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Non-Uniform Rational Basis Spline hyper-surfaces for metamodelling
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aArts et Métiers ParisTech, I2M CNRS UMR 5295, F-33400 Talence, France

Abstract

This study presents an original metamodelling technique based on Non-Uniform Rational
Basis Spline (NURBS) hyper-surfaces. The proposed approach is able to �t general non-
convex sets of target points (TPs) by extending the NURBS formalism to the N-dimensional
(N-D) case. The shape of such a hyper-surface is tuned by several parameters: the number
of control points (CPs), their coordinates and the related weights, the degrees of the blend-
ing functions and the knot-vector components de�ned along each direction. The goal of the
proposed strategy is to automatically determine (i.e. without the user's intervention) the
full set of parameters de�ning the NURBS hyper-surface approximating a given set of TPs,
without considering simplifying hypotheses. To this purpose, the problem is formulated
as a constrained nonlinear programming problem (CNLPP) wherein the optimization vari-
ables are all the parameters tuning the shape of the NURBS hyper-surface. Nevertheless,
when the number of CPs and the degrees of the basis functions are included among the
design variables, the resulting problem is de�ned over a space having a changing dimension.
This problem is solved by means of an original genetic algorithm able to determine, simul-
taneously, the optimum value of both the design space size (related to the integer variables
of the NURBS hyper-surface) and the NURBS hyper-surface continuous parameters. The
e�ectiveness of the proposed approach is shown by means of two meaningful test case. In
addition, the proposed method has been applied to a benchmark taken from the literature
and the results have been compared to those provided by the PGD approach.

Keywords: Optimization, Genetic Algorithm, NURBS hyper-surface, Surrogate model,
Metamodel

1. Introduction

The computer performances signi�cantly increased over the last two decades mainly due
to the enhancement of the number of processors transistors. Although these performances
are widely used to improve simulation complexity, there are still many scienti�c and engi-
neering problems that remain intractable because either of their numerical complexity or
their peculiar requirements, such as real-time processing. This is the case of inverse prob-
lems (and, in a more general sense, of all optimization problems), which need to compute
the outputs of a model a huge number of times, or the case of deployed platforms, such
as virtual and / or augmented reality, or on-line control of Multiple-Input Multiple-Output

(MIMO) systems, that require real-time processing capabilities. To deal with this kind of
problems, metamodelling techniques (also called surrogate modelling techniques) are well-
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established methods, which allow reducing the computational costs, without degrading too
much the accuracy level required for the problem at hand.

The metamodelling process consists of de�ning a suitable surrogate model requiring less
resources to be executed than the original model from which it is obtained. The meaning of
resources depends on the problem at hand. As an example, image reduction aims to reduce
the number of data needed to evaluate the metamodel [1], while a metamodel used within
an optimization process aims to reduce the computatonal e�ort (i.e. the elapsed time) to
evaluate the outputs for a given set of inputs [2, 3]. It is noteworthy that all current meth-
ods need a calibration phase that is excluded when evaluating the overall computational
e�ort. For some complex real-world engineering problems, the calibration step can require
a huge amount of time: in these circumstances the engineer should carefully evaluate the
opportunity of formulating a metamodel. Consider a MIMO system characterized by N
inputs and M outputs de�ned as:

RN → RM
z : x → z(x),

(1)

where x =
(
x(1), . . . , x(N)

)
is the vector collecting the N inputs of the system and z(x) =(

z(1)(x), . . . , z(M)(x)
)
is the transfer function of the MIMO system containing the M out-

puts. In some cases, this function may be completely known but, for real-world engineering
problems, this is not always true. From a mathematical viewpoint, the metamodelling pro-
cess consists of determining a function ẑ(x) that needs less resources to be evaluated than
z(x):

RN → RM
ẑ : x → ẑ(x) = z(x) + ε(x),

(2)

where ẑ(x) is the function approximating the real transfer function z(x) and ε(x) is the
approximation error at point x. The function ε(x) is a bounded function, whose bounds
are linked to the desired accuracy.

Metamodelling strategies can be classi�ed into a priori and a posteriori methods. The
only known a priori method is the Proper Generalised Decomposition (PGD) that builds
a surrogate model without the need of a database resulting from the original model [1].
However, to achieve this task, a suitable mathematical formulation of the problem at
hand is needed. This approach is based on a separated representation of the space: the
basis functions are iteratively enhanced by adding terms until a given accuracy is reached
[1, 4�6]. This method has been successfully applied to inverse problems [7], to composite
damage prediction [8�12], to structural optimization problems [13, 14] and also to quantum
chemical problems [15], by overcoming the so-called curse of dimensionality. Despite the
wide range of applications, the main limitations of this approach are essentially four: (a)
the user must de�ne a discretization of the space and the nature of the basis functions, as
well; (b) an interpolation (or approximation) technique must be foreseen to get the values
that are not in the discretization step (which are generally evaluated with an accuracy
worse than that a�ecting those falling into the discetization step); (c) in relation to the
previous point, PGD gives less accurate results for nonlinear problems; (d) inasmuch as
PGD is based upon variable separation, it is not suited for non-convex sets of data points.

Among the a posteriori metamodelling techniques, the Proper Orthogonal Decompo-
sition (POD) [16, 17] and the kriging [18�20] are the most common methods available in
the literature. POD aims to provide a reduced order problem of dimension K, by solving
an eigenvalue problem and by keeping only the most representative modes of the original
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problem of dimension M � K [17, 21]. The most representative eigenvalues are set by
means of a suitable criterion and the method can automatically �t the given data. This
approach is massively employed in computational �uid dynamics problems [16, 21�28], but
it has also been used in inverse problems [29, 30] and pattern recognition [31]. The main
limitation is that the online phase is related to the inversion of matrix of dimension K,
which can be costly even if K �M .

Kriging [32], is known as the best unbiased linear predictor and has been developed
by Matheron [33, 34]. Initially developed in the framework of geostatistics, the basis of
this approach is to consider the spatial dependency structure of the data. One of the
�rst applications of kriging is related to the well-known Design and Analysis of Computer
Experiments (DACE) [20, 35�37], which focuses on the covariance computation by means
of an user-de�ned Spatial Correlation Function (SCF). Although kriging is known to be an
unbiased method because no bias is introduced during the computation, it must be stressed
that some bias is inevitably introduced when the user must sets the SCF parameters. As
far as the choice of the SCF is concerned, two approaches are used: cross validation and
maximum likelihood that may require a big amount of time for the calibration phase of
the surrogate model when the number of data points becomes important. Moreover, this
method is not able to reduce the number of data points and the on-line phase requires the
inversion of a matrix, whose size is directly linked to the number of data points. These
limitations made this method suitable for small sets of data points.

Currently, Radial Basis Functions (RBFs) [38, 39] and Arti�cial Neural Networks
(ANNs) [40, 41] are the only methods able to deal with problems characterized by hundreds
of inputs. In particular, ANNs have been used to build surrogate models in optimization
of microwave circuits [42], predictions on water salinity concentrations due to groundwater
extraction [43], or injection molding process simulations [44]. The main limitations char-
acterizing ANNs are mainly related to their intrinsic algorithmic complexity. Three steps
are necessary to build an ANN: selecting the function to include (i.e. the number and the
nature of neurons); selecting the neural architecture (i.e. the number of layers and the
number of neurons within each layer); and training the ANN (i.e. the calibration phase,
that is called learning step in the case of ANN). These tasks are anything but trivial and,
even if some rules are proposed in the literature to �nd an appropriate neural architecture
[45], they are mostly based on trial and error approaches that increase the time needed for
the learning phase. Some nonlinear optimization methods exist to �nd the ANN parame-
ters, but the solution is not unique and strongly problem-dependent [45]. Moreover, ANNs
can su�er from the over-�tting phenomenon [46].

As a general remark, setting the number and the value of the parameters tuning the
behaviour of classical metamodelling techniques could be a quite di�cult task, which often
needs a trial-and-error approach. For instance, improving arbitrarily the number of layers
and/or neurons for ANNs, or improving the modes number for PGD, can lead to over-
�tting.

The metamodelling approach proposed in this study relies on the utilisation of M -
dimension (M -D) Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces, de�ned
on an a N -D parametric space, to �t a given set of data points, also called target points
(TPs). Up to now, only few research works focus on the formulation/implementation of
surrogate models based on the NURBS formalism [47�49]. NURBS curves and surfaces
are standard geometrical entities widely used in Computer Aided Design (CAD) software
[50, 51]. This particular feature made them of particular interest in the �eld of shape
optimization, known as isogeometric shape optimization [52�55]. NURBS hyper-surfaces
represent a generalisation of these entities. A NURBS hyper-surface is de�ned through
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the number of dimensions (related to the size of the problem at hand), the degree of
blending-functions along each dimension, the overall number of control points (CPs), the
coordinates of each CPs and the related weights, the knot vector components along each
dimension. The large number of parameters tuning the shape of a NURBS hyper-surface
makes it a versatile tool for many mathematical and engineering applications, not only
for formulating surrogate models [56�63]. However, the signi�cant amount of parameters
de�ning the NURBS hyper-surface shape also constitutes its main drawback: it is very
hard to properly tune all these parameters without making some simplifying assumptions
or preliminary choices, as done in [47�49]. Up to now, hyper-surface �tting problems
are solved by means of iterative procedures generalising those used in the surface �tting
framework [51]. These procedures can be grouped into two categories. On the one hand,
some procedures start from a minimal number of (CPs), which is iteratively increased until
the algorithm reaches a given accuracy. On the other hand, some procedures make use of
the opposed approach, i.e. they start from the maximum allowable number of CPs, which
are iteratively removed without degrading too much (i.e. within reasonable limits) the
desired accuracy.

To go beyond the aforementioned restrictions, the metamodelling approach based on
NURBS hyper-surfaces is here coupled with a special genetic algorithm (GA) [64, 65] able
of determining both the number and the value of the parameters a�ecting the NURBS
hyper-surface shape, without introducing simply�ng hypotheses or empirical rules to set
the values of both integer and continuous variables. In particular, when the number of
parameters is included among the unknowns, the hyper-surface �tting problem can be
formulated as a Constrained NonLinear Programming Problem (CNLPP) de�ned over a
space , whose dimension is included among the variables of the problem at hand. Of
course, when dealing with such a problem, a particular care must be put in the choice of
the proper numerical tool to perform the solution search. To this purpose, in this study,
the ERASMUS code (EvolutionaRy Algorithm for optimiSation of ModUlar Systems) [64],
which is able to deal with problems characterized by a variable number of design variables,
is used as an optimization tool. The e�ectiveness of the proposed approach is illustrated
through two meaningful benchmarks.

The paper is organized as follows: the theoretical framework of NURBS hyper-surfaces
and the literature survey on NURBS entities used to build metamodels are presented in
Section 2. The mathematical formulation of the CNLPP is given in Section 3, while the
hybrid optimization tool used to perform the solution search is brie�y presented in Section
4. Numerical results on two benchmarks are shown in Section 5, whilst Section 6 ends the
paper with some concluding remarks and prospects.

2. A NURBS-based surrogate model

2.1. The NURBS hyper-surfaces theory

The fundamentals of NURBS entities are brie�y provided in the most general case of
NURBS hyper-surfaces. Curves and surfaces formulae, widely discussed in [50, 51, 66,
67], can be easily deduced from the following relations. A NURBS hyper-surface is a
polynomial-based function (H : RN → RM ), de�ned over a parametric space (domain),
taking values in the NURBS space (codomain). The mathematical formula of a generic
NURBS hyper-surface is

H
(
u(1), ..., u(N)

)
=

n1∑
i1=0

· · ·
nN∑
iN=0

∏N
k=1Nik,pk

(
u(k)

)
× ωi1,...,iN Pi1,...,iN∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N
k=1Njk,pk

(
u(k)

)] , (3)
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where H
(
u(1), ..., u(N)

)
is a M -dimension vector-valued rational function,

(
u(1) , ..., u(N)

)
are scalar dimensionless parameters de�ned in the interval [0, 1], whilst Pi1,...,iN are the
so called control points and ωi1,...,iN are the associated weights. The j-th control point

coordinate (P
(j)
i1,...,iN

) is stored in the array P(j), whose dimension is (n1+1)×· · ·×(nN+1).

The explicit expression of control points coordinates in RM is:

Pi1,...,iN = {P (1)
i1,...,iN

, . . . , P
(M)
i1,...,iN

},

P(j) ∈ R(n1+1)×···×(nN+1), j = 1, . . . ,M.

(4)

In Eq. (3), Nik,pk(u(k)) is the k-th blending function of degree pk [51] recursively
determined as follows:

Nik,0

(
u(k)

)
=

{
1 if U

(k)
ik
≤ u(k) < U

(k)
ik+1,

0 otherwise,

Nik,q

(
u(k)

)
=

u(k) − U (k)
ik

U
(k)
ik+q
− U (k)

ik

Nik,q−1

(
u(k)

)
+

U
(k)
ik+q+1 − u(k)

U
(k)
ik+q+1 − U

(k)
ik+1

Nik+1,q−1

(
u(k)

)
,

q = 1, ..., pk.

(5)

where each constitutive blending function is de�ned on the knot vector

U(k) =

0, · · · , 0︸ ︷︷ ︸
pk+1

, U
(k)
pk+1, · · · , U

(k)
mk−pk−1, 1, · · · , 1︸ ︷︷ ︸

pk+1

 , (6)

whose dimension is mk + 1, with

mk = nk + pk + 1. (7)

For more details on NURBS hyper-surfaces the reader is addressed to [61, 68].

2.2. NURBS hyper-surfaces as metamodels: a brief literature survey

The �rst attempt of using NURBS hyper-surfaces to formulate suitable metamodels
goes back to the works of Turner [47, 49]. In particular, in [49] a NURBS-based surrogate
model used in the framework of the characterization of composite material properties is
presented. In this background, Turner and Crawford developed an iterative procedure for
the hyper-surface �tting problem focusing on the determination of a suitable number of CPs
for the NURBS hyper-surface. However, the method proposed by Turner and Crawford
is based upon an empirical rule to determine the position of new CPs that are added on
the basis of the value of the cost function of the problem at hand (typically the maximum
approximation error). Indeed, their approach is characterized by some restrictions:

• the degrees of the NURBS blending functions are set a priori ;

• the knot vectors components are uniformly distributed or calculated by means of
simple empirical rules;

• the weights are evaluated through empirical formulae and only for those CPs whose
local support contains TPs a�ected by a relative error greater than a given threshold.
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Of course, these empirical rules (and the parameters tuning the behaviour of the related
formulae) are strongly problem-dependent and the user must have a deep knowledge of the
problem at hand and of the NURBS hyper-surfaces fundamentals, as well.

In this paper, a di�erent approach is used to build the surrogate model based on a
NURBS hyper-surface for approximating the behaviour of a MIMO system. The proposed
method aims to provide the function ẑ(x), approximating the real transfer function z(x)
of the MIMO system, as follows:

E =
[
x
(1)
min, x

(1)
max

]
× . . .×

[
x
(N)
min, x

(N)
max

]
→ RM

ẑ : x → H (f (x)) .
(8)

where x =
(
x(1), . . . , x(N)

)
is the vector collecting the N inputs of the system, H (f (x)) =(

X(1)(x), . . . , X(M)(x)
)
is the vector containing the M approximated outputs and f (x)

is a bijective function realising the mapping of the space E into the parametric domain
[0, 1]N of the NURBS hyper-surface, i.e.

E → [0, 1]N

f : x → f (X) =
(
f (1)

(
X(1)

)
, . . . , f (N)

(
X(N)

))
= u,

(9)

where u =
(
u(1), . . . , u(N)

)
are the parametric coordinates of the NURBS hyper-surface

related to the inputs x and f (k)
(
x(k)

)
are the bijective functions de�ned as,[

x
(k)
min, x

(k)
max

]
→ [0, 1]

f (k) : x(k) → f (k)
(
x(k)

)
=

x(k) − x(k)min
x
(k)
max − x(k)min

= u(k), k = 1, ..., N.
(10)

Here the goal is to formulate a surrogate model based on NURBS entities without
introducing neither simplifying hypotheses nor empirical rules to set all the parameters

a�ecting the shape of the NURBS hyper-surface. Only in this way, it is possible to imple-
ment a problem-independent metamodelling strategy: this point constitutes the kernel of
the proposed approach.

As explained in the Section 3, this ambitious goal can be achieved through a pertinent
formulation of the metamodel generation problem. Such a problem is formulated as a
constrained hyper-surface �tting problem and the surrogate model based on NURBS hyper-
surfaces is e�ciently coupled to a special GA [64, 65] able of determining both the number
and the value of the parameters involved in the de�nition of the NURBS hyper-surface.

3. Problem formulation

3.1. Design variables

Eq. (3) shows that the parameters involved in the de�nition of a NURBS hyper-surface
are of di�erent nature:

• integer variables, like the number of both knot vector components and CPs, (mk +1)
and (nk + 1) respectively, as well as the degrees of the blending functions pk along
each dimension;

• continuous variables, like internal knot vector values U
(k)
pk+1, ..., U

(k)
mk−pk−1 , CPs co-

ordinates Pi1,...,iN , weights ωi1,...,iN and the dimensionless parameters u
(k)
s at which

the NURBS hyper-surface is evaluated.
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Some of these parameters are interdependent, whereas other can be smartly chosen. In

particular, as far as the dimensionless parameters are concerned, i.e. u
(k)
s , they are obtained

by applying Eq. (10) to the inputs of the MIMO for each TP, i.e.

u(k)s =
x
(k)
s − x(k)min

x
(k)
max − x(k)min

, k = 1, . . . , N, s = 1 . . . , nTP , (11)

where nTP is the overall number of TPs. Therefore, the NURBS dimensionless parameters
do not belong to the set of design variables. Moreover, the number of CPs along each
parametric direction can be determined once the size of the knot vector and the degree of the
blending functions along the same direction are known, according to Eq. (7). Accordingly,
the number of CPs is excluded from the design variables vector.

The determination of the optimum value of CPs coordinates is carried out by a ded-
icated algorithm. In particular, when the size of the knot vector as well as its internal
components along each direction are known, if the degree of the blending functions (along

each direction) is given and if the values of u
(k)
s have been computed by means of Eq.

(11), �nding the optimum value of the CPs coordinates is a quite trivial task. Indeed,
the NURBS hyper-surface �tting problem is convex in terms of CPs coordinates. In the
case of B-Spline hyper-surface �tting, it can be shown that the optimum value of the CPs
coordinates can be determined by generalizing the well-known surface �tting algorithm
A9.7, presented in [51], to the N -D case. However, two cases must be considered. If TPs
are collected into a sorted set, i.e.

Qsort :
{

Qs1,...,sN =
(
Q(1)
s1,...,sN

, . . . , Q(M)
s1,...,sN

)
, sk = 0, . . . , rk, k = 1, . . . , N

}
, (12)

the algorithm structure is very simple and it is illustrated in Fig 1. In Eq.(12), Qs1,...,sN

is the generic TP of the set and (rk + 1) is the number of TPs along the direction k. For
the sake of brevity, it can be stated that the optimum value of CPs coordinates can be
computed as a succession of curve �tting problems along each direction. In particular, Fig.
1 highlights that temporary CP coordinates are recursively computed along each direction.
The �nal CPs coordinates are stored in the array P. More details can be found in [51].

When considering the �tting in direction l, the size of the temporary CPs coordinates
array P(l−1) is reduced from (rl + 1) to (nl + 1) in the next temporary CPs coordinates
array P(l). This is achieved by solving (n1 +1)×· · ·×(nl−1 +1)×(rl+1 +1)×· · ·×(rN +1)
times the following problem:(

NT
l Nl

)
P

(l)
i1,...,il−1,:,sl+1,...,sN

= NT
l P

(l−1)
i1,...,il−1,:,sl+1,...,sN

, (13)

where P
(l)
i1,...,il−1,:,sl+1,...,sN

is the matrix collecting the temporary CPs coordinates at itera-
tion l given by

P
(l)
i1,...,il−1,:,sl+1,...,sN

=


P

(l,1)
i1,...,il−1,0,sl+1,...,sN

· · · P
(l,M)
i1,...,il−1,0,sl+1,...,sN

...
. . .

...

P
(l,1)
i1,...,il−1,nl,sl+1,...,sN

· · · P
(l,M)
i1,...,il−1,nl,sl+1,...,sN

 ,

ik = 0, ..., nk, k = 1, ..., l − 1 ; sk = 0, ..., rk, k = l + 1, ..., N,

(14)

whilst P
(l−1)
i1,...,il−1,:,sl+1,...,sN

is the matrix collecting the temporary CPs coordinates at iter-
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Figure 1: Logical �ow of the surface �tting algorithm [51] extended to the N -D case.

ation l − 1 given by

P
(l−1)
i1,...,il−1,:,sl+1,...,sN

=


P

(l−1,1)
i1,...,il−1,0,sl+1,...,sN

· · · P
(l−1,M)
i1,...,il−1,0,sl+1,...,sN

...
. . .

...

P
(l−1,1)
i1,...,il−1,rl,sl+1,...,sN

· · · P
(l−1,M)
i1,...,il−1,rl,sl+1,...,sN

 ,

ik = 0, ..., nk, k = 1, ..., l − 1 ; sk = 0, ..., rk, k = l + 1, ..., N.

(15)

In Eq. (13), the matrix Nl collects the B-Spline basis functions as follows

Nl =


N0,pl

(
u
(l)
0

)
· · · Nnl,pl

(
u
(l)
0

)
...

. . .
...

N0,pl

(
u
(l)
rl

)
· · · Nnl,pl

(
u
(l)
rl

)
 , l = 1, ..., N. (16)

It is noteworthy that when l = 1, P
(0)
:,s2,...,sN is directly given by the TPs coordinates (i.e.

Q:,s2,...,sN ), while P
(N)
i1,...,iN−1,:

gives directly the CPs coordinates when l = N .
The problem becomes more di�cult when the TPs cannot be stored in a sorted set

along each dimension. In particular, let L < N be the number of dimensions along which
TPs cannot be arranged in a sorted set and (rL + 1) the number of the related TPs. In
this case, which can be considered as a hybrid situation, the structure, of the algorithm is
presented in Fig. 2. The main di�erence is that the temporary values of CPs coordinates,
at the �rst iteration, are computed as a succession of L-D hyper-surface �tting problems
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instead of curve �tting problems. Fig. 2 shows that the �rst temporary array of CPs
coordinates P(L) reduces the size of the TPs set Q from (rL+1) to (n1 +1)×· · ·× (nL+1)
along the L �rst directions. This implies to solve (rL+1 + 1) × · · · × (rN + 1) times the
following problem(

NTN
)
P(L)

:,...,:,sL+1,...,sN
= NTQ:,sL+1,...,sN , (17)

where P
(L)
:,...,:,sL+1,...,sN is the matrix collecting the temporary CPs coordinates at the �rst

iteration (i.e. the L-D hyper-surface) given by

P
(L)
:,...,:,sL+1,...,sN =


P

(L,1)
0,...,0,sL+1,...,sN

· · · P
(L,M)
0,...,0,sL+1,...,sN

...
. . .

...

P
(L,1)
n1,...,nL,sL+1,...,sN · · · P

(L,M)
n1,...,nL,sL+1,...,sN

 ,

sk = 0, ..., rk, k = L+ 1, ..., N,

(18)

while Q:,sL+1,...,sN is the matrix of TPs coordinates:

Q:,sL+1,...,sN =


Q

(1)
0,sL+1,...,sN

· · · Q
(M)
0,sL+1,...,sN

...
. . .

...

Q
(1)
rL,sL+1,...,sN · · · Q

(M)
rL,sL+1,...,sN

 , sk = 0, ..., rk, k = L+ 1, ..., N.

(19)

In Eq. (17), the matrix N collects the B-Spline basis functions products as follows

N =


N0,pl

(
u
(l)
0

)
× · · · ×N0,pL

(
u
(L)
0

)
· · · Nnl,pl

(
u
(l)
0

)
× · · · ×NnL,pL

(
u
(L)
0

)
...

. . .
...

N0,pl

(
u
(l)
rL

)
× · · · ×N0,pL

(
u
(L)
rL

)
· · · Nnl,pl

(
u
(l)
rL

)
× · · · ×NnL,pL

(
u
(L)
rL

)
 . (20)

When the �rst temporary CPs coordinates array P(L) is assessed, the algorithm of
Fig. 2 computes the next temporary CPs coordinates array P(l) according to the strategy
illustrated in Fig. 1. This results in a succession of curve �tting problems, solving Eq.
(13) for l = L + 1, ..., N . Note that the special case L = N implies to directly realize the
hyper-surface �tting which can be very costly when compared to the proposed algorithms.

Finally, for both cases, the independent parameters tuning the NURBS hyper-surface
shape are:

• the N degrees pk;

• the N knot lengths mk + 1;

• the mk − 2pk − 1 internal components of the knot vector U(k), k = 1, ..., N ;

• the nCP =
∏N
k=1 (nk + 1) weights ωi1,...,iN .

These parameters are collected in the vector of design variables ξ as

ξ =
(
p1, . . . , pN ,m1, . . . ,mN , U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . ,

U
(N)
pN+1, . . . , U

(N)
mN−pN−1, ω0,...,0, . . . , ωn1,...,nN

)
.

(21)
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Figure 2: Logical �ow of the surface �tting algorithm [51] extended to the N -D case for unsorted set of
TPs.

It is noteworthy that the number of independent parameters de�ning the NURBS hyper-
surface is given by the following equation

nvar = 2N +
N∑
k=1

(mk − 2pk − 1) +
N∏
k=1

(nk + 1) , (22)

which depends upon the integer variables of the hyper-surface.

3.2. Problem formulation

The goal of the proposed approach is to obtain an optimized surrogate model based on
NURBS hyper-surfaces. Therefore, a pertinent choice would be to formulate the metamod-
elling problem as a hyper-surface �tting problem by minimizing the Euclidean distance (in
M dimensions) between the NURBS hyper-surface and the set of TPs. Nevertheless, the
main idea is to search for the best value of the parameters tuning the shape of the NURBS
hyper-surface by optimizing the overall number of CPs (nCP ) and blending functions de-
grees, by keeping a su�cient accuracy (according to the problem requirements). Of course,
the number of CPs is related to the number of data needed to evaluate the outputs of the
metamodel, whereas the blending function degrees are related to the processing time of the
metamodel (recall that the NURBS blending functions are recursively evaluated according
to Eq. (5)). Accordingly, the objective function is de�ned as:

Φ(ξ) = a

N∑
k=0

nk
nkmax

+ (1− a)

N∑
k=0

pk
pkmax

, (23)
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where a is a suitable weighting coe�cient balancing the number of CPs and the NURBS
hyper-surface processing time (via the degrees). As stated above, the idea is to obtain an
optimized surrogate model minimizing the number of resources by ensuring a given level
of accuracy. The requirement on the model accuracy can be formalized as:

ε(j)max (ξ) ≤ ε(j)th , j = 1, . . . ,M, (24)

where ε
(j)
th is the maximum relative error threshold related to the required accuracy for

the j-th output of the surrogate model, whilst ε
(j)
max (ξ) is the maximum relative error for

the NURBS hyper-surface, i.e.

ε(j)max (ξ) = max
us

(
ε(j) (us)

)
, (25)

where ε(j) (us) is the relative error at parametric coordinates us =
(
u
(1)
s , ..., u

(N)
s

)
given

by

ε(j) (us) =
|H(j) (us)− z(j) (xs) |

z
(j)
max − z(j)min

, j = 1, . . . ,M, s = 1, ..., nTP . (26)

In Eq. (26), z(j) (xs) is the j-th output of the s-th TP at inputs xs =
(
x
(1)
s , . . . , x

(N)
s

)
,

whileH(j) (us) is the j-th counterpart evaluated by the metamodel (i.e. the j-th coordinate

of the NURBS hyper-surface) at the parametric coordinates us =
(
u
(1)
s , . . . , u

(N)
s

)
. The

scalar quantities z
(j)
max and z

(j)
min are the maximum and minimum values of the j-th output

over the set of TPs, respectively.
The hyper-surface �tting problem can be stated in the form of an unconventional

CNLPP as:

minξ Φ(ξ) = a
N∑
k=0

nk
nkmax

+ (1− a)
N∑
k=0

pk
pkmax

,

subject to :

ε
(j)
max (ξ) ≤ ε(j)th , j = 1, . . . ,M,

0 ≤ U (k)
lk
≤ 1, lk = pk + 1, . . . ,mk − pk + 1, k = 1, . . . , N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, . . . ,mk − pk + 1, k = 1, . . . , N,

nk − pk ≥ 0, k = 1, . . . , N,
ωi1,...,iN ≥ 0, ik = 0, . . . , nk.

(27)

Problem (27) is a non-standard CNLPP for di�erent reasons. Firstly, unlike the meth-
ods available in the literature [47, 51], the proposed strategy aims at providing all the
design variables ξ without introducing neither simplifying hypotheses nor empirical rules
on the parameters involved in the NURBS hyper-surface de�nition. Secondly, the number
of design variables is integrated into the design variables vector ξ and depends upon the
integer parameters of the NURBS hyper-surface. As explained in [64], the CNLPP (27)
can be e�ciently stated as an optimization problem of modular systems belonging to dif-
ferent families. Generally speaking, a modular system is composed by elementary units,
i.e. the modules. Each module is characterized by the same vector of unknowns, i.e. the
design variables of the module, which can take, a priori, di�erent values for every module
(in the most general case of di�erent modules). For problem (27), two di�erent classes of
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modules can be identi�ed: the knot vector components and the weights. CNLPPs dealing
with modular systems are unconventional because they are de�ned over a domain having a
dimension which depends upon a linear combination of the integer variables characterizing
the modular system. In particular, for problem (27) the problem dimension is given by Eq.
(22).

4. Numerical strategy

Considering the peculiar nature of problem (27) a hybrid optimization tool developed
at I2M laboratory in Bordeaux and called HERO (Hybrid EvolutionaRy Optimization)
has been developed. It is composed of a genetic algorithm ERASMUS (EvolutionaRy
Algorithm for optimiSation of ModUlar Systems) [64], interfaced with active-set algorithm
of MATLAB fmincon family, available in the MATLAB optimization toolbox [69], see Fig.
3.

Figure 3: Hybrid EvolutionaRy Optimization (HERO) algorithm.

As shown in Fig. 3, the optimization procedure for problem (27) is split in two phases.
During the �rst step, solely the GA ERASMUS is employed to perform the solution search
and the full set of design variables is taken into account. ERASMUS is a special GA able
to deal with optimization problems characterized by a non-constant number of design vari-
ables, and more speci�cally, optimization problems of modular systems. This goal can be
achieved thanks to the original representation of information in ERASMUS, i.e. the indi-
vidual's genotype, which is organized in modular parts, each one composed of chromosomes

which are in turn made of genes (each gene codes a speci�c design variable).
In agreement with the paradigms of natural sciences, individuals characterized by a

di�erent number of chromosomes (i.e. modular structures composed of a di�erent num-
ber of modules) belong to di�erent species. ERASMUS has been conceived for crossing
also di�erent species, thus making possible (and without distinction) the simultaneous op-

timization of species and individuals. This task can be attained thanks to some special
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genetic operators that have been implemented to perform the reproduction phase between
individuals belonging to di�erent species: the general architecture of ERASMUS is illus-
trated in Fig. 4. Accordingly, ERASMUS is able to optimize both the number of modules
(for each class of modules) and the values of the design variables characterizing each mod-
ule simultaneously. The e�ectiveness of ERASMUS has been shown on a large number of
real-world engineering problems [57�59, 70�75].

Figure 4: ERASMUS algorithm [64].

Due to the strong nonlinearity of problem (27), the aim of the genetic calculation is
to provide a potential sub-optimal point in the design space, which constitutes the initial
guess for the subsequent phase, i.e. the local optimization performed via the active-set

algorithm. During this second phase, only the components of the knot vector along each
dimension and the weights are considered as design variables, see Fig. 3. The second phase
of HERO allows �nding a local minimum for the number of parameters resulting from the
�rst GA exploration of the design space.

4.1. Meta-heuristic exploration

As stated above, when the number of internal knots and the degree along each para-
metric direction are included among the design variables, problem (27) is de�ned over a
space of changing dimension. Moreover, this CNLPP is characterized by a large number of
design variables. In particular, when all the weights are included into the design variables
vector, the computational cost could become prohibitive. To this purpose, a dedicated
strategy able to determine which weights should be integrated in the optimization process
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has been developed. This task is achieved by splitting the exploration of the design space
into two steps. In the �rst step, all weights are set to one, i.e. only B-Spline hyper-surfaces
are used to �t the set of TPs. Then, if the error threshold is no satis�ed, the local support
property [51] of NURBS hyper-surfaces is used to assess the weights that must be inte-
grated as design variables for the second step of the exploration. If the approximation error
is satis�ed after the �rst step, all weights are kept equal to one and the B-Spline hyper-
surface obtained by ERASMUS is used as a starting point for the subsequent deterministic
optimization.

4.1.1. Meta-heuristic exploration: �rst step

In this �rst step, all weights ωi1,...,iN are set to one and only B-Spline entities are used
to �t the TPs. As a result, the CNLPP is stated as:

minξI Φ(ξI) = a
N∑
k=0

nk
nkmax

+ (1− a)
N∑
k=0

pk
pkmax

,

subject to

ε
(j)
max(ξI) ≤ ε(j)th , j = 1, . . . ,M,

0 < U
(k)
lk

< 1, lk = pk + 1, ...,mk − pk + 1, k = 1, ..., N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, ...,mk − pk, k = 1, ..., N,

nk − pk ≥ 0, k = 1, ..., N,

ωi1,...,iN = 1, ik = 0, ..., nk, k = 1, ..., N.

(28)

The vector ξI collects the optimization variables as follows,

ξI =
(
p1, . . . , pN ,m1, . . . ,mN , U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . , U

(N)
pN+1, . . . , U

(N)
mN−pN−1

)
. (29)

It is noteworthy that a B-Spline hyper-surface can be considered as a modular system,
where mk and pk are standard design variables, whilst each knot vector U(k) represents

the generic module, whose variables are U
(k)
lk

, lk = pk + 1, ...,mk − pk − 1, k = 1, ..., N .
This system is thus composed of N modules corresponding to the N knot vectors of the
B-Spline hyper-surface. The individual genotype of ERASMUS, for problem (28), is given

in Fig. 5, where n
(k)
c,l is the number of chromosomes of the k-th modular part (related to

the knot vector U(k)) of the l-th individual. This quantity corresponds to the number of
internal components of the knot vector U(k) and is related to mk and pk by the following
relation:

n
(k)
c,l = mk − 2pk − 1. (30)

This step aims at setting up the number of optimization variables (i.e. the number of
the NURBS hyper-surface parameters). Thus, the degrees pIk and the knot vector lengths
mI
k + 1 given by ERASMUS remain constant for the rest of the optimization process.

Moreover, by means of the user-de�ned error threshold ε
(j)
th and the local support property

of NURBS hyper-surfaces, the following set Ω can be de�ned

Ω =
{
ωi1,...,iN , ik = 0, ..., nk | ∃us ∈ U ∩ S(i1,...,iN )

}
, (31)

where S(i1,...,iN ) is the local support of control point Pi1,...,iN (and therefore of the weight
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Figure 5: Individual genotype of ERASMUS for the NURBS hyper-surface �tting problem.

ωi1,...,iN ) de�ned as follow

S(i1,...,iN ) =
[
U

(1)
i1
, U

(1)
i1+p1+1

[
× ...×

[
U

(N)
iN

, U
(N)
iN+pN+1

[
, (32)

while U is the set of TPs at which the maximum relative error does not meet the user-
de�ned threshold

U =
{

us, s = 1, ..., nTP | ∃j ∈ [1,M ] : ε(j)(us) > ε
(j)
th

}
. (33)

If Ω is not empty, the weights that belong to Ω are introduced in the optimization
process for the second step of the exploration. Therefore, our approach is able to automat-
ically switch between B-Spline and NURBS formalism to best �t the set of TPs. Moreover,
if Ω is empty, the second step of the meta-heuristic exploration does not occur since no
optimization variables are added to the optimization process.

It is noteworthy that function Φ of Eq. (27) depends only upon the integer parameters
of the NURBS hyper-surface mk and pk. As a result, this function cannot be used within
a deterministic algorithm because these parameters are set equal to the values provided
by the genetic step. Moreover, deterministic algorithms are not able to deal with modular
systems optimization. To this purpose, a di�erent problem formulation is used during the
local optimization carried out by means of active-set algorithm.
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4.1.2. Meta-heuristic exploration: second step

During the second step of the meta-heuristic exploration, the number of optimization
variables is set (because the number of knot vector components and the degree along each
direction are the result of the �rst optimization step). Therefore, only continuous design
variables are considered at this stage, namely the weights belonging to the set Ω as well
as the knot vectors components. They are grouped as follows:

ξII =
(
U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . , U

(N)
pN+1, . . . , U

(N)
mN−pN−1,Ω

)
. (34)

This step takes place only if the set Ω is not empty and aims at providing a potential
sub-optimal point constituting the initial guess for the subsequent phase, i.e. the local
optimization performed via the deterministic algorithm. When Ω is empty, the solution
provided by ERASMUS at the end of the �rst step is used as the starting point for the
deterministic algorithm. For this second step the CNLPP reads:

minξII ψ
(χ)(ξII) =

1

M

∑M
j=1

[∑nTP
s=1

(
H

(j)
ξII

(us)−Q(j)
s

)χ]( 1

χ
)

[∑nTP
s=1

(
H

(j)
I (us)−Q(j)

s

)χ]( 1

χ
)

,

subject to
0 < U

(k)
lk

< 1, lk = pk + 1, ...,mk − pk + 1, k = 1, ..., N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, ...,mk − pk, k = 1, ..., N,

ωi1,...,iN ≥ 0, ik = 0, ..., nk.

(35)

In Eq. (35), ψ(χ) is the χ-norm function used to approximate the maximum relative error,
while HI is the hyper-surface given by the �rst step exploration. This approximation gives
good results for χ ≥ 20. Obviously, the hyper-surface HI, corresponding to the optimization

variables given by ξ
(opt)
I found at the end of the �rst step, is introduced among the initial

population of this second step.

4.2. Deterministic optimization: third step

If the set Ω is not empty, the pseudo-optimal solution found at the end of the second
step ξoptII is used as initial guess for the deterministic optimization phase. Also in this case,
only continuous design variables are considered. The resulting CNLPP is

minξIII ψ
(χ)(ξIII) =

1

M

∑M
j=1

[∑nTP
s=1

(
H

(j)
ξIII

(us)−Q(j)
s

)χ]( 1

χ
)

[∑nTP
s=1

(
H

(j)
II (us)−Q(j)

s

)χ]( 1

χ
)

,

subject to
0 < U

(k)
lk

< 1, lk = pk + 1, ...,mk − pk + 1, k = 1, ..., N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, ...,mk − pk, k = 1, ..., N,

ωi1,...,iN ≥ 0, ik = 0, ..., nk,

(36)
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where HII is the NURBS hyper-surface associated to the vector of optimization variables

ξ
(opt)
II given by ERASMUS at the end of the second exploration step. Note that when Ω

= ∅, ξ(opt)II = ξ
(opt)
I and the vector ξIII collects design variables as ξII does. Solving the

CNLPP (36) via a deterministic method allows �nding a local minimizer from the starting
point provided by the meta-heuristic exploration.

5. Numerical results

The e�ectiveness of the proposed metamodelling strategy is here shown by means of
three test cases: the �rst two benchmarks belong to the �eld of solid mechanics, whilst
the last one belongs to the �eld of image reduction. These benchmarks have been chosen
to illustrate some interesting properties of the surrogate model based on NURBS hyper-
surfaces.

The �rst example deals with the approximation of the displacement �eld of a thin plate
under plane stress hypothesis. The goal is to approximate the displacement �eld of the
plate when varying, as input data, the thickness and the force applied. Of course, the
displacement �eld depends also upon the Cartesian coordinates x and y. In this case the
metamodel is characterized by two outputs: the components of the displacement �eld along
x and y axis, respectively. The peculiar feature of this example is that the applied load
(i.e. one boundary condition) has been included among the inputs of the metamodel.

The second benchmark focuses on �nding the displacement �eld of a thin plate with
a hole: in this case the input data of the metamodel are the plate thickness, the hole
radius and the Cartesian coordinates x and y. The outputs are the components of the
displacement �eld. The interesting feature of this benchmark is related to the topology of
the TPs used to formulate the hyper-surface �tting problem, which varies when changing
the hole radius.

The results have been compared to those provided by the iterative procedure presented
in [47, 48] by using basis function of degree 2 and empirical rules to assess the knot vector
components by means of the TPs parametric coordinates:

dk =
rk + 1

nk − pk + 1
, lk = bjkdkc, αk = jkdk − lk,

U
(k)
pk+jk

= (1− αk)u
(k)
lk−1 + αku

(k)
lk
,

jk = 1, ..., nk − pk, k = 1, ..., N,

(37)

where b·c is the �oor function. As far as the iterative procedure is concerned, starting from
the minimal number of CPs, some CPs are added until the desired accuracy is achieved.
CPs are added in the parametric direction k with the following ratio:

qk =
nk
rk
, k = 1, ..., N. (38)

qk is a measure of the loading pressure of CPs in the direction k, thus CPs are added in the
direction with the lowest loading pressure. More details about the CPs addition/deletion
strategies are available in [47, 51].

The last benchmark is taken from the literature and deals with an image reduction
problem [1]. This benchmark has been solved by using both the proposed strategy and the
PGD-based approach presented in [1]. The aim of this test case is to compare the results
provided by the surrogate model based on NURBS hyper-surfaces to those provided by the
PGD.
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5.1. Test case 1

Figure 6: Geometry and boundary conditions for benchmark 1.

The geometry of the thin plate is illustrated in Fig. 6. The plate along x and y axes
are Lx = 0.2m and Ly = 0.1m, respectively. The thickness t varies in the range [tmin, tmax],
with tmin = 0.001m and tmax = 0.01m. A force is applied along the negative direction of y

axis, at location (x, y) =

(
Lx
2
, 0

)
, while the plate is clamped at x =

−Lx
2

. The intensity

of the force F varies in the interval [Fmin, Fmax], with Fmin = 50N and Fmax = 200N.
The metamodelling process aims at providing the displacement �eld of the plate for the
di�erent values of the thickness t and the force intensity F , as follows:

ẑ(x, y, t, F ) =

(
ûx(x, y, t, F )
ûy(x, y, t, F )

)
, (39)

where ẑ(x, y, t, F ) is the surrogate model function approximating the real displacement
�eld of the plate, while ûx and ûy are the approximated displacement components along x
and y axes, respectively.

The MIMO system here is, hence, characterized by N = 4 inputs and M = 2 outputs.
The TPs have been obtained through a �nite element (FE) static analysis carried out via
tha ANSYS code. The mesh of the FE model is composed of 126 × 30 PLANE182 four-
node elements. Of course, a preliminary sensitivity analysis of the displacement �eld to
the mesh size has been conducted, but it is not reported here for the sake of brevity. Fig.
7 shows the displacement �eld components for a thickness t = 0.001m and a force intensity
F = 50N. It is noteworthy that, due to the NURBS formalism, derivatives of the NURBS
hyper-surface can be easily obtained, thus strain and stress �elds can be directly computed
from the approximated displacement �eld.

The database of TPs is composed by the displacement �eld components ux and uy
computed for di�erent values of x, y, t and F and are collected in a 4-D array Q as follows:

Qs1,s2,s3,s4 = (ux (xs1 , ys2 , ts3 , Fs4) , uy (xs1 , ys2 , ts3 , Fs4)) , sk = 0, . . . , rk, k = 1, ..., N.

(40)
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(a) Displacement �eld form ux (b) Displacement �eld ux

(c) Displacement �eld form uy (d) Displacement �eld uy

Figure 7: Displacement �eld for benchmark 1 at thickness t = 0.001m and force intensity F = 10N.

The dimensionless parameters u(k) are de�ned as:

u(1) =
x− −Lx

2
Lx
2
− −Lx

2

, x ∈
[
−Lx

2
,
Lx
2

]
, (41)

u(2) =
y − −Ly

2
Ly
2
− −Ly

2

, y ∈
[
−Ly

2
,
Ly
2

]
, (42)

Genetic parameters

Test case 1 Test case 2
(1st analysis)

Test case 2
(2nd analysis)

Test case 3

N. of population 3 3 3 2
Population size 100 100 200 150
N. of generations 100 100 100 100
Crossover probability 0.85 0.85 0.85 0.85
Mutation probability 0.005 0.005 0.005 0.005
Shift probability 0.5 0.5 0.5 0.5
Isolation time 5 5 5 5

Selection roulette-wheel
Elitism active

Table 1: Genetic parameters of the GA ERASMUS for test cases 1, 2 and 3.
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Active-set algorithm parameters

Maximum number of objective function evaluations 100 × number of variables
Maximum number of iterations 400
Minimum objective function improvement 10−6

Minimum optimization variable change 10−6

Maximum constraint violation 10−6

Table 2: Optimization parameters of the active-set algorithm for test cases 1, 2 and 3.

u(3) =
t− tmin

tmax − tmin
, t ∈ [tmin, tmax] , (43)

u(4) =
F − Fmin

Fmax − Fmin
, F ∈ [Fmin, Fmax] . (44)

The parameters of the GA ERASMUS, used to solve problem (27), are listed in Table
1. Selection is performed by the roulette-wheel operator and optimization constraints are
handled via Automatic Dynamic Penalisation (ADP) method [76]. The parameters of
the active-set algorithm, used to solve problem (36), are listed in Table 2. The whole
optimization process requires a computational time of approximately 6000s on a machine
with a four cores intel i7 processor (2.9 GHz).

Variable x y t F Overall
number
of points

Maximal error
(TPs)

Mean error
(TPs)

rk + 1 (TPs) 126 30 21 21 1 666 980 ε
(ux)
max ε

(uy)
max ε

(ux)
mean ε

(uy)
mean

Iterative
method

pk 2 2 2 2
1 062 423

2.36e−3 2.05e−3 4.04e−5 6.91e−5

nk 108 26 18 18 5.24e−4

(fmin-

con)

8.46e−4

(fmin-

con)

1.95e−5

(fmin-

con)

4.25e−5

(fmin-

con)

HERO
pk 4 4 1 1

43 500
4.11e−3

(ERAS-
MUS)

3.20e−3

(ERAS-
MUS)

1.08e−4

(ERAS-
MUS)

2.09e−4

(ERAS-
MUS)

nk 28 24 14 3 2.33e−3

(fmin-

con)

3.02e−3

(fmin-

con)

9.42e−5

(fmin-

con)

2.09e−4

(fmin-

con)

Table 3: Comparison of results provided by HERO and those resulting from the iterative procedure [47, 51].

The results of the NURBS hyper-surface �tting process are shown in Table 3. A maxi-

mum relative error of ε
(ux)
th = ε

(uy)
th = 5e−3 has been used for both HERO and the iterative

procedure in [47, 51]. It is noteworthy that, for this benchmark, the set Ω was empty after
the �rst genetic exploration, i.e all weights are equal to 1, thus a B-Spline hyper-surface is
used in the subsequent deterministic optimization.

As it can be seen on Table 3, the proposed strategy is able to strongly reduce the
number of CPs when compared to the iterative procedure: 43 500 when using HERO vs.
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1 062 423 when the strategy presented in [51] is employed. This result is quite expected
since the empirical rules used in [47, 51] was conceived to make computation faster and
not for minimising the number of NURBS entity parameters. To highlight the fact that
using empirical rules leads to non-optimal solutions, the same third step, i.e. problem (36)
is solved by considering as a starting point the result from the iterative method.

In the case of the proposed approach, when comparing the value of the error at the
starting point (which is the best solution resulting from the genetic exploration) and at the
local optimum, found at the end of the process, the approximation error has not been de-
creased so much, showing that the starting point is really closer to the local optimum. The
same consideration does not apply for the result provided by the iterative strategy which
is far away from the corresponding local optimum. Even if the results of the proposed
approach are better than those provided by the iterative strategy, it must be noticed that
the optimized solution may not be the global optimum. In fact, when all NURBS entity
parameters are integrated as design variables during the �rst optimization step, the result-
ing CNLPP is strongly non-convex and, at the end of the iterations, the genetic algorithm
provides, often, multiple equivalent optimal solutions which can be used as a starting guest
for the deterministic optimization (and which converges towards di�erent minimisers). Ac-
cordingly, the solution presented in Table 3 corresponds to the best individual provided by
ERASMUS at the end of the genetic exploration.

5.2. Test case 2

Figure 8: Geometry and boundary conditions for benchmark 2.

The geometry of the second benchmark is illustrated in Fig. 8. The plate is rectangular
with lengths Lx = 0.2m and Ly = 0.1m along x and y axes, respectively. The thickness
t varies in the interval [tmin, tmax], with tmin = 0.001m and tmax = 0.01m. The plate has
a hole of radius R varying in the range [Rmin, Rmax], with Rmin = 0.005m and Rmax =

0.025m. A force is applied in the negative direction of y axis, at location (x, y) =

(
Lx
2
, 0

)
,

while the plate is clamped at x =
−Lx

2
. The intensity of the force is F0 = 100N. The goal

is to obtain a surrogate model of the displacement �eld of the structure for the di�erent
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values of t and R:

ẑ(x, y, t, R) =

(
ûx(x, y, t, R)
ûy(x, y, t, R)

)
, (45)

where ẑ(x, y, t, R) is the NURBS hyper-surface approximating the real displacement �eld
of the plate, while ûx and ûy are the approximated displacement �elds along x and y axes,
respectively.

(a) Forme du champ de dépalcement ux (b) Champ de dépalcement ux

(c) Forme du champ de dépalcement uy (d) Champ déplacement uy

Figure 9: Displacement �eld for benchmark 2 at thickness t = 0.001m and hole radius r = 0.005m.

The thickness t and the radius R are design parameters, while x and y the coordinates of
each point belonging to the plate. The MIMO system here is, thus, characterized by N = 4
inputs and M = 2 outputs. The TPs have been obtained by means of a static analysis
carried out on a FE model made of 32400 four-node PLANE182 elements with plane stress
formulation. The number of elements has been obtained after a preliminary convergence
study (not reported here for the sake of brevity). Fig. 7 illustrates the displacement �eld
for a thickness t = 0.001m and a hole radius R = 0.005m.

The set of TPs is composed by displacement �eld components ux and uy computed for
di�erent values of x, y, t and R and is stocked in the form of a 4-D array Q:

Qs1,s2,s3,s4 = (ux (xs1 , ys2 , ts3 , Rs4) , uy (xs1 , ys2 , ts3 , Rs4)) , sk = 0, . . . , rk. (46)

The dimensionless parameters u(k) are determined as follows:

u(1) =
x− −Lx

2
Lx
2
− −Lx

2

, x ∈
[
−Lx

2
,
Lx
2

]
, (47)
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u(2) =
y − −Ly

2
Ly
2
− −Ly

2

, y ∈
[
−Ly

2
,
Ly
2

]
, (48)

u(3) =
t− tmin

tmax − tmin
, t ∈ [tmin, tmax] , (49)

u(4) =
R−Rmin

Rmax −Rmin
, R ∈ [Rmin, Rmax] . (50)

Variable x y t R Overall
number
of points

Maximal error
(TPs)

Mean error
(TPs)

rk + 1 (TPs) 4 681 21 21 2 064 321 ε
(ux)
max ε

(uy)
max ε

(ux)
mean ε

(uy)
mean

Iterative
method

pk 2 2 2 2
1 062 423

8.27e−3 7.54e−3 1.41e−4 6.84e−5

nk 131 27 18 18 7.36e−3

(fmin-

con)

2.38e−3

(fmin-

con)

1.31e−4

(fmin-

con)

5.76e−5

(fmin-

con)

HERO 1
pk 1 1 4 1

12 726
1.30e−2

(ERAS-
MUS)

8.13e−3

(ERAS-
MUS)

8.44e−4

(ERAS-
MUS)

5.12e−4

(ERAS-
MUS)

nk 100 8 6 1 1.10e−2

(fmin-

con)

8.13e−3

(fmin-

con)

7.99e−4

(fmin-

con)

5.08e−4

(fmin-

con)

Iterative
method

pk 2 2 2 2
811 512

1.21e−2 2.12e−2 2.24e−4 9.10e−5

nk 116 23 16 16 6.79e−3

(fmin-

con)

2.00e−3

(fmin-

con)

2.20e−4

(fmin-

con)

9.10e−5

(fmin-

con)

HERO 2
pk 1 1 4 1

2 736
2.08e−2

(ERAS-
MUS)

2.45e−2

(ERAS-
MUS)

9.59e−4

(ERAS-
MUS)

8.04e−4

(ERAS-
MUS)

nk 11 18 5 1 2.05e−2

(fmin-

con)

2.14e−2

(fmin-

con)

9.54e−4

(fmin-

con)

7.31e−4

(fmin-

con)

Table 4: Comparison of results provided by HERO and those resulting from iterative procedure [47, 51].

The parameters of the GA ERASMUS used to solve problem (28) for this second
benchmark are listed in Table 1. Selection is performed by the roulette-wheel operator,
whilst the ADP method is used as a constraint-handling technique [76]. The parameters
of the active-set algorithm, used to solve problem (36), are listed in Table 2. The whole
optimization process requires a computational time of approximately 6500s on a machine
with a four cores intel i7 processor (2.9 GHz).

The results of the NURBS hyper-surface �tting process are shown in Table 4. A maxi-
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mum relative error of ε
(ux)
th = ε

(uy)
th = 3e−2 has been used for both the iterative method and

the proposed approach. As in the case of benchmark 1, a B-Spline hyper-surface is su�cient
to �t the displacement �eld components over the structure for each value of t and R. As
it can be seen from Table 3, two optimal solutions are reported corresponding to di�erent
combinations of parameters tuning the behaviour of the genetic algorithm ERASMUS as
reported in Table 1 (i.e. the number of individuals per population is di�erent). Also in this
case, Table 4 shows an interesting result: the number of CPs for the proposed strategy is
drastically decreased when compared to the iterative methods using empiric rules. Again,
the starting points for the deterministic optimization found by ERASMUS are really close
to a local optimum. The same function has been used by considering as initial guess the
solutions provided by the iterative procedure: the maximum relative error for solution with
1 062 423 CPs is greater than that characterizing the solution with 811 512 CPs. However,
the mean relative error is still greater for the solution with 811 512.

5.3. Test case 3

This benchmark focuses on an image reduction problem and has been solved by means
of both the surrogate model based on NURBS hyper-surfaces and PGD method [1, 6]. In
this context, the goal is to minimize the number of data needed to display the original
picture to save memory space, without degrading too much the quality of the image. The
results of the proposed metamodelling strategy have been compared to those obtained by
the PGD method. Unlike the image reduction problem presented in [1], dealing with a
grayscale picture, the benchmark proposed in this study deals with the image reduction of
a colour picture (courtesy of Mélissande Labadie).

For this test case, the parameter a of Eq. (28) has been set to 0.99 to increase the
weight related to the minimization of the CPs number. The maximum approximation
error threshold for problem (28) is:

ε
(j)
th = 0.35, j = R,G,B, (51)

where R, G and B represents red, green and blue outputs respectively. The parameters
tuning the behaviour of the GA are reported in Table 1, whilst those governing the be-
haviour of the active-set algorithm are in Table 2. The interested reader is addressed to
[1] for the details about the PGD approach in relation to the proposed benchmark.

An additional stopping criterion for the GA has been considered for this example.
Since the genetic calculation focuses on the CPs number minimization, a threshold value
on the expected compression ration has been added among the stopping criteria for the
meta-heuristic exploration.

When the original picture is stored in a RAW format, three matrices are stocked (i.e.
red, green and blue values), whose size is related to the numbers of pixel pixh and pixv
along horizontal and vertical axes, respectively. The number of data needed to save the
picture can be expressed as:

n
(raw)
data = 3× pixh × pixv. (52)

In the case of a NURBS entity, the number of data to be saved is:

nISOdata =

{
2 + 3nCP +

∑N
k=1 (nk − pk) , for B-Spline,

2 + 4nCP +
∑N

k=1 (nk − pk) , for NURBS.
(53)

According to the above formulae, a B-Spline entity requires less data to be stored than the
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(a) Original image with
2 901 176 data (pixv =
1218, pixh = 794)

(b) B-Spline with 15 601
data (n1 = 100 ; n2 = 50)

(c) NURBS with 20 752
data (n1 = 100 ; n2 = 50)

(d) PGD with 120 720
data (Niter = 20)

(e) PGD with 18 108 data
(Niter = 3)

(f) PGD with 24 144 data
(Niter = 4)

Figure 10: Image reduction: comparison between PGD [1], NURBS and B-Spline results for a maximum
relative error equal to 0.65.

NURBS one for a given number of CPs. Regarding the PGD, the number of data is linked
to the number of enrichments Niter as follows:

n
(PGD)
data = 3×Niter × (pixh + pixv) . (54)

The compression ratio can, thus, be expressed as the ratio of the number of data
required by the metamodel to the number of data related to the RAW format, i.e.

c =
nMdata
nRAW
data

, M = ISO,PGD. (55)

Fig. 10 shows the results of a compressed image for a �xed number of CPs obtained
by using B-Spline (Fig. 10b) and NURBS (Fig. 10c) entities. In this comparison, the
knot vectors have been computed according to Eq. (37) and only the weights of the
NURBS have been optimized. Surprisingly, the approximation error related to B-Spline
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Method
pixv pixh Number

of data
Compression

ratio
Maximal
error

Mean
error

r1 + 1 r2 + 1 ndata c (data storage) εmax εmean

Original 1 218 794 2 901 276 (23.2 mo) / /

PGD
Niter 3 18 108 6.2e−3 (435 ko) 0.7780 0.0820
Niter 4 24 144 8.3e−3 (579 ko) 0.7834 0.0661
Niter 20 120 720 4.2−2 (2.9 mo) 0.5921 0.0299

B-Spline of
Fig. 10b

pk 2 2
15 601 5.4e−3 (374 ko) 0.6182 0.0254

nk 100 50

NURBS of
Fig. 10c

pk 2 2
20 752 7.2e−3 (498 ko) 0.6182 0.0254

nk 100 50

Table 5: Approximation error comparison between PGD [1], NURBS and B-Spline results related to the
images shown in Fig 10.

and NURBS metamodels were really close as it can be seen in Table 5, where maximal and
mean approximation errors have been expressed as follows:

εα = max
j
ε(j)α , α = max,mean, j = R,G,B. (56)

The results of the PGD approach, fro an equivalent number of data of both B-Spline
and NURBS entities, are illustrated in Figs. 10e and 10f, respectively. As it can be
inferred from these images and also from the results reported in Table 5, PGD results are
less accurate than the NURBS-based metamodelling strategy for an equivalent number
of data. Fig. 10d shows the reduced image obtained by means of the PGD, which is
as accurate as image 10b. However, this image requires an amount of data signi�cantly
greater (about seven times) than that required for the B-Spline solution illustrated in Fig.
10b. Moreover, although the maximal approximation error of the PGD solution of Fig.
10d is slightly lower than that of the B-Spline solution of Fig. 10b, the B-Spline image
look "prettier" than the PGD one. This visual aspect is due to the error repartition on
the three fundamental colours (Red, Green and Blue) which is better in the case of the
B-Spline solution. The results listed in table 5 also show that including weights among the
optimisation variables gives a negligible improvement in the approximation error.

Method
pixv pixh Number

of data
Compression

ratio
Maximal
error

Mean
error

r1 + 1 r2 + 1 ndata c (data storage) εmax εmean

Original 1 218 794 2 901 276 (23.2 mo) / /

PGD
Niter 99 597 564 0.21 (4.8 mo) 0.4392 0.0139
Niter 139 839 004 0.29 (6.7 mo) 0.3473 0.0120

HERO
(B-Spline)

pk 6 6
592 999 0.20 (4.7 mo) 0.3486 0.0117

nk 509 386

Table 6: Approximation error comparison between the results provided by the PGD [1] and HERO of Fig.
11.

Accordingly, only B-Spline entities have been considered in the HERO process. The
results are provided in Table 6, whilst the corresponding images are presented in Fig. 11.
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(a) Original image with
2 901 176 data (pixv =
1218, pixh = 794)

(b) HERO with 592 999
data (n1 = 509 ; n2 = 386)

(c) PGD with 839 004 data
(Niter = 139)

(d) PGD with 597 564
data (Niter = 99)

Figure 11: Image reduction: comparison between PGD [1] and HERO results.

When looking at Fig. 11, it is rather di�cult to distinguish between the original image and
that provided by the surrogate modelling strategy based on NURBS hyper-surfaces when a
compression ratio c = 0.20 is set. However, Table 6 shows that the maximal approximation
error is relatively high compared to the minimal accuracy needed in a no loss case. Indeed,
since RGB matrices are composed of integers varying between 0 and 255 (i.e. 8 bits per
colour), the metamodel outputs are rounded to the nearest integer (for both PGD and
HERO). As a result, the minimal accuracy giving negligible loss of picture quality is:

ε
(loss)
th =

0.5

255
= 0.02, (57)

where ε
(loss)
th is the maximal approximation error threshold that prevents from degrading

the original picture. As it can been inferred from Table 6, the maximal approximation
error related to both B-Spline and PGD solutions is higher than this value. However, the
mean error is twice lower than this threshold and this explains why there are no "visible"
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di�erences between original and reconstructed picture.
The solution based on the B-Spline hyper-surfaces is compared to the results provided

by the PGD, at equivalent compression ratio (Fig. 11d) and at equivalent maximal ap-
proximation error (Fig. 11c). It is noteworthy that the solution resulting from the PGD,
at equivalent compression ratio, has a lower "quality" than that provided by HERO. Table
6 shows that the maximal approximation error is, in this case, signi�cantly higher. In ad-
dition, to reach the accuracy of the B-Spline-based metamodel, the number of data needed
by the PGD is 1.41 times higher. It is noteworthy that mean approximation error related
to the PGD solutions is still higher than that related to the B-Spline-based metamodel.

6. Conclusions

A new metamodelling technique based on NURBS hyper-surfaces together with a hybrid
optimization strategy has been presented in this paper. The proposed approach is very
general: nor simplifying hypotheses neither empirical rules are utilised to select a priori

some parameters of the metamodel. Conversely, the number of parameters and their values
are automatically determined by the hybrid optimization strategy (and according to user's
de�ned accuracy), making this approach problem-independent. Moreover, the metamodel
obtained aims at being as "light" as possible since it automatically determines if rather
B-Spline or NURBS hyper-surfaces are needed to �t a given set of data points and which
and where (i.e. on the control hyper-net) weights have to be added during the optimization
process. This result is achieved thanks to the special genetic algorithm ERASMUS able
to deal with optimization problems characterized by a variable number of design variables.
The e�ectiveness of this process has been shown through two meaningful examples and
the results have been compared to those provided by an iterative procedure available in
the literature. In addition, a benchmark taken from the literature has been solved by
the proposed approach and the results provided has been compared to those of the PGD
method.

The use of NURBS hyper-surfaces as surrogate models has revealed to be really e�ective
in handling boundary conditions among the input parameters of the surrogate model.
Moreover, the proposed approach has shown its ability to �t non-convex sets of data where
the TPs space topology varies with metamodel inputs. In both cases, the obtained results
have been compared to those resulting from an iterative method taken from literature.
From these comparisons it seems evident that the use of empirical rules in setting some
of the parameters of the NURBS entity are not adequate for minimising the metamodel
resources (i.e. number of CPs and degrees) by ensuring, simultaneously, the required
accuracy.

When compared to the PGD method on a benchmark taken from the literature, dealing
with an image reduction problem, the proposed approach is more e�cient in terms of either
compression ratio or accuracy. Moreover, for this test case, including weights into the
optimization process has a negligible e�ect.

Of course, the proposed methodology constitutes just a �rst attempt. One limitation
is that the set of TPs needs to be sorted to use the algorithms presented in Section 3 for
the computation of the CPs coordinate. When dealing with a high number of TPs, the
matrix to be stored before inversion could reach terabytes of memory. The inversion in this
case is anything but trivial. This problem has been addressed in the literature by adding
a sorting step such as natural neighbour used in [47]. However, this strategy seems to be
quite limiting. To this purpose, research is ongoing in order to develop suitable mapping
techniques avoiding the use of sorted set of TPs. In this way, also unordered data can be
e�ectively handled by the proposed approach.
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Furthermore, linking NURBS-based methods with kriging could be an interesting prospect.
In fact, Kriging is based upon the study of the spatial dependency of the TPs. As a result,
an estimation of the approximation error is provided together with the function evaluation.
Coupling Kriging to the NURBS-based metamodelling strategy could be very useful for a
better assessment of the approximation error and also to exploit the local support property
of the NURBS blending function to determine the correlation among inputs.

A further interesting prospect concerns the application of the proposed metamodelling
strategy to eigenvalue problems and nonlinear analyses. Due to the complexity of the
topology of the TPs space, in these cases some smoothing terms should be added to the
problem formulation in order to avoid over-�tting.
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