by considering as a starting point the result from the iterative method.

In the case of the proposed approach, when comparing the value of the error at the starting point (which is the best solution resulting from the genetic exploration) and at the local optimum, found at the end of the process, the approximation error has not been decreased so much, showing that the starting point is really closer to the local optimum. The same consideration does not apply for the result provided by the iterative strategy which is far away from the corresponding local optimum. Even if the results of the proposed approach are better than those provided by the iterative strategy, it must be noticed that the optimized solution may not be the global optimum. In fact, when all NURBS entity parameters are integrated as design variables during the rst optimization step, the resulting CNLPP is strongly non-convex and, at the end of the iterations, the genetic algorithm provides, often, multiple equivalent optimal solutions which can be used as a starting guest for the deterministic optimization (and which converges towards dierent minimisers). Accordingly, the solution presented in Table 3 corresponds to the best individual provided by ERASMUS at the end of the genetic exploration. The geometry of the second benchmark is illustrated in Fig. 8. The plate is rectangular with lengths L x = 0.2m and L y = 0.1m along x and y axes, respectively. The thickness t varies in the interval [t min , t max ], with t min = 0.001m and t max = 0.01m. The plate has a hole of radius R varying in the range [R min , R max ], with R min = 0.005m and R max = 0.025m. A force is applied in the negative direction of y axis, at location (x, y) = L x 2 , 0 , while the plate is clamped at x = -L x 2 . The intensity of the force is F 0 = 100N. The goal is to obtain a surrogate model of the displacement eld of the structure for the dierent values of t and R: ẑ(x, y, t, R) = ûx (x, y, t, R) ûy (x, y, t, R) , [START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF] where ẑ(x, y, t, R) is the NURBS hyper-surface approximating the real displacement eld of the plate, while ûx and ûy are the approximated displacement elds along x and y axes, respectively. The thickness t and the radius R are design parameters, while x and y the coordinates of each point belonging to the plate. The MIMO system here is, thus, characterized by N = 4 inputs and M = 2 outputs. The TPs have been obtained by means of a static analysis carried out on a FE model made of 32400 four-node PLANE182 elements with plane stress formulation. The number of elements has been obtained after a preliminary convergence study (not reported here for the sake of brevity). Fig. 7 illustrates the displacement eld for a thickness t = 0.001m and a hole radius R = 0.005m.

Test case 2

The set of TPs is composed by displacement eld components u x and u y computed for dierent values of x, y, t and R and is stocked in the form of a 4-D array Q:

Q s 1 ,s 2 ,s 3 ,s 4 = (u x (x s 1 , y s 2 , t s 3 , R s 4 ) , u y (x s 1 , y s 2 , t s 3 , R s 4 )) , s k = 0, . . . , r k . ( 46 
)
The dimensionless parameters u (k) are determined as follows: [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF][START_REF] Piegl | The NURBS Book, Monograph in Visual Communication[END_REF].

u (1) = x - -L x 2 L x 2 - -L x 2 , x ∈ -L x 2 , L x 2 , (47) 
u (2) = y - -L y 2 L y 2 - -L y 2 , y ∈ -L y 2 , L y 2 , (48) 
u (3) = t -t min t max -t min , t ∈ [t min , t max ] , (49) 
u (4) = R -R min R max -R min , R ∈ [R min , R max ] . (50) 
The parameters of the GA ERASMUS used to solve problem [START_REF] Mifsud | A high-delity low-cost aerodynamic model using proper orthogonal decomposition[END_REF] for this second benchmark are listed in Table 1. Selection is performed by the roulette-wheel operator, whilst the ADP method is used as a constraint-handling technique [START_REF] Montemurro | The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms[END_REF]. The parameters of the active-set algorithm, used to solve problem [START_REF] Bettinger | Inversion d'un système par krigeage: application à la synthèse des catalyseurs à haut débit[END_REF], are listed in Table 2. The whole optimization process requires a computational time of approximately 6500s on a machine with a four cores intel i7 processor (2.9 GHz).

The results of the NURBS hyper-surface tting process are shown in Table 4. A maxi-mum relative error of ε (ux) th = ε (uy) th = 3e -2 has been used for both the iterative method and the proposed approach. As in the case of benchmark 1, a B-Spline hyper-surface is sucient to t the displacement eld components over the structure for each value of t and R. As it can be seen from Table 3, two optimal solutions are reported corresponding to dierent combinations of parameters tuning the behaviour of the genetic algorithm ERASMUS as reported in Table 1 (i.e. the number of individuals per population is dierent). Also in this case, Table 4 shows an interesting result: the number of CPs for the proposed strategy is drastically decreased when compared to the iterative methods using empiric rules. Again, the starting points for the deterministic optimization found by ERASMUS are really close to a local optimum. The same function has been used by considering as initial guess the solutions provided by the iterative procedure: the maximum relative error for solution with 1 062 423 CPs is greater than that characterizing the solution with 811 512 CPs. However, the mean relative error is still greater for the solution with 811 512.

Test case 3

This benchmark focuses on an image reduction problem and has been solved by means of both the surrogate model based on NURBS hyper-surfaces and PGD method [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF][START_REF] Chinesta | PGD-Based Modeling of Materials, Structures and Processes[END_REF]. In this context, the goal is to minimize the number of data needed to display the original picture to save memory space, without degrading too much the quality of the image. The results of the proposed metamodelling strategy have been compared to those obtained by the PGD method. Unlike the image reduction problem presented in [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF], dealing with a grayscale picture, the benchmark proposed in this study deals with the image reduction of a colour picture (courtesy of Mélissande Labadie).

For this test case, the parameter a of Eq. ( 28) has been set to 0.99 to increase the weight related to the minimization of the CPs number. The maximum approximation error threshold for problem [START_REF] Mifsud | A high-delity low-cost aerodynamic model using proper orthogonal decomposition[END_REF] is:

ε (j) th = 0.35, j = R, G, B, (51) 
where R, G and B represents red, green and blue outputs respectively. The parameters tuning the behaviour of the GA are reported in Table 1, whilst those governing the behaviour of the active-set algorithm are in Table 2. The interested reader is addressed to [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF] for the details about the PGD approach in relation to the proposed benchmark. An additional stopping criterion for the GA has been considered for this example. Since the genetic calculation focuses on the CPs number minimization, a threshold value on the expected compression ration has been added among the stopping criteria for the meta-heuristic exploration.

When the original picture is stored in a RAW format, three matrices are stocked (i.e. red, green and blue values), whose size is related to the numbers of pixel pix h and pix v along horizontal and vertical axes, respectively. The number of data needed to save the picture can be expressed as:

n (raw) data = 3 × pix h × pix v . (52) 
In the case of a NURBS entity, the number of data to be saved is:

n ISO data = 2 + 3n CP + N k=1 (n k -p k ) , for B-Spline, 2 + 4n CP + N k=1 (n k -p k ) , for NURBS. (53) 
According to the above formulae, a B-Spline entity requires less data to be stored than the NURBS one for a given number of CPs. Regarding the PGD, the number of data is linked to the number of enrichments N iter as follows:

n (PGD) data = 3 × N iter × (pix h + pix v ) . (54) 
The compression ratio can, thus, be expressed as the ratio of the number of data required by the metamodel to the number of data related to the RAW format, i.e. 

Fig. 10 shows the results of a compressed image for a xed number of CPs obtained by using B-Spline (Fig. 10b) and NURBS (Fig. 10c) entities. In this comparison, the knot vectors have been computed according to Eq. ( 37) and only the weights of the NURBS have been optimized. Surprisingly, the approximation error related to B-Spline When looking at Fig. 11, it is rather dicult to distinguish between the original image and that provided by the surrogate modelling strategy based on NURBS hyper-surfaces when a compression ratio c = 0.20 is set. However, Table 6 shows that the maximal approximation error is relatively high compared to the minimal accuracy needed in a no loss case. Indeed, since RGB matrices are composed of integers varying between 0 and 255 (i.e. 8 bits per colour), the metamodel outputs are rounded to the nearest integer (for both PGD and HERO). As a result, the minimal accuracy giving negligible loss of picture quality is: 

where ε

(loss) th is the maximal approximation error threshold that prevents from degrading the original picture. As it can been inferred from Table 6, the maximal approximation error related to both B-Spline and PGD solutions is higher than this value. However, the mean error is twice lower than this threshold and this explains why there are no "visible" dierences between original and reconstructed picture.

The solution based on the B-Spline hyper-surfaces is compared to the results provided by the PGD, at equivalent compression ratio (Fig. 11d) and at equivalent maximal approximation error (Fig. 11c). It is noteworthy that the solution resulting from the PGD, at equivalent compression ratio, has a lower "quality" than that provided by HERO. Table 6 shows that the maximal approximation error is, in this case, signicantly higher. In addition, to reach the accuracy of the B-Spline-based metamodel, the number of data needed by the PGD is 1.41 times higher. It is noteworthy that mean approximation error related to the PGD solutions is still higher than that related to the B-Spline-based metamodel.

Conclusions

A new metamodelling technique based on NURBS hyper-surfaces together with a hybrid optimization strategy has been presented in this paper. The proposed approach is very general: nor simplifying hypotheses neither empirical rules are utilised to select a priori some parameters of the metamodel. Conversely, the number of parameters and their values are automatically determined by the hybrid optimization strategy (and according to user's dened accuracy), making this approach problem-independent. Moreover, the metamodel obtained aims at being as "light" as possible since it automatically determines if rather B-Spline or NURBS hyper-surfaces are needed to t a given set of data points and which and where (i.e. on the control hyper-net) weights have to be added during the optimization process. This result is achieved thanks to the special genetic algorithm ERASMUS able to deal with optimization problems characterized by a variable number of design variables. The eectiveness of this process has been shown through two meaningful examples and the results have been compared to those provided by an iterative procedure available in the literature. In addition, a benchmark taken from the literature has been solved by the proposed approach and the results provided has been compared to those of the PGD method.

The use of NURBS hyper-surfaces as surrogate models has revealed to be really eective in handling boundary conditions among the input parameters of the surrogate model. Moreover, the proposed approach has shown its ability to t non-convex sets of data where the TPs space topology varies with metamodel inputs. In both cases, the obtained results have been compared to those resulting from an iterative method taken from literature. From these comparisons it seems evident that the use of empirical rules in setting some of the parameters of the NURBS entity are not adequate for minimising the metamodel resources (i.e. number of CPs and degrees) by ensuring, simultaneously, the required accuracy.

When compared to the PGD method on a benchmark taken from the literature, dealing with an image reduction problem, the proposed approach is more ecient in terms of either compression ratio or accuracy. Moreover, for this test case, including weights into the optimization process has a negligible eect.

Of course, the proposed methodology constitutes just a rst attempt. One limitation is that the set of TPs needs to be sorted to use the algorithms presented in Section 3 for the computation of the CPs coordinate. When dealing with a high number of TPs, the matrix to be stored before inversion could reach terabytes of memory. The inversion in this case is anything but trivial. This problem has been addressed in the literature by adding a sorting step such as natural neighbour used in [START_REF] Turner | HyPerModels: hyperdimensional performance models for engineering design[END_REF]. However, this strategy seems to be quite limiting. To this purpose, research is ongoing in order to develop suitable mapping techniques avoiding the use of sorted set of TPs. In this way, also unordered data can be eectively handled by the proposed approach. Furthermore, linking NURBS-based methods with kriging could be an interesting prospect. In fact, Kriging is based upon the study of the spatial dependency of the TPs. As a result, an estimation of the approximation error is provided together with the function evaluation. Coupling Kriging to the NURBS-based metamodelling strategy could be very useful for a better assessment of the approximation error and also to exploit the local support property of the NURBS blending function to determine the correlation among inputs.

A further interesting prospect concerns the application of the proposed metamodelling strategy to eigenvalue problems and nonlinear analyses. Due to the complexity of the topology of the TPs space, in these cases some smoothing terms should be added to the problem formulation in order to avoid over-tting.
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 11 Figure 1: Logical ow of the surface tting algorithm [51] extended to the N -D case.
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 2 Figure 2: Logical ow of the surface tting algorithm [51] extended to the N -D case for unsorted set of TPs.

  are the maximum and minimum values of the j-th output over the set of TPs, respectively.
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 3 Figure 3: Hybrid EvolutionaRy Optimization (HERO) algorithm.
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 4 Figure 4: ERASMUS algorithm [64].
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 5 Figure 5: Individual genotype of ERASMUS for the NURBS hyper-surface tting problem.
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 6 Figure 6: Geometry and boundary conditions for benchmark 1.
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 7 Figure 7: Displacement eld for benchmark 1 at thickness t = 0.001m and force intensity F = 10N.
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 8 Figure 8: Geometry and boundary conditions for benchmark 2.

  (a) Forme du champ de dépalcement ux (b) Champ de dépalcement ux (c) Forme du champ de dépalcement uy (d) Champ déplacement uy
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 9 Figure 9: Displacement eld for benchmark 2 at thickness t = 0.001m and hole radius r = 0.005m.
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 10 Figure 10: Image reduction: comparison between PGD [1], NURBS and B-Spline results for a maximum relative error equal to 0.65.

Figure 11 :

 11 Figure 11: Image reduction: comparison between PGD [1] and HERO results.

Table 1 :

 1 Genetic parameters of the GA ERASMUS for test cases 1, 2 and 3.

		Test case 1 Test case 2	Test case 2	Test case 3
			(1 st analysis)	(2 nd analysis)	
	N. of population	3	3	3	2
	Population size	100	100	200	150
	N. of generations	100	100	100	100
	Crossover probability 0.85	0.85	0.85	0.85
	Mutation probability 0.005	0.005	0.005	0.005
	Shift probability	0.5	0.5	0.5	0.5
	Isolation time	5	5	5	5
	Selection		roulette-wheel	
	Elitism		active	

Table 4 :

 4 Comparison of results provided by HERO and those resulting from iterative procedure

and NURBS metamodels were really close as it can be seen in Table 5, where maximal and mean approximation errors have been expressed as follows:

The results of the PGD approach, fro an equivalent number of data of both B-Spline and NURBS entities, are illustrated in Figs. 10e and10f, respectively. As it can be inferred from these images and also from the results reported in Table 5, PGD results are less accurate than the NURBS-based metamodelling strategy for an equivalent number of data. Fig. 10d shows the reduced image obtained by means of the PGD, which is as accurate as image 10b. However, this image requires an amount of data signicantly greater (about seven times) than that required for the B-Spline solution illustrated in Fig. 10b. Moreover, although the maximal approximation error of the PGD solution of Fig. 10d is slightly lower than that of the B-Spline solution of Fig. 10b, the B-Spline image look "prettier" than the PGD one. This visual aspect is due to the error repartition on the three fundamental colours (Red, Green and Blue) which is better in the case of the B-Spline solution. The results listed in table 5 also show that including weights among the optimisation variables gives a negligible improvement in the approximation error. 6: Approximation error comparison between the results provided by the PGD [START_REF] Chinesta | The Proper Generalized Decomposition for Advanced Numerical Simulations[END_REF] and HERO of Fig. 11.

Method

Accordingly, only B-Spline entities have been considered in the HERO process. The results are provided in Table 6, whilst the corresponding images are presented in Fig. 11.