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Abstract 

Background: Good quality or developmentally competent eggs result in high survival of 

progeny. Previous research has shed light on factors that determine egg quality, however, 

large gaps remain. Initial development of the embryo relies on maternally-inherited 

molecules, such as transcripts, deposited in the egg, thus, they would likely reflect egg 

quality. We performed transcriptome analysis on zebrafish fertilized eggs of different quality 

from unrelated, wildtype couples to obtain a global portrait of the egg transcriptome to 

determine its association with developmental competence and to identify new candidate 

maternal-effect genes. Results: Fifteen of the most differentially expressed genes (DEGs) 

were validated by quantitative real-time PCR. Gene ontology analysis showed that enriched 

terms included ribosomes and translation. In addition, statistical modeling using partial least 

squares regression and genetics algorithm also demonstrated that gene signatures from the 

transcriptomic data can be used to predict reproductive success. Among the validated DEGs, 

otulina and slc29a1a were found to be increased in good quality eggs and to be 

predominantly localized in the ovaries. CRISPR/Cas9 knockout mutants of each gene 

revealed remarkable subfertility whereby the majority of their embryos were unfertilizable. 

The Wnt pathway appeared to be dysregulated in the otulina knockout-derived eggs. 

Conclusions: Our novel findings suggested that even in varying quality of eggs due to 

heterogeneous causes from unrelated wildtype couples, gene signatures exist in the egg 

transcriptome, which can be used to predict developmental competence. Further, 

transcriptomic profiling revealed two new potential maternal-effect genes that have 

essential roles in vertebrate reproduction.  

Keywords: egg quality, transcriptome, microarray, zebrafish, prediction model 
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Background 

 Good quality or developmentally competent fish eggs are defined as those that are 

successfully fertilized and develop normally as viable, non-malformed embryos that 

hatch[1]. However, the detailed mechanisms that are involved in egg quality and 

developmental competence are still poorly understood, and at present, no predictive 

markers of egg quality exist. Maternal-effect genes are those that produce factors that are 

involved in the earliest stages of embryonic development, including fertilization, parental 

genome union, and cell division. Since initial development of the embryo relies on these 

maternally-inherited molecules including coding and non-coding mRNAs and proteins that 

are deposited into the developing oocyte, thus, they would likely reflect egg quality[2,3]. 

Among these, the maternally-provided transcriptome of the egg is critical in kick-starting 

early embryogenesis because transcription from the zygotic genome does not start until the 

mid-blastula transition (MBT) which occurs approximately 3-4 hours post-fertilization (hpf) 

in zebrafish[4,5]. 

 Previous research using both traditional mutational assays as well as more recent 

transcriptomic analyses have revealed several maternal factors that can influence egg 

quality. The nucleoplasmin 2 (npm2a and npm2b) genes were recently found to be crucial 

for egg developmental competence; suppression of npm2b resulted in embryonic arrest 

before zygotic genome activation (ZGA) in mouse and zebrafish, and npm2a deficiency in 

zebrafish led to a complete lack of embryonic development[6]. Further, post-ovulatory 

ageing induced egg quality defects are associated with low mRNA levels of igf1 (insulin 

growth factor 1) and beta-tubulin, as well as a small but significant overabundance of 

keratins 8 and 18, cathepsin Z, and pgs2 (prostaglandin synthase 2)[7,8]. In addition, 

controlled induction of ovulation by hormonal or photoperiod manipulation negatively 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


4 
 

impacts egg quality in rainbow trout, and the abundance of several genes including apoC1 

(apolipoprotein C1), mr-1 (major histocompatibility class 1 related protein), ntan1 (N-

terminal asparagine amidase 1), myo1b (myosin 1b), pyc (pyruvate carboxylase), as well as 

phb2 (prohibitin 2) was found to be significantly different between naturally and artificially 

induced eggs[9]. Other studies have suggested that genes involved in immune regulation 

have an impact on egg competence whereby variable abundance of transcripts in the 

interferon pathway and mhc (major histocompatibility) class genes was demonstrated in 

eggs of different quality[10,11]. However, despite these results, knowledge on the factors 

that contribute to the quality of fish eggs remains patchy. Thus, in this study, we carried out 

a large-scale analysis to compare the transcriptome of eggs of different quality and 

performed statistical modeling of differentially expressed genes (DEGs) with survival in 

order to determine if there are common factors that impact egg quality in unrelated 

wildtype (WT) females that can then serve as markers and/or predictors of developmental 

competence. We further conducted functional analyses on two candidate genes that were 

increased in bad quality eggs using the CRISPR/cas9 knockout system and reveal for the first 

time the essential roles of two new potential maternal-effect genes, otulina (OTU 

deubiquitinase with linear linkage specificity a) and slc29a1a (solute carrier family 29, 

member 1a). Our findings provide evidence that even in different quality eggs from 

unrelated, wildtype couples bred under standard conditions, gene signatures exist in the egg 

transcriptome, which can be used to predict developmental competence, and that two new 

potential maternal-effect genes have essential roles in vertebrate reproduction. 
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Results 

Transcriptomic differences between good and bad eggs in all samples 

 Among the 136 clutches of fertilized egg we collected, we selected 16 clutches each 

of good and bad quality eggs defined as those with >93% and <38% survival at 48 hpf, 

respectively, for microarray analysis using a customized chip containing 61,657 annotated 

sequences of the zebrafish transcriptome. We excluded the sequences of which 80% of the 

samples did not have any expression from further analyses, and we identified 31,261 

annotated sequences that were expressed in the majority of the samples. Using the 

GeneSpring software with an FDR <0.05 as an exclusion criteria, 66 DEGs that were 

statistically significant between good and bad quality eggs were revealed. We observed in 

the heat map showing supervised clustering (Fig. 1a) of the 66 DEGs that a majority of them 

were upregulated (60 genes, red signal) with only a few genes (6 genes) that were 

decreased (blue signal) in bad quality eggs as compared to good quality eggs.  Additional file 

1 lists the 66 DEGs including their associated information. Of these 66 genes, 8 were 

annotated in Ensembl with a unique identifier, but were not found to be associated with any 

known gene or protein. 

 

Overrepresentation analyses of gene ontological terms of the DEGs 

 We submitted the 66 DEGs to functional annotation analyses by gene ontology using 

two different online programs, DAVID[12] and PANTHER[13], with the entire zebrafish 

transcriptome as background (Fig. 1b-1c). Among the 66 DEGs submitted, functional terms 

associated with 55 and 54 annotated genes were identified and therefore classified by the 

DAVID and PANTHER programs, respectively. In the former analysis, one cluster of terms 

(enrichment score: 10.13) were enriched from our gene list included intracellular 
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(p=0.00164), translation (p=1.6E-10), and ribosomes (p=9.6E-14) (Fig. 1b). In the latter 

analysis, the DEGs were classified according to biological processes, which included cellular 

processes, metabolic processes, cell component and biogenesis, biological regulation, 

response to stimulus, developmental processes, localization, and reproduction (Fig. 1c). In 

fact, upon inspection of the differentially expressed genes shown in Additional file 1, the 

ones that underwent the most drastic changes in expression (ribosome production factor 2 

homolog (S. cerevisiae) [rpf2], ribosomal protein S27 (isoform 2) [rps27], and U1 

spliceosomal RNA  [U1] with fold changes of 7.81, 1.90, and -2.33/-2.35, respectively) are 

associated with translation//ribosomes. 

 

Quantitative real-time polymerase chain reaction (qPCR) validation of the DEGs 

 In order to confirm the results obtained by microarray analysis, another independent 

method to detect gene expression changes was performed. qPCR was conducted using the 

same 32 samples that were submitted to microarray analysis and the primers used are listed 

in Additional file 2. Eight genes that underwent the most drastic changes in microarray 

analysis were subjected to qPCR, and their biological function as well as the p-value and fold 

change in the microarray analysis are shown in Additional file 3. qPCR confirmed that the 

expression of rpf2 (1.87±0.33 vs. 0.48±0.20, p=0.01), spon1b [spondin 1b] (1.61±0.34 vs. 

0.49±0.09, p=0.0003), tspan7b [tetraspanin 7b] (1.00±0.11 vs. 0.50±0.08, p=0.001), rps27 

(2.82±0.18 vs. 1.66±0.13, p<0.0001), stra13 [stimulated by retinoic acid 13 

homolog/centromere protein X] (1.20±0.09 vs. 0.87±0.12, p=0.03), and rtn4ip [reticulon 4 

interacting protein 1] (1.02±0.07 vs. 0.84±0.04, p=0.03) were upregulated in bad quality 

eggs as compared to good quality eggs, while that of U1 (21.08±5.81 vs. 4.38±1.28, p=0.009) 

and slc29a1a (1.04±0.05 vs. 1.26±0.06, p=0.008) were increased in bad relative to good 
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quality eggs (Fig. 2a-h). Interestingly, despite the statistical significance in the differential 

regulation of U1 (Fig. 2g), the expression of this gene was regulated in the opposite 

direction by qPCR as compared to by microarray analysis. In fact, we found that U1 

expression was decreased on average by 2.3-fold in bad quality eggs relative to good quality 

eggs as assessed by microarray, but qPCR results showed that it was increased by 

approximately 5-folds in bad as compared to good quality eggs. Regardless of this 

difference, we found by both microarray and qPCR that the transcript level of all eight genes 

were differentially regulated. 

 

Couples analysis 

 Within the two groups of fertilized eggs, we observed a large variability in the 

expression of the genes using both detection methods. Upon further inspection, we found 

that certain couples (#5, 10, 33; Additional file 4) consistently produced bad quality eggs 

(≤50% survival at 48 hpf). Therefore, fertilized eggs harvested at two different periods (1-3 

months apart) from these 3 couples (6 samples in total) along with samples from 6 random 

couples that consistently produced good quality eggs were submitted for re-analyses by 

microarray and qPCR. 

 

Transcriptomic differences by microarray in different couples 

 Microarray analysis using the GeneSpring program of the six samples that came from 

the three couples that consistently produced bad quality eggs revealed 1385 DEGs, and 

there appeared less variability in transcript levels within each sample group, as shown in the 

heat map by supervised clustering (Fig. 3a). The complete list of annotated genes is shown 

in Additional file 5. Similar to the microarray results of all 32 samples, we observed that 
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there were far more upregulated genes (1240) in the bad quality eggs relative to good 

quality eggs (145 genes). Of the 1385 DEGs, 233 could be identified with an Ensembl 

annotation, but were not found to be associated with any characterized gene or protein. We 

also observed that the differences in alterations in the transcript levels were much greater 

in the couples analysis than those detected when all samples were included. For example, 

there was a 53-fold increase in tk2 [thymidine kinase 2], 25-fold upregulation in drd3 

[dopamine receptor D3], and a 60-fold decrease in the expression of prkcq [protein kinase C, 

theta] (Additional file 6), while the most differentially regulated genes (rpf2, spond1b, 

tspan7b, and U1) were altered by only 2-7-folds in the former analysis (Additional file 3). 

 

Overrepresentation analyses of gene ontological terms of the DEGs in the couples analysis 

 In order to get an idea of the functional properties of the 1385 DEGs found by the 

couples analysis, we submitted this list of genes for gene ontology as before. Of the 1385 

DEGs, we were able to classify and identify functional properties of 1151 and 1135 of the 

genes by the DAVID and PANTHER programs, respectively. The DAVID analysis revealed 5 

clusters with enriched terms including ribosome/translation (enrichment score: 2.85; 

p=0.02) as well as mitochondria (enrichment score: 3.48; p=0.01), flavoprotein (enrichment 

score: 2.72; p=0.03), methyltransferase (enrichment score: 1.17; p=0.02), and transferase  

(enrichment score: 0.61; p=0.04) (Fig. 3b). The PANTHER analysis revealed that the DEGs 

were involved in many very similar biological processes as the previous analysis such as 

cellular processes, metabolic processes, biological regulation, cell component and 

biogenesis, response to stimulus, localization, developmental processes, multicellular 

organismal process, immune system, locomotion, and reproduction. Ribosome/translation 

appeared to be the term that was greatly enriched in all the analyses, suggesting that genes 
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that function in this process are especially important in determining egg quality. 

 

qPCR validation of the DEGs in the couples analysis 

 qPCR was performed to validate the dysregulation of the DEGs that were modified 

the most in the couples analysis, as listed in Additional file 6 along with their known 

biological process as well as the p-value and fold change as assessed by microarray. rpf2 and 

tspan7b were also found to be drastically dysregulated in the couples analysis, thus, they 

were resubmitted for qPCR using just the 12 samples. We confirmed by qPCR that the 

transcript levels of tk2 (0.97±0.41 vs. 0.0002±0.0001, p=0.004), drd3 (3.04±0.32 vs. 

0.25±0.09, p=0.0022), rpf2 (2.82±0.28 vs. 0.58±0.39, p=0.009), cldn23 [claudin 23]  

(4.43±0.42 vs. 0.82±0.58, p=0.004), tspan7b (1.11±0.11 vs. 0.46±0.15, p=0.03), and stra13 

(1.47±0.17 vs. 0.61±0.08, p=0.0022) were increased (Fig. 4a-f), while pomt1 [protein-O-

mannosyltransferase 1] (0.37±0.04 vs. 1.37±0.20, p=0.0022), prkcq (0.003±0.001 vs. 

6.02±1.67, p=0.0022), nudt13 [nucleoside diphosphate linked moiety X-type 13] (0.02±0.01 

vs. 1.82±0.60, p=0.0022), itih2 [inter-alpha-tryspin inhibitor heavy chain 2] (0.05±0.02 vs. 

1.42±0.31, p=0.0022), flvcr1 [feline leukemia subgroup C cellular receptor family, member 

2a] (0.05±0.01 vs. 3.07±1.02, p=0.0022), otulina (0.10±0.02 vs. 0.53±0.07, p=0.0001), and 

slc29a1a (1.04±0.04 vs. 1.36±0.13, p=0.05) were downregulated in bad relative to good 

quality eggs in these 12 samples (Fig. 4g-m). 

 

Functional analysis of otulina and slc29a1a in zebrafish 

 In order to validate the in vivo significance of some of the DEGs, we performed 

functional analysis by genetic knockout using the CRISPR/cas9 system on otulina and 

slc29a1a. RNA-seq data stored in the PhyloFish[14] online database (Additional file 7) as 
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well as qPCR analysis for otulina (Fig. 5a) and slc29a1a (Fig. 5b) in different tissues revealed 

that both of these genes were expressed predominantly in the ovary, which suggest that 

they play a role in oogenesis and/or reproduction and are thus good candidates for 

knockdown. One-cell staged embryos were injected with the CRISPR/cas9 guides that 

targeted either otulina or slc29a1a and allowed to grow to adulthood. Mosaic founder 

mutant females (F0) were identified by fin clip genotyping and subsequently mated with 

wild-type (WT) or Dr_vasa:eGFP C3 (hereafter called vasa:eGFP) males, and embryonic 

development of the F1 fertilized eggs was recorded. Since the mutagenesis efficiency of the 

CRISPR/cas9 system was very high, as previously described[15,16], the otulina and slc29a1a 

genes were sufficiently knocked-out even in the transgenic mosaic F0 females. This was 

evidenced by the substantially lower transcript levels of otulina and slc29a1a in the F1 

embryos as compared to those from control WT pairings (Fig. 5c). Thus, the phenotypes of 

otulina (n=4) and slc29a1a (n=10) mutants could be observed even in the F0 generation. 

Since none of the mutated genes were transmissible to future generations neither through 

the male nor the female (ie. only WT F1 progeny survived until adulthood), therefore, all of 

our observations were obtained from the F0 generation. 

 We observed that both otulina and slc29a1a mutant-derived eggs had a very low 

developmental success, defined as the proportion of surviving embryos at 24 hpf to the 

total number of spawned eggs (40.0±6.7% and 24.8±6.8%, respectively, vs 74.61±7.9% in 

controls) (Fig. 5d). One spawn of fertilized eggs from the cross between each individual 

mutant female and a vasa:eGFP male was counted based on its developmental phenotype, 

described as non-cellularized (lack of cell division), partially cellularized (abnormal cell 

division), and normal development, as shown in Table 1. As compared to the control 

embryos that developed normally from 2-24 hpf (Fig. 6a-d), most of the spawned eggs from 
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the mutant females were non-cellularized such that they did not undergo any cell division at 

all throughout the same time period, and they eventually all died by 24 hpf (Fig. 6e-l). 

However, two of the slc29a1a mutants displayed some heterogeneity in their offspring; 

while a proportion of the spawn did not develop and did not undergo cell division as 

observed previously, a number of cells underwent abnormal development characterized by 

asymmetrical cell division and the appearance of a cell mound on top of an enlarged 

cytoplasm, which occurred until approximately 4-5 hpf (Fig. 6m and 6n), after which they 

began to develop normally albeit slightly slower than their control counterparts (Fig. 6o-6q). 

To determine if the non-cellularized eggs were unfertilized or were arrested in development 

immediately after fertilization, we performed PCR genotyping for the gfp gene, which would 

only come from the vasa:eGFP male and not from the mutant mother that does not harbour 

any gfp gene. We found that the non-cellularized eggs from both otulina and slc29a1a 

mutants did not have the gfp gene indicating that they were not fertilized (Fig.6R). These 

novel findings showed for the first time that otulina and slc29a1a are essential for the 

developmental competence of eggs, and are therefore crucial maternal-effect genes.  

 

The Wnt pathway is dysregulated following otulina deficiency 

 In a bid to elucidate a possible mechanism that may govern the function of otulina, 

we assessed the spawned eggs from otulina-mutant females crossed with WT males for the 

transcript levels of components of the wnt (wnt3a, tcf3, tcf7, lef1, and dvl2) and tnf/nf-κb 

(nf-kb2, rel, rela, ikkaa, ikkab, and tnfa) pathways. Previous studies have shown that otulina 

plays a role in these pathways in mammalian models[17–19]. Our findings showed that 

wnt3a, tcf7, lef1, and dvl2, but not tcf3, were significantly decreased in the otulina mutant-

derived eggs (Fig. 7a-d), while none of the transcripts belonging to the tnf/nf-κb pathways 
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were changed (Additional file 8). Thus, these results highly suggest that otulina plays a role 

in the wnt pathway in early development, and otulina deficiency leads to loss of 

developmental success due to dysregulation of wnt signaling. 

 

Identification of gene signatures to predict developmental competence by statistical 

modeling using Partial Least Square (PLS) regression and genetic algorithm  

 We demonstrated in the previous figures that some of the differentially regulated 

genes were correlated with survival. However, these findings were based on univariate 

analysis of individual genes. Thus, we decided to use PLS regression to model the link 

between transcriptomic data and survival rate. Then, in order to select the best subsets of 

genes (of both small size and high survival prediction ability), a genetic algorithm was used 

as it allows the efficient exploration of sets of solutions (here subsets of genes) that are too 

abundant to be exhaustively explored. 

 In order to make the selection by genetic algorithm easier and quicker, a preliminary 

filtering of genes was performed: a correlation test performed on all 31,317 genes 

eliminated those that did not show any correlation at all to survival, and the redundant 

genes with highly correlated expressions were grouped together, which left us with 5410 

genes for further analysis. Genetic algorithm coupled with PLS was applied to the 5410 

remaining genes to search for subsets of genes potentially associated with survival. Two 

outputs can be expected from this analysis: first by globally exploring the solutions of 

several runs, it is possible to provide a list of genes which can be considered as potentially 

related to survival and, second, a more specific study of the solutions of several runs will 

allow the retrieval of a few candidate signatures of small subsets of complementary genes 

that we can use for diagnostic purposes. 
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 We ran the genetic algorithm coupled with PLS 70 times with populations of 500 

individuals. We thus obtained 35,000 final solutions. In order to set a frequency threshold to 

decide which genes can be selected, pseudodata were used: the genetic algorithm was 

applied using identical conditions as previously mentioned to datasets with randomly 

permuted survival rates. The 35,000 solutions were evaluated by 10 runs of 2-fold cross 

validation (2-FCV), and the average R2 values obtained from the 10 runs were retained as 

quality criteria for each solution. Hence, to ensure the proposed solutions were relevant, 

the average 2-FCV R² values obtained on the actual dataset were compared to the ones 

obtained on the pseudo-datasets with permuted survival rates. Fig. 8a shows that the 2-FCV 

R2 obtained for the final solutions for the actual survival rates were significantly higher than 

that for the randomized ones (p-value <2.10E-16; Mann-Whitney U-test), thus, the 

prediction models are relevant. Further, the more often a gene appeared in those final 

solutions, the more likely it was associated with survival. Hence, if a variable was selected 

more often in the results obtained from the actual survival rates than from the pseudo 

survival rates, it may be considered to be potentially related to the phenomenon studied. 

We therefore compared how often each variable was selected in populations from the 

actual data and from the randomized data. The results are presented in Fig. 8b. The upper 

panel displays the selection frequencies of each gene in the final populations of the genetic 

algorithm applied on the real dataset while the lower panel displays those for the 

randomized values. These data clearly show that there were no significant peaks in the 

randomized data as compared to the actual dataset, which suggest that they do not carry 

biological meaning and can be used as a minimum frequency threshold for gene selection to 

be considered as biologically relevant. The 95th and 99th percentiles of the distribution of 

frequencies in the randomized data were used to obtain sets of genes that were the most 
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often selected; 156 genes were obtained with a threshold of 5% and 29 genes with a 

threshold of 1%, the latter of which is listed in Table 2. Among these 29 genes, 10 of them 

were DEGs found by our microarray analyses (boldfaced, italicized). 

 Subsequently, the same results can be used to identify a gene signature that only 

retains small subsets of genes that are the most relevant for diagnostic purposes. Towards 

this goal, all 35000 final solutions were evaluated by 10 runs of 2-fold cross validation (2-

FCV), and the average R2 values obtained from the 10 runs were retained as quality criteria 

for each solution. However, genetic algorithms are powerful methods that may be 

misleading, thus, the two best solutions were selected as good compromises between 

quality of the prediction and parsimony of the model (Table 3). The average 2-FCV R2 of 

solutions 1 and 2 were 0.9771 and 0.9678, respectively using 7 and 8 genes respectively 

(with 5 common genes between them, italicized). 

 Thus, these findings demonstrated the presence of strong gene signatures, which 

were statistically robust both in terms of reproducibility and validation by pseudo-data, to 

link gene expression to the survival rate of eggs in our transcriptomic data. 

 

Discussion 

 In this study, we analyzed the maternally-provided transcriptome in fertilized 

zebrafish eggs at the one-cell stage in order to determine expressional differences between 

bad and good quality eggs that could impact egg quality in unrelated wildtype females. 

Despite the haphazard causes of decreased egg competence, we still found by microarray 

and validated by an independent method of transcript quantitation, qPCR, a large number 

of DEGs that were represented predominantly by those that function in ribosome and 

translation processes. Thus, there appears to be substantial differences in the maternally-
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inherited transcriptome between good and bad quality eggs that may have an impact on egg 

competence and subsequent embryonic development, and may serve as markers or 

predictors of egg quality. 

  When all the samples were taken into consideration, only 66 DEGs were found 

between good and bad quality eggs, which is a relatively low number as compared to other 

studies. In fact, it must be reiterated that all of the couples that were mated and produced 

clutches were wildtype, without any particular treatment, and mostly unrelated. Thus, there 

may have been multiple natural causes behind the decline in quality of the eggs from the 

different mothers, such as nutrition, density, age of parents, delay from last spawn, and 

genetics just to name a few[1,20,21]. Despite the heterogeneous potential causes of varying 

egg quality, 66 DEGs were identified of which 7 genes were verified independently by qPCR. 

These genes all play different cellular roles: rpf2[22] is a ribosome assembly protein that 

recruit 5S rRNA and ribosomal proteins into nascent large ribosome subunits; rps27.2[23] is 

a structural component of the 40S small ribosome subunit; spond1b[24] encodes a protein 

secreted by floor plate cells during embryogenesis that localizes to the central spinal canal 

and has neuroregulatory functions; rtn4ip[25] is a mitochondrial protein present in neurons 

and astrocytes; tspan7b[26] is a cell surface receptor signaling molecule that functions in 

embryonic development; stra13[27] has roles in DNA repair and kinetochore assembly; and 

slc29a1a[28] is transmembrane glycoprotein that mediates the cellular uptake of 

nucleosides. Their distinct roles in the cell highlight the fact that embryonic survival is based 

on many different cellular processes and suggest that they may serve as candidate markers 

of egg quality among unrelated wildtype females in larger populations. 

 A recent paper demonstrated that the transcriptome in unfertilized zebrafish eggs 

from different mothers can be quite variable while it was more uniform within clutches, 
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which suggests that mother-related differences in the transcriptome may potentially be 

associated with egg quality and subsequent development of the embryo[29]. To this end, 

we performed a couples analysis in which we compared clutches of eggs from 3 couples that 

consistently produced bad quality eggs to those that frequently gave good quality eggs in 

order to eliminate some of the environmental effects on maternal health and egg 

competence. In this narrowed-down analysis using only 12 clutches of eggs (6 each of good 

and bad quality), we revealed more than 1300 DEGs with less variability between samples 

than in the first analysis (Figure 3). We also found that the 4 DEGs that were common in the 

two analyses, rpf2, slc29a1a, tspan7b, and stra13 were more homogeneously expressed as 

there was less variability between samples. These results suggest that despite the 

heterogeneous causes, many common mechanisms contribute to egg quality among 

unrelated couples that consistently produce bad quality eggs, and these can serve as good 

markers for egg competence and hence embryonic survival. 

 With regard to the functional characteristics of the DEGs in the study using all 

samples, overrepresentation analyses of the GO terms by both DAVID and PANTHER 

programs found that genes that function in ribosome and translation were enriched, which 

are consistent with previous findings that showed that translation-related transcripts were 

also differentially expressed in sea bass eggs of different quality[30]. Interestingly, the 

findings in this study correlate with our previous proteomic study which also demonstrated 

significant dysregulation of proteins with functions in protein synthesis in zebrafish eggs of 

varying quality[31]. In the proteomic study, peptides that function in protein synthesis were 

upregulated in both good and bad quality eggs, which suggest a general dysregulation of the 

system. In this study, rpf2 and rps27.2 were found by microarray and confirmed by qPCR to 

be increased in bad quality eggs (Fig.2A, 4C, and 2D, respectively). Both of these genes 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


17 
 

encode proteins that function in ribosomes; rpf2 is an assembly factor and rps27.2 is a 

structural component of the 40S small ribosome subunit as mentioned above. A similar 

finding was demonstrated in a previous study that investigated the transcriptome of eggs 

after natural and controlled ovulation in rainbow trout (Oncorhynchus mykiss); it was 

revealed that rpl24, which is a structural component of the large ribosome subunit, was 

more abundant in the latter which had higher mortality[9]. Thus, it appears that in eggs of 

bad quality, there is an apparent increase in ribosome biogenesis. This seems somewhat 

contradictory due to the fact that most bad quality eggs eventually die and an accumulation 

in ribosomes is usually a sign of increased cell proliferation and growth[32]. It is well-known 

that ribosome biogenesis deficiency often leads to an impairment in cell growth and to cell 

death while elevated ribosomal function results in increased cell cycle progression and 

proliferation[33]. Thus, it is possible that the increased ribosomal content and presumably 

elevated translation that were found in bad quality eggs may reflect dysregulated cell cycle 

progression and cell growth, which in fact may lead to premature cell death as shown by 

pathological models in which loss of cell cycle and cell death regulators lead to 

disease[34,35]. On the other hand, it is also a possibility that ribosome biogenesis 

dysregulation may be an effect and not cause of loss of embryonic survival; an unknown 

mechanism that operates during oogenesis may cause the accumulation of ribosomal 

content in bad quality eggs and its abundance reflects a dysfunction of the mechanism. 

Whichever the case, dysregulation of the protein synthesis process appears to be at both 

the transcript and protein levels. 

 In general, the expression data in the couples analysis were less heterogeneous with 

less spread within each group, and the differences in gene expression between the two 

groups were larger than those observed in the first analysis (Fig. 4a-m and Additional file 6 
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vs. Fig. 2a-h and Additional file 3, respectively). Literature search showed that most of these 

genes have known functions: tk2[36] is a deoxyribonucleoside kinase that is required for 

mitochondrial DNA synthesis; drd3[37] is dopamine receptor which is associated with 

cognitive, emotional, and endocrine functions; cldn23[38] is an integral membrane protein 

that maintains cell polarity and signal transductions; nudt13[39] is hydrolase and its function 

is also largely unknown; itih2[40] is a serine protease inhibitor that carries hyaluronan in 

plasma; flvcr1[41] is a heme transporter that has a critical role in erythropoiesis by 

protecting developing erythroid cells from heme toxicity; pomt1[42] is an O-

mannosyltransferase that is a component of many polysaccharides and glycoproteins; 

prkcq[43] is a serine- and threonine-specific protein kinase that is important for T-cell 

activation; and otulina[44] is a predicted deubiquitinase also called fam105ba. qPCR 

confirmed the differential expression of these genes in bad quality eggs relative to good 

quality eggs (Fig. 4a-m). From these results, it appears that there is a general dysfunction of 

multiple cellular processes when only couples that consistently produce bad quality eggs are 

taken into account, as opposed to a general population of random couples. Thus, the 

mechanisms that are involved in egg quality may be different depending on the couple; 

infrequent production of bad quality eggs in a random, unrelated population may involve 

dysfunction of ribosome/translation processes while there may be a general dysregulation 

of multiple cellular processes in frequent producers of bad quality eggs. Our results also 

suggest that within a random population of unrelated females, some common elements 

that impact egg competence exist, thus, a portfolio of gene profiles can be established for 

use as markers of egg quality which would be extremely useful in identification of 

reproductively successful females.   

 In order to determine if panels or sets of genes that together may be used to predict 
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or associated with survival exist, we decided to use a statistical approach which combined 

PLS and genetic algorithm. Obtaining a gene signature to predict the survival rate is valuable 

and of practical interest since identification of a set of genes that correlates with the rate of 

survival can open up avenues for understanding the biological phenomena to explain egg 

quality and for future biotechnological applications. Our first analysis exhaustively explored 

the data and provided us with a list of 29 genes that were all considered to be highly related 

to survival (Table 2). In addition, a second analysis that was performed in order to retain 

only the genes that were the most pertinent in prediction of developmental competence 

revealed two solutions that included a set of 7 and 8 genes, respectively (Table 3), that were 

selected as offering good compromises between quality of the prediction and parsimony of 

the model genes. There were 5 common genes (italicized) between the two solutions, which 

could be manipulated for diagnostic purposes. Thus, our statistical modeling approach 

demonstrated that gene signatures could be obtained from transcriptomic data that could 

predict developmental competence in fertilized eggs, which would have practical interests.  

 In an effort to investigate the functional significance of some of the DEGs, we 

created CRISPR/cas9 knockouts of otulina and sc29a1a due to their ovary-specific 

localization, respectively (Fig.5A-5B). Notably, we demonstrated for the first time that 

deficiency in each of these genes render females subfertile, with complete lack of 

development in the spawned eggs, which were shown to be unfertilized (Fig. 6r). Thus, our 

data suggested that otulina and slc29a1a may play roles that contribute to the factors 

important for fertilization. otulina is predicted to encode for a deubiquitinase, which 

removes methionine 1-linked ubiquitin chains, of the OTU family in zebrafish, and substrate-

bound otulin in mammals has been shown to associate with the linear ubiquitin chain 

assembly complex (LUBAC). This ubiquitination-deubiquitination system is a key regulator of 
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important signaling pathways, including Wnt, TNF-α, and NF-κb. The otulin gene, the 

mammalian homologue, has been previously shown to be involved in early development in 

mice since a functionally-disruptive gene mutation results in embryonic lethality due to 

perturbed Wnt signaling and angiogenesis[17]. In fact, it is known that Wnt signaling plays a 

major role in gonad differentiation in some fish species[45–47]. Further, otulin has also been 

shown to be a key factor in regulating inflammation and immunity through it's modulatory 

role in the TNF-α and NF-κb pathways[18,19]. It is known that inflammatory signaling is an 

essential part of early embryonic development since many of these components are part of 

the maternally-inherited repertoire of transcripts, and the TNF- α and NF-κb pathways play 

important roles in embryonic hematopoietic stem and progenitor cell production as well as 

body patterning/specification[48–51]. Our results showed that there were significant 

decreases in the transcript levels of several wnt components including wnt3a, tcf7, lef1, and 

dvl2 (Fig. 7), while none of the transcripts belonging to the tnf/nf-κb pathways showed any 

changes. Thus, otulina deficiency may contribute to subfertility in zebrafish via dysregulation 

of wnt signaling, in line with our previous study that showed that the wnt pathway was 

disturbed at the protein level in bad quality eggs and with the known function of wnt in 

development[31,52,53].  

 On the other hand, slc29a1a is predicted to encode for an equilibrative nucleoside 

transporter. In mammals, it was shown that slc29a1 transports adenosine, which is a potent 

cellular metabolite that functions in cyclic AMP pathways and also acts directly as a 

vasoactive mediator, into fetal cells and has implications in fetal endothelial functions such 

that its dysfunction can lead to human pregnancy-related problems such as gestational 

diabetes, intrauterine growth restriction, and pre-eclampsia[54–56]. In addition, slc29 

homologues in chicken play important roles in rhythm and conduction in developing 
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embryonic hearts via the ERK/MAP (extracellular signal regulated kinase/mitogen activated 

protein) pathways[57]. However, the function of slc29a1 in fish is still unknown since these 

species usually undergo external fertilization and embryonic growth.  Further investigations 

into their physiological functions are warranted. 

 

Conclusions 

 In this report, transcriptomic profiling of zebrafish fertilized eggs of different quality 

demonstrated that: 1) dysregulation of the protein synthesis process may be a mechanism 

behind the reduction in egg quality; 2) gene signatures may exist in the maternally-inherited 

transcriptome that could be used to predict development competence; and 3) together with 

the use of CRISPR-cas9 knockout mutants, we clearly showed for the first time that otulina 

and slc29a1a are essential for the developmental competence of zebrafish eggs and could 

be novel maternal-effect genes, which would broaden our understanding of the 

mechanisms that contribute to egg quality. 

 

Methods 

Fish husbandry and sample collection 

 Wildtype zebrafish (Danio rerio) of the AB strain were maintained in a central 

filtration recirculating system with a 12 hr light/dark cycle in the INRA LPGP fish facility 

(Rennes, France). Individual couple pairing was performed by placing a male and a female 

overnight in a tank with a partition for separation, and in the morning, the divider was 

removed after which the female released her eggs to be fertilized by the male. One hundred 

and thirty-six clutches of fertilized zebrafish eggs at the one-cell stage from 58 families 

(Additional file 4) were harvested and divided into two parts. One part was flash-frozen in 
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TRI reagent (Sigma-Aldrich, St. Louis, MO) and stored at -80oC for molecular biology 

analyses. The other part was cultured in modified Yamamoto's embryo solution (17 mM 

NaCl, 400 μM KCl, 270 μM CaCl2.2H2O, 650 μM MgSO4.7H2O, 0.1 μl/ml of methylene blue) 

and monitored for up to 48 hours, and the number of survivors was counted at 8, 24, and 48 

hpf. Good quality eggs were defined as embryos that had a very high survival rate (>93%) at 

48 hpf and bad quality eggs were those that suffered a very low survival rate (<38%) at 48 

hpf. All procedures of fish husbandry and sample collection were in accordance with the 

guidelines set by the French and European regulations on animal welfare. Protocols were 

approved by the Rennes ethical committee for animal research (CREEA) under approval no. 

R2012-JB-01. 

 

RNA extraction 

 Total RNA of the pooled clutches was extracted using TRI reagent according to the 

manufacturer's protocol, and RNA quality and purity were assessed using the Agilent Nano 

RNA 6000 assay kit and 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). All samples 

were confirmed to have an RIN (RNA integrity number) of 9-10 which are generally accepted 

as reflecting very good quality RNA. 

 

Microarray analysis 

 Zebrafish gene expression profiling was conducted using an Agilent 8x60K high-

density oligonucleotide microarray (GPL24500). Labeling and hybridization steps were 

performed following the Agilent “One-Color Microarray-Based Gene Expression Analysis 

(Low Input Quick Amp labeling)” protocol. Briefly, for each sample, 150 ng of total RNA was 

amplified and labeled using Cy3-CTP. Yield (>825 ng cRNA) and specific activity (> 6 pmol of 
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Cy3 per µg of cRNA) of Cy3-cRNA produced were checked with the NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 600 ng of Cy3-cRNA was 

fragmented and hybridized on a sub-array. Hybridization was carried out for 17 hours at 

65°C in a rotating hybridization oven prior to washing and scanning with an Agilent Scanner 

(Agilent DNA Microarray Scanner, Agilent Technologies, Massy, France) using the standard 

parameters for a gene expression 8x60K oligoarray (3 µm and 20 bits). Data were then 

obtained with the Agilent Feature Extraction software (10.7.3.1) according to the 

appropriate GE protocol (GE1_107_Sep09) and imported into GeneSpring GX software 

(Agilent Technologies) for analysis. The data were first normalized by median centering, 

logged, and then subjected to differential gene expression analysis. All data available in the 

Gene Expression Omnibus database under accession GSE109073. 

 

Gene Ontology (GO) analysis 

 The differentially expressed genes (DEGs) that were found to have a false discovery 

rate (FDR) < 0.05 and a corrected p-value < 0.05 by microarray were subjected to 

overrepresentation analyses using DAVID version 6.7 (https://david.ncifcrf.gov/)[12] and 

PANTHER (www.pantherdb.org/)[13] online programs using Ensembl gene identifiers to 

elucidate enriched terms. The DAVID analyses were conducted using the Functional 

Annotation Tool based on GOTERM_BP_ALL terms with Benjamini multiple test correction 

and a FDR<0.05. For the PANTHER analyses, an overrepresentation test, version 10.0 

released 2015-05-15, using the GO-Slim Biological Process annotation data set and a 

Bonferroni correction for multiple testing set at p<0.05 was performed. 
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Reverse transcription polymerase chain reaction and quantitative real-time PCR (qPCR) 

 One μg of RNA was used as template for synthesis of cDNA using the Maxima First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific) as per the manufacturer's protocol. The 

cDNA samples were then diluted 20-fold and subjected to qPCR using the primers listed in 

Additional file 2. Primers were designed using the online program Primer3 

(http://primer3.ut.ee) and extended across an intron when possible to eliminate the 

contribution from genomic DNA. qPCR was performed in triplicate using the GoTaq qPCR 

Mastermix kit (Promega, Madison, WI), which utilizes carboxy-X-rhodamine (CXR) as the 

reference fluorochrome, using the following cycling condition: 95oC for 10 seconds and 60oC 

for 30 seconds for 40 cycles. The data were collected with the Applied Biosystems 

StepOnePlus apparatus (Foster City, CA) and quantitation of the samples was conducted 

using standard curves.  LSM couples member 14B (lsm14b), prefoldin subunit 2 (pfdn2), and 

ring finger protein 8 (rnf8) had the most stable expression in the microarray dataset and 

were thus used as internal controls for qPCR. Further, 18S rRNA, beta-actin (bact), and 

elongation factor 1 alpha (EF1α) were also used as internal controls for qPCR[58]. The 

geometric means of all 6 genes were calculated and for normalization of the data quantity. 

 

CrispR-cas9 genetic knockout 

CRISPR/cas9 guide RNA (gRNA) were designed using the ZiFiT Targeter online software 

(version 4.2)[59,60] and were made against 3 targets within each gene to generate large 

genomic deletions, ranging from 130-1500 base pairs, that span exons which allow the 

formation of non-functional proteins. Nucleotide sequences containing the gRNA were 

ordered, annealed together, and cloned into the DR274 plasmid. In vitro transcription of the 

gRNA from the T7 initiation site was performed using the Maxiscript T7 kit (Applied 
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Biosystems), and their purity and integrity were assessed using the Agilent RNA 6000 Nano 

Assay kit and 2100 Bioanalyzer (Agilent Technologies). Zebrafish embryos at the one-cell 

stage were micro-injected with approximately 30-40 pg of each CRISPR/cas9 guide along 

with 8-9 nM of purified cas9 protein (a generous gift from Dr. Anne de Cian from the 

National Museum of Natural History in Paris, France). The embryos were allowed to grow to 

adulthood, and genotyped using fin clip and PCR that detected the deleted regions. The PCR 

bands of the mutants were then sent for sequencing to verify the deletion. Once confirmed, 

the mutant females were mated with wildtype males to produce F1 embryos, whose 

phenotypes were subsequently recorded. Images were captured with a Nikon AZ100 

microscope and DS-Ri1 camera (Tokyo, Japan).  

 

Genotyping by PCR 

Fin clips harvested from animals under anesthesia (0.1% phenoxyethanol) and F1 eggs from 

females crossed with vasa:eGFP males were lysed with 5% chelex containing 100 μg of 

proteinase K at 55oC for 2 hrs and then 99oC for 10 minutes. The extracted DNA was 

subjected to PCR using the AccuPrime system (Promega) for slc29a1a, Advantage 2 system 

for nucleoplasmin 2b (npm2b), and Jumpstart Taq polymerase (Sigma-Aldrich, St. Louis, MO) 

for otulina and vasa:eGFP. The primers are listed in Additional file 2. 

 

Statistical analyses 

 Statistical analysis of the difference in the expression of each gene between bad and 

good quality embryos was performed using either Mann-Whitney's U-test or Student's t-test 

after determination of normality of distribution using the Anderson-Darling test. All 

statistical determinations were conducted using GraphPad Prism version 7 (La Jolla, CA). 
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Data are presented as mean±standard error (SEM). A p-value < 0.05 was considered as 

statistically significant. 

 

Analyses by Partial Least Squares (PLS) regression and genetic algorithm 

 Elimination of the least relevant genes from subsequent analyses was initially 

performed. First, a correlation test with a 10% p-value threshold between each gene 

expression and survival rate was conducted. Subsequently, a Pearson correlation coefficient 

was computed for the expression of each pair of genes. Clusters of genes with pairwise 

correlations higher than 0.95 were considered as redundant, and only the genes with the 

highest correlation to survival were selected for subsequent analyses. 

 Genetic algorithm (GA) was performed whereby Tpop (500) random solutions were 

generated by first choosing a random number (p) of genes between 1 and Pmax (20) then 

randomly drawing p genes from the candidate genes[61]. PLS regression, which combines 

the expression levels of the selected genes through linear combinations in order to obtain 

an estimate of the survival rate, was then applied using the squared Pearson correlation 

coefficient between the actual survival rates and the estimates as the criterion to evaluate 

the quality of each proposed subset of genes[62]. A two-fold cross-validation (2-FCV) was 

always performed to avoid over-fitting, which consisted of applying the PLS model on half of 

the observations and quantifying the quality of this model by applying it to the other half. 

This was performed twice by exchanging the application and prediction of the two halves. 

Once the criterion was computed for each candidate solution, solutions were ranked 

according to their value, where a high 2-FCV R² reflected a higher rank. Then, selection was 

applied by associating each solution with a selection probability that was proportional to its 

quality rank. In this way, the best solutions were selected for subsequent generations 
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whereas suboptimal solutions were likely eliminated[63]. The selected solutions underwent 

modifications through two operators: mutation and cross-over. Mutation consisted of 

randomly adding, removing or replacing a gene in the solution. pm % (90%) of the solutions 

underwent mutation. Cross-over consisted of randomly splitting each of two solutions into 

two subsets of genes and exchanging one subset between them to obtain new gene 

combinations. pc % (50%) of the solutions underwent cross-over. After mutation and cross-

over, the new solutions were evaluated again with the same process and selection was 

applied again. This process was repeated through Ngene (200) generations. The solutions 

selected in the final generation were submitted to extensive evaluation using ten runs of 2-

FCV. The average R² obtained for each solution was used as the final criterion to select the 

best subset of genes. 

 To challenge the relevancy of the obtained solutions, the same genetic algorithm was 

applied on randomized datasets, which were obtained by randomly permuting the survival 

rates of the different observations. First, it is expected that if a gene is linked to the survival 

process it is likely to often appear in the final solutions. In order to quantify the frequency, 

the distribution of the number of selections of each gene in the randomized datasets was 

computed, and only genes with number of selections in the actual data higher than the 95th 

or 99th percentile of that in the randomized distribution were considered as relevant. 

Second, the quality of solutions, defined as the distribution of the average 2-FCV R² of the 

final solutions, obtained on the actual and randomized datasets were also compared. The 

relationship between gene expression and survival rate was considered significant when the 

actual R² values were significantly higher than the R² values of the randomized dataset. To 

compare their distributions, a Mann-Whitney test was used. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


28 
 

List of abbreviations 

2-FCV: 2-fold cross validation 

cldn23: claudin 23 

DEGs: differentially expressed genes 

drd3: dopamine receptor D3 

FDR: false discovery rate 

flvcr1: feline leukemia subgroup C cellular receptor family, member 2a 

gfp: blue fluorescent protein 

hpf: hours post-fertilization 

itih2: inter-alpha-tryspin inhibitor heavy chain 2 

MBT: mid-blastula transition 

npm2a and npm2b: nucleoplasmin 2a/b 

nudt13: nucleoside diphosphate linked moiety X-type 13 

otulina: OTU deubiquitinase with linear linkage specificity a, fam105ba  

PLS: partial least square regression 

pomt1: protein-O-mannosyltransferase 1 

prkcq: protein kinase C, theta 

qPCR: quantitative real-time polymerase chain reaction 

RNA-seq: RNA sequencing 

rpf2: ribosome production factor 2 homolog (S. cerevisiae) 

rps27: ribosomal protein S27 (isoform 2) 

rtn4ip: reticulon 4 interacting protein 1 

slc29a1a: solute carrier family 29, member 1a 

spon1b: spondin 1b 
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stra13: stimulated by retinoic acid 13 homolog/centromere protein X 

tk2: thymidine kinase 2 

tspan7b: tetraspanin 7b 

U1: U1 spliceosomal RNA 

WT: wildtype 

ZGA: zygotic genome activation 

Declarations 

Ethics approval and consent to participate.  Not applicable. 

Consent for publication.  Not applicable. 

Availability of data and material.  The datasets generated and materials used in the current 

study are available upon request and in Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) database under accession GSE109073. 

Competing interests.  The authors declare that there are no competing interests. 

Funding.  This work was supported the French National Research Agency (ANR) under grant 

agreement ANR-13-BSV7-0015-Maternal Legacy to JB.   

Authors contributions.  CTC performed most of the experiments and data analyses as well as 

preparation of the manuscript; TN monitored and harvested the zebrafish embryos and 

extracted the RNA for microarray; ALC performed the microarray and subsequent data 

analyses; AP was responsible for animal care and husbandry; LJ facilitated the project 

through scientific discussions; CR performed the statistical modeling experiment and 

subsequent data analyses; and JB conceived the study and was responsible for overseeing 

the project, scientific discussions, and preparation of the manuscript. All authors read and 

approved the final manuscript. 

Acknowledgements 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


30 
 

We would like to thank all of the support staff and other members of the Fish Physiology 

and Genomics Institute of Rennes (INRA) for their technical aid. We are very grateful to 

Jean-Jacques Lareyre (INRA/LPGP) for his kind gift of the Dr_vasa:eGFP C3 zebrafish line. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


31 
 

References 

1. Bobe J, Labbe C. Egg and sperm quality in fish. Gen Comp Endocrinol. 2010;165:535–48.  

2. Pelegri F. Maternal factors in zebrafish development. Dev Dyn. 2003;228:535–54.  

3. Pellettieri J, Reinke V, Kim SK, Seydoux G. Coordinate activation of maternal protein 

degradation during the egg-to-embryo transition in C. elegans. Dev Cell. 2003;5:451–62.  

4. Wagner DS, Dosch R, Mintzer KA, Wiemelt AP, Mullins MC. Maternal control of 

development at the midblastula transition and beyond: mutants from the zebrafish II. Dev 

Cell. 2004;6:781–90.  

5. Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. 

Development. 2009;136:3033–42.  

6. Bouleau A, Desvignes T, Traverso JM, Nguyen T, Chesnel F, Fauvel C, et al. Maternally 

inherited npm2 mRNA is crucial for egg developmental competence in zebrafish. Biol 

Reprod. 2014;91:43.  

7. Aegerter S, Jalabert B, Bobe J. Messenger RNA stockpile of cyclin B, insulin-like growth 

factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the 

rainbow trout oocyte in relation with developmental competence. Mol Reprod Dev. 

2004;67:127–35.  

8. Aegerter S, Jalabert B, Bobe J. Large scale real-time PCR analysis of mRNA abundance in 

rainbow trout eggs in relationship with egg quality and post-ovulatory ageing. Mol Reprod 

Dev. 2005;72:377–85.  

9. Bonnet E, Fostier A, Bobe J. Characterization of rainbow trout egg quality: a case study 

using four different breeding protocols, with emphasis on the incidence of embryonic 

malformations. Theriogenology. 2007;67:786–94.  

10. Mommens M, Fernandes JM, Tollefsen KE, Johnston IA, Babiak I. Profiling of the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


32 
 

embryonic Atlantic halibut (Hippoglossus hippoglossus L.) transcriptome reveals maternal 

transcripts as potential markers of embryo quality. BMC Genomics. 2014;15:829.  

11. Rise ML, Nash GW, Hall JR, Booman M, Hori TS, Trippel EA, et al. Variation in embryonic 

mortality and maternal transcript expression among Atlantic cod (Gadus morhua) 

broodstock: a functional genomics study. Mar Genomics. 2014;18 Pt A:3–20.  

12. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene 

lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.  

13. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: 

expanded protein families and functions, and analysis tools. Nucleic Acids Res. 

2016;44:D336-42.  

14. Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, et al. Gene evolution and 

gene expression after whole genome duplication in fish: the PhyloFish database. BMC 

Genomics. 2016;17:368.  

15. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-

mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 

2014;24:142–53.  

16. Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Pauli A, et al. Efficient 

mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment 

of single-guide RNAs. PLoS One. 2014;9:e98186.  

17. Rivkin E, Almeida SM, Ceccarelli DF, Juang Y-C, MacLean TA, Srikumar T, et al. The linear 

ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. England; 

2013;498:318–24.  

18. Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, Elliott PR, et al. 

The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


33 
 

Autoimmunity. Cell. 2016. p. 1215–1230.e20.  

19. Elliott PR, Komander D. Regulation of Met1-linked polyubiquitin signalling by the 

deubiquitinase OTULIN. FEBS J. 2016;283:39–53.  

20. Ribas L, Valdivieso A, Díaz N, Piferrer F. Appropriate rearing density in domesticated 

zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 

2017;220:1056–64.  

21. Ribas L, Liew WC, Díaz N, Sreenivasan R, Orbán L, Piferrer F. Heat-induced 

masculinization in domesticated zebrafish is family-specific and yields a set of different 

gonadal transcriptomes. Proc. Natl. Acad. Sci. 2017;114:E941–50.  

22. Kharde S, Calvino FR, Gumiero A, Wild K, Sinning I. The structure of Rpf2-Rrs1 explains its 

role in ribosome biogenesis. Nucleic Acids Res. 2015;43:7083–95.  

23. Wang R, Yoshida K, Toki T, Sawada T, Uechi T, Okuno Y, et al. Loss of function mutations 

in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. 

Br J Haematol. 2015;168:854–64.  

24. Higashijima S, Nose  a, Eguchi G, Hotta Y, Okamoto H. Mindin/F-spondin family: novel 

ECM proteins expressed in the zebrafish embryonic axis. Dev. Biol. 1997;192:211–27.  

25. Hu WH, Hausmann ON, Yan MS, Walters WM, Wong PK, Bethea JR. Identification and 

characterization of a novel Nogo-interacting mitochondrial protein (NIMP). J Neurochem. 

2002;81:36–45.  

26. Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J 

Cell Sci. 2001;114:4143–51.  

27. Osman F, Whitby MC. Emerging roles for centromere-associated proteins in DNA repair 

and genetic recombination. Biochem Soc Trans. 2013;41:1726–30.  

28. Young JD. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


34 
 

collaborative odyssey. Biochem Soc Trans. 2016;44:869–76.  

29. Rauwerda H, Wackers P, Pagano JF, de Jong M, Ensink W, Dekker R, et al. Mother-

Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized 

Zebrafish Eggs. PLoS One. 2016;11:e0147151.  

30. Żarski D, Nguyen T, Le Cam A, Montfort J, Dutto G, Vidal MO, et al. Transcriptomic 

Profiling of Egg Quality in Sea Bass (Dicentrarchus labrax) Sheds Light on Genes Involved in 

Ubiquitination and Translation. Mar. Biotechnol. 2017;19:102–15.  

31. Yilmaz O, Patinote A, Thao T, Nguyen V, Com E, Lavigne R, et al. Scrambled eggs_: 

Proteomic portraits and novel biomarkers of egg quality in zebrafish ( Danio rerio ) To cite 

this version_: HAL Id_: hal-01640969 Scrambled eggs_: Proteomic portraits and novel 

biomarkers of egg quality in zebrafish ( Danio rerio ). 2017;1–24.  

32. Thomas G. An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell 

Biol. 2000;2:E71-2.  

33. Plaks V, Gershon E, Zeisel A, Jacob-Hirsch J, Neeman M, Winterhager E, et al. Blastocyst 

implantation failure relates to impaired translational machinery gene expression. 

Reproduction. 2014;148:87–98.  

34. Montanaro L, Trere D, Derenzini M. Changes in ribosome biogenesis may induce cancer 

by down-regulating the cell tumor suppressor potential. Biochim Biophys Acta. 

2012;1825:101–10.  

35. Polzikov M, Yakovenko S, Voznesenskaya J, Troshina M, Zatsepina O. Overexpression of 

ribosomal RNA in cumulus cells of patients with polycystic ovary syndrome. J Assist Reprod 

Genet. 2012;29:1141–5.  

36. Sun R, Eriksson S, Wang L. Mitochondrial thymidine kinase 2 but not deoxyguanosine 

kinase is up-regulated during the stationary growth phase of cultured cells. Nucleosides 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


35 
 

Nucleotides Nucleic Acids. 2014;33:282–6.  

37. Ahlgren-Beckendorf JA, Levant B. Signaling mechanisms of the D3 dopamine receptor. J 

Recept Signal Transduct Res. 2004;24:117–30.  

38. Katoh M. CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a 

novel member of CLAUDIN gene family. Int J Mol Med. 2003;11:683–9.  

39. Nguyen VN, Park A, Xu A, Srouji JR, Brenner SE, Kirsch JF. Substrate specificity 

characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate 

identification within the Nudix family. Proteins. 84:1810–22.  

40. Geisert RD, Ashworth MD, Malayer JR. Expression of inter-alpha-trypsin inhibitor heavy 

chains in endometrium of cyclic and pregnant gilts. Reproduction. 2003;126:621–7.  

41. Khan AA, Quigley JG. Control of intracellular heme levels: heme transporters and heme 

oxygenases. Biochim Biophys Acta. 2011;1813:668–82.  

42. Ragni E, Lommel M, Moro M, Crosti M, Lavazza C, Parazzi V, et al. Protein O-

mannosylation is crucial for human mesencyhmal stem cells fate. Cell Mol Life Sci. 73:445–

58.  

43. Meller N, Altman A, Isakov N. New perspectives on PKCtheta, a member of the novel 

subfamily of protein kinase C. Stem Cells. 1998;16:178–92.  

44. Grou CP, Pinto MP, Mendes A V, Domingues P, Azevedo JE. The de novo synthesis of 

ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Sci Rep. 5:12836.  

45. Nicol B, Guiguen Y. Expression profiling of Wnt signaling genes during gonadal 

differentiation and gametogenesis in rainbow trout. Sex Dev. Switzerland; 2011;5:318–29.  

46. Nicol B, Yano A, Jouanno E, Guerin A, Fostier A, Guiguen Y. Follistatin is an early player in 

rainbow trout ovarian differentiation and is both colocalized with aromatase and regulated 

by the wnt pathway. Sex Dev. Switzerland; 2013;7:267–76.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


36 
 

47. Sreenivasan R, Jiang J, Wang X, Bartfai R, Kwan HY, Christoffels A, et al. Gonad 

differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol. 

Reprod. United States; 2014;90:45.  

48. He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, et al. Inflammatory signaling regulates 

hematopoietic stem and progenitor cell emergence in vertebrates. Blood. United States; 

2015;125:1098–106.  

49. Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, et al. Inflammatory signaling regulates 

embryonic hematopoietic stem and progenitor cell production. Genes Dev. United States; 

2014;28:2597–612.  

50. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, et al. Nanog, Pou5f1 

and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. 

Nature. 2013;503:360–4.  

51. Maddirevula S, Anuppalle M, Huh T-L, Kim SH, Rhee M. Rnf11-like is a novel component 

of NF-kappaB signaling, governing the posterior patterning in the zebrafish embryos. 

Biochem. Biophys. Res. Commun. United States; 2012;422:602–6.  

52. Huang YL, Anvarian Z, Doderlein G, Acebron SP, Niehrs C. Maternal Wnt/STOP signaling 

promotes cell division during early Xenopus embryogenesis. Proc Natl Acad Sci U S A. 

112:5732–7.  

53. Nojima H, Shimizu T, Kim CH, Yabe T, Bae YK, Muraoka O, et al. Genetic evidence for 

involvement of maternally derived Wnt canonical signaling in dorsal determination in 

zebrafish. Mech. Dev. 2004;121:371–86.  

54. Farías M, Puebla C, Westermeier F, Jo MJ, Pastor-Anglada M, Casanello P, et al. Nitric 

oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription 

factor complex hCHOP-C/EBPα in human umbilical vein endothelial cells from gestational 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


37 
 

diabetes. Cardiovasc. Res. 2010;86:45–54.  

55. Casanello P, Escudero C, Sobrevia L. Equilibrative nucleoside (ENTs) and cationic amino 

acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy 

diseases. Curr. Vasc. Pharmacol. United Arab Emirates; 2007;5:69–84.  

56. Escudero C, Casanello P, Sobrevia L. Human equilibrative nucleoside transporters 1 and 2 

may be differentially modulated by A2B adenosine receptors in placenta microvascular 

endothelial cells from pre-eclampsia. Placenta. Netherlands; 2008;29:816–25.  

57. Robin E, Sabourin J, Marcillac F, Raddatz E. Involvement of CD73, equilibrative 

nucleoside transporters and inosine in rhythm  and conduction disturbances mediated by 

adenosine A1 and A2A receptors in the developing heart. J. Mol. Cell. Cardiol. England; 

2013;63:14–25.  

58. McCurley AT, Callard G V. Characterization of housekeeping genes in zebrafish: male-

female differences and effects of tissue type, developmental stage and chemical treatment. 

BMC Mol Biol. 2008;9:102.  

59. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. Zinc Finger Targeter (ZiFiT): an 

engineered zinc finger/target site design tool. Nucleic Acids Res. England; 2007;35:W599-

605.  

60. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D. ZiFiT (Zinc Finger 

Targeter): an updated zinc finger engineering tool. Nucleic Acids Res. England; 

2010;38:W462-8.  

61. Goldberg DE, Holland JH. Genetic Algorithms and Machine Learning. Mach. Learn. 

1988;3:95–9.  

62. Wold H. Partial Least Squares. In: Kotz S, Johnson NL, editors. Encycl. Stat. Sci. volume 6. 

New York: Wiley; 2006. p. 581–91.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


38 
 

63. BHANDARI D, MURTHY CA, PAL SK. GENETIC ALGORITHM WITH ELITIST MODEL AND ITS 

CONVERGENCE. Int. J. Pattern Recognit. Artif. Intell. 1996;10:731–47.  

64. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic 

development of the zebrafish. Dev Dyn. 1995;203:253–310.  

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286815doi: bioRxiv preprint 

https://doi.org/10.1101/286815


39 
 

Figure Legends 

Fig. 1  a: Heat map showing supervised clustering of the 66 differentially expressed genes 

(DEGs) between good and bad quality eggs from 32 clutches of fertilized zebrafish eggs. 

Yellow signal denotes upregulation, blue signal denotes downregulation, and black defines 

no change in expression.  b: Gene ontology analysis using the DAVID online program of the 

55 DEGs with known information. The enriched term and Benjamini value are shown. c: 

Functional classification of 54 DEGs with known function using the PANTHER online 

program. The biological processes associated with the DEGs and Benjamini value are shown. 

A Benjamini value of less than 0.05 was considered as statistically significant. 

 

Fig. 2: Validation of the microarray data by performance of quantitative real-time PCR 

(qPCR). Eight genes, including (a) rpf2, (b) spon1b, (c) tspan7b, (d) rps27.2, (e) stra13, (f) 

rtn4ip1, (g) U1, and (h) slc29a1a were subjected to qPCR using the primers listed in 

Additional file 2, whereby LSM couples member 14B (lsm14b), prefoldin subunit 2 (pfdn2), 

and ring finger protein 8 (rnf8) as well as 18S rRNA, beta-actin (bact), and elongation factor 

1 alpha (EF1α) were used as internal controls. * p-value ≤0.05, ** p-value ≤0.01, *** p-value 

≤0.001, **** p-value<<0.001. 

 

Fig. 3  a: Heat map showing supervised clustering of the 1385 differentially expressed genes 

(DEGs) between good and bad quality eggs from 16 clutches of fertilized zebrafish eggs in 

the couples analysis. Red signal denotes upregulation, blue signal denotes downregulation, 

and black defines no change in expression. b: Gene ontology analysis of the 1151 DEGs with 

known information using the DAVID online program. The enriched term and Benjamini value 

are shown. c: Functional classification of the 1135 DEGs with known function using the 
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PANTHER online program. The biological processes associated with the DEGs and Benjamini 

value are shown. A Benjamini value of less than 0.05 was considered as statistically 

significant. 

 

Fig. 4: Validation of the microarray data by performance of quantitative real-time PCR 

(qPCR). The six genes upregulated, (a) tk2, (b) drd3, (c) rpf2, (d) cldn23, (e) tspan7b, (f) 

stra13, and seven genes downregulated, (g) pomt1, (h) prkcq, (i) nudt13, (j) itih2, (k) flvcr1, 

(l) otulina,(m) slc29a1a, in bad quality eggs were subjected to qPCR using the primers listed 

in Additional file 2. LSM couples member 14B (lsm14b), prefoldin subunit 2 (pfdn2), and ring 

finger protein 8 (rnf8) as well as 18S rRNA, beta-actin (bact), and elongation factor 1 alpha 

(EF1α) were used as internal controls. * p-value ≤0.05, ** p-value ≤0.01, *** p-value ≤0.001 

 

Fig. 5: Tissue localization of otulina (a) and slc29a1a (b) based on qPCR assays. c: Expression 

level of otulina and slc29a1a in spawned eggs from mutant females mated with WT males as 

assessed by qPCR. 18S rRNA, beta-actin (bact), and elongation factor 1 alpha (EF1α) were 

used as internal controls, and experiments performed in triplicate. d: Developmental 

success in terms of survival rate of embryos at 24 hours post-fertilization (hpf) from otulina- 

and slc29a1a-deficient mutant females mated with WT males. N=4 for otulina and N=10 for 

slc29a1a, at least three spawns from each mutant.  

 

Fig. 6: Representative images showing the development between 0-24 hours post-

fertilization (hpf) of F1 embryos from wildtype control (a-d), otulina-deficient (e-h), and 

slc29a1a-deficient (i-q) females. In the control eggs, the embryos were at 64-cell (a), oblong 

(b), shield (c), and 24-somite (d) stages according to Kimmel et al[64]. Eggs from otulina and 
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slc29a1a mutant females were non-developing and did not under any cell division (e-l). 

Some eggs from two slc29a1a mutant females were developing abnormally (m-q). (a, e, i, m) 

= images taken at 2 hpf; (b, f, j, n) = images taken at 4 hpf; (c, g, k, o) = images taken at 6 

hpf; (p) = image taken at 8 hpf; (d, h, l, q) = images taken at 24 hpf. The arrow demonstrates 

a partially cellularized blastodisc that was sitting atop an enlarged syncytium. Scale bars 

denote 500 μm. r: PCR genotyping for nucleoplasmin 2b (npm2b) and vasa:eGFP in spawned 

eggs from WT, otulina-, and slc29a1a-mutant females crossed with vasa:eGFP males to 

detect fertilization of the eggs. Std = 1 kb ladder; Con = WT female crossed with vasa:eGFP 

male. 

 

Fig. 7: Evaluation of the expression levels of wnt3a (a), tcf7 (b), lef1 (c), and dvl2 (d) in 

spawned eggs from otulina-deficient mutant females mated with WT males as assessed by 

qPCR. 18S rRNA, beta-actin (bact), and elongation factor 1 alpha (EF1α) were used as 

internal controls, and experiments performed in triplicate. N=4, at least three spawns from 

each mutant. 

 

Fig. 8 a: The average 2-fold cross validation R² values obtained from the actual dataset were 

compared to the ones obtained from the pseudo-datasets with permuted survival rates. b: 

The frequency that each variable was selected in populations from the actual data and from 

the randomized data. The 95th and 99th percentiles of the distribution of frequencies in the 

randomized data were used to obtain sets of genes that were the most often selected.  

 

Additional Files 

Additional file 1: The complete list of the 66 DEGs including the gene description, Ensembl 
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annotation, corrected p-value, and fold change. Analysis was performed with the 

GeneSpring GX program. 

Additional file 2: Sequences of the primer pairs that were used in this study.  

Additional file 3: List of differentially expressed genes (DEGs) in bad quality eggs as 

compared to good quality eggs that were the most modified among the 66 DEGs found by 

microarray analysis. 

Additional file 4: Detailed information on the couples that were mated to produce fertilized 

eggs and the clutches that were harvested in this study. The number of eggs in each clutch 

was counted and between 40-60 eggs were followed for up to 48 hours post-fertilization 

(hpf). The number of surviving embryos were counted at 8, 24, and 48 hpf, and the survival 

rate was accordingly calculated at each timepoint. * The clutches of bad quality eggs that 

were used for the couples analysis. 

Additional file 5: The complete list of the 1385 DEGs including the gene description, Ensembl 

annotation, corrected p-value, and fold change from the couples analysis. Analysis was 

performed with the GeneSpring GX program 

Additional file 6: List of 13 differentially expressed genes (DEGs) in bad quality eggs as 

compared to good quality eggs that were the most modified among the 1385 DEGs found in 

the couples analysis by microarray. 

Additional file 7: Tissue localization of (a) otulina and (b) slc29a1a transcripts by RNA-seq 

retrieved from the Phylofish online database.  

Additional file 8: Evaluation by qPCR for transcripts of wnt, tnf, and nf-kb pathways in 

otulina mutant-derived eggs. Transcript levels of (a) tcf3, (b) tnfa, (c) ikkaa, (d), nf-kb2, (e) 

rel, and (f) rela were investigated by qPCR. 
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Table 1 (please refer to pg. 10): Penetrance of fam105ba and slc29a1a mutant phenotypes 

 

  Embryos with defects   

  

Total 

number 
of 

embryos 

Non-
cellularized 

Partially 
cellularized 

Normal 
embryos 

fam105ba-1 210 163 47 

fam105ba-2 213 172 41 

fam105ba-3 92 53 39 

fam105ba-4 116 110 6 

slc29a1a-1 104 104 0 

slc29a1a-2 100 88 12 

slc29a1a-3 660 450 210 

slc29a1a-4 451 439 12 

slc29a1a-5 245 150 95 

slc29a1a-6 152 138 14 

slc29a1a-7 361 252 110 

slc29a1a-8 80 71 9 

slc29a1a-9 85 9 48 28 

slc29a1a-10 370 153 24 193 

 
Penetrance of otulina and slc29a1a mutant phenotypes in F1 eggs between crosses of 
otulina or slc29a1a mutant females and WT males. The graph demonstrates representative 
data from a single spawn from each mutant female. †Embryos did not develop at all (Fig. 6E-
6L). ‡Embryos had a partially cellularized blastodisc that was sitting atop an enlarged 
syncytium (arrow in Fig. 6N).  
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Table 2 (please refer to pg. 13): List of 29 genes that are associated with survival. 

ENSEMBL gene annotation Gene name 

ENSDARG00000090871 Si:dkey-210j14.4 

ENSDARG00000076419 Si:dkeyp-117b11.2 

ENSDARG00000079255 Zgc:174935 

ENSDARG00000031366 Reticulon 4 interacting protein 1 

ENSDARG00000006982 muscle segment homeobox D 

ENSDARG00000071553 Zgc:171500 

ENSDARG00000070898 / ENSDARG00000092291 Si:ch211-262h13.3 / Si:ch211-281g2.3 

ENSDARG00000075318 Solute carrier family 16 (monocarboxylic acid transporters), member 6a 

ENSDARG00000063295 Myosin, heavy polypeptide 9a, non-muscle 

ENSDARG00000082140 / ENSDARG00000082017 U1 spliceosomal RNA 

ENSDARG00000089078 Collagen, type XXIII, alpha 1 

ENSDARG00000017820 Polymerase (RNA) III (DNA directed) polypeptide D 

ENSDARG00000024687 Polymerase (RNA) III (DNA directed) polypeptide G 

ENSDARG00000089422 CABZ01087562.1 

ENSDARG00000056563 Peroxisome proliferative activated receptor, gamma, coactivator 1, beta 

ENSDARG00000076498 Golgi integral membrane protein 4a 

ENSDARG00000069425 Heat shock factor binding protein 1a 

ENSDARG00000090804 G protein-coupled receptor 155a 

ENSDARG00000075434 RNA 2,,3,-cyclic phosphate and 5,-OH ligase 

ENSDARG00000096436 Si:dkey-118j18.4 

ENSDARG00000089677 CABZ01117603.1 

ENSDARG00000095796 Si:dkey-87o1.2 

ENSDARG00000004898 Zona pellucida glycoprotein 2, like 2 

ENSDARG00000020149 Acyl-Coenzyme A oxidase-like 

ENSDARG00000027738 Si:ch211-13c6.2 

ENSDARG00000080245 5S ribosomal RNA 

ENSDARG00000058445 Protein disulfide isomerase-like, testis expressed 

ENSDARG00000078785 Transmembrane protein 258 

ENSDARG00000093926 / ENSDARG00000095522 Si:dkey-71b5.2 / Si:dkey-71b5.3 

 
The 29 genes that were selected from the exhaustive analysis by Partial Least Square (PLS) 
regression and genetic algorithm. The 10 genes that were differentially regulated in our 
microarray dataset are boldfaced and italicized.  
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Table 3 (please refer to pg. 13): Two solutions from the parsimonic prediction model. 

ENSEMBL gene ref  Gene name 

Solution 1  

ENSDARG00000079255 Zgc:174935 

ENSDARG00000089677 CABZ01117603.1 

ENSDARG00000090871 Si:dkey-210j14.4 

ENSDARG00000076419 Si:dkeyp-117b11.2 

ENSDARG00000017820 polymerase (RNA) III (DNA directed) polypeptide D 

ENSDARG00000086485 novel protein coding gene 

ENSDARG00000020054 aldehyde oxidase 1 

Solution 2  

ENSDARG00000079255 Zgc:174935 

ENSDARG00000089677 CABZ01117603.1 

ENSDARG00000090871 Si:dkey-210j14.4 

ENSDARG00000076419 Si:dkeyp-117b11.2 

ENSDARG00000017820 polymerase (RNA) III (DNA directed) polypeptide D 

ENSDARG00000016855 Splicing factor 3b, subunit 5 

ENSDARG00000088305 CABZ01072929.1 

ENSDARG00000087431 Zgc:173962 

 
Two solutions containing 7 and 8 genes that were selected from the parsimonic model by 
Partial Least Square (PLS) regression and genetic algorithm. The 5 common genes between 
the two solutions are italicized. 
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