
HAL Id: hal-03169414
https://hal.inrae.fr/hal-03169414v1

Submitted on 15 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The influence of climate model uncertainty on fluvial
flood hazard estimation

Lindsay Beevers, Lila Collet, Gordon Aitken, Claire Maravat, Annie Visser

To cite this version:
Lindsay Beevers, Lila Collet, Gordon Aitken, Claire Maravat, Annie Visser. The influence of climate
model uncertainty on fluvial flood hazard estimation. Natural Hazards, 2020, 104, pp.2489 - 2510.
�10.1007/s11069-020-04282-4�. �hal-03169414�

https://hal.inrae.fr/hal-03169414v1
https://hal.archives-ouvertes.fr


Vol.:(0123456789)

Natural Hazards (2020) 104:2489–2510
https://doi.org/10.1007/s11069-020-04282-4

1 3

ORIGINAL PAPER

The influence of climate model uncertainty on fluvial flood 
hazard estimation

Lindsay Beevers1  · Lila Collet1,2 · Gordon Aitken1 · Claire Maravat1 · Annie Visser1

Received: 7 March 2019 / Accepted: 29 August 2020 / Published online: 9 September 2020 
© The Author(s) 2020

Abstract
Floods are the most common and widely distributed natural hazard, threatening life and 
property worldwide. Governments worldwide are facing significant challenges associ-
ated with flood hazard, specifically: increasing urbanization; against the background of 
uncertainty associated with increasing climate variability under climate change. Thus, 
flood hazard assessments need to consider climate change uncertainties explicitly. This 
paper explores the role of climate change uncertainty through uncertainty analysis in flood 
modelling through a probabilistic framework using a Monte Carlo approach and is dem-
onstrated for case study catchment. Different input, structure and parameter uncertainties 
were investigated to understand how important the role of a non-stationary climate may be 
on future extreme flood events. Results suggest that inflow uncertainties are the most influ-
ential in order to capture the range of uncertainty in inundation extent, more important than 
hydraulic model parameter uncertainty, and thus, the influence of non-stationarity of cli-
mate on inundation extent is critical to capture. Topographic controls are shown to create 
tipping points in the inundation–flow relationship, and these may be useful and important 
to quantify for future planning and policy. Full Monte Carlo analysis within the probabil-
istic framework is computationally expensive, and there is a need to explore more time-
efficient strategies which may result in a similar estimate of the full uncertainty. Simple 
uncertainty quantification techniques such as Latin hypercube sampling approaches were 
tested to reduce computational burden.
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1 Introduction

Floods are the most common and widely distributed natural hazard, threatening life and 
property worldwide (Jonkman and Vrijling 2008). Flood risk is a function of flood haz-
ard and consequence (IPCC 2014; Balica et  al. 2013). Flood hazards result from many 
different sources (e.g. coastal, fluvial, pluvial or estuarine), whilst the consequences arise 
from the adverse impacts of flooding on people, property, human health, the environment, 
cultural heritage and economic activity (Beevers et al. 2016). The UN estimates that 1 Bn 
people live in areas of potential flood risk and damage caused by floods on a global scale 
has been significant in recent decades (Jonkman and Vrijling 2008). In the last decade 
(2007–2017), there have been around 200 significant flood events in Europe, resulting in 
almost 1000 deaths, affecting 3.9  M people and causing over $55 Bn worth of damage 
(2018). In the UK, the estimated cost of flood damage in the UK was £3.2 M, whilst the 
2013/2014 events are estimated to have cost the economy £1.3 M. The UK government 
estimates that each year flooding will cause £1.1 Bn, whilst maintaining current levels of 
flood defence will require a further £1 Bn per year by 2035 (Sayers et al. 2015). Looking 
forward, governments worldwide are facing significant challenges associated with flood 
risk, specifically: increasing urbanization; the current drive to control public expenditure; 
and the background of uncertainty associated with increasing climate variability under cli-
mate change (Guerreiro et al. 2018).

Historically, flood risk management has approached flood hazard prediction in a deter-
ministic manner (Baldassarre and Montanri 2009). The method used routinely in practice 
uses a deterministic hydraulic (flood) modelling approach that simulates the physical pro-
cesses controlling flood flows (Baldassarre et al. 2010). An event, characterized by a single 
set of boundary data, is modelled to produce mapped outputs of the potential depth, veloc-
ity and extent of the flood event (Hartanto et al. 2011; Beevers et al. 2012). However, the 
uncertainty due to the dynamic, stochastic and uncertain nature of the climate, hydrologi-
cal and river processes (Van Vuren 2005) is generally not considered nor is the underly-
ing model data and choices or the assumptions embedded within the analysis (e.g. return 
period methodology estimates. Uncertainties in hydraulic (flood) modelling can arise 
from many sources, and for the purposes of this paper, we follow a structured approach 
(Warmink et  al. 2010; Savage et  al. 2016) to these for hydraulic simulation, classifying 
them as uncertainties associated with:

• the model input: for example, the boundary conditions (e.g. hydrology and flow esti-
mates) or the underlying bathymetry or topographical data;

• the model parameters (e.g. roughness estimates); or
• the choice of the model structure (e.g. the mathematical formulation).

Within a flood modelling framework, uncertainties cascade through the model-
ling chain, with each contributing to the variability in the final inundation extent. Thus, 
accounting for uncertainties in model prediction this may be achieved through consid-
eration of multi-model ensembles, perturbed parameter ensembles and/or multi-member 
(inputs) ensembles. This is often achieved through Monte Carlo simulation (Mundform 
et al. 2011) providing approximate solutions to a variety of mathematical problems by per-
forming statistical sampling experiments. Whilst such an approach is data intensive and 
computationally demanding, it is increasingly recognized that there is a growing demand 
for outputs in the form of probabilistic flood maps (Teng et al. 2017).



2491Natural Hazards (2020) 104:2489–2510 

1 3

With the availability of greater computational power and parallelization of codes, uncer-
tainty analysis in flood model research has become more frequent. Recently, several studies 
have investigated incorporating uncertainty in models (input and parameters) in hydrau-
lic modelling, flood mapping and inundation analysis (Apel et al. 2004; 2006; Neal et al. 
2013; Savage et al. 2014; Mukolwe et al. 2014; Ali et al. 2015; Teng et al. 2017; Winter 
et al. 2018; Berends, et al. 2018). The sources of uncertainty considered include inflows, 
observed data and flood frequency analysis, model parameters and underlying topographi-
cal data. Assessed uncertainties can be part of a flood risk assessment and highlight the 
need to quantify input and parameter variability to prevent unnecessary environmental and 
economic losses or potential flood defence failures (Wobus et al. 2017; Metin et al. 2018; 
Curran et al. 2019). Some general conclusions have emerged from these studies, suggesting 
that uncertainty associated with inflow has a significant influence on the flood inundation 
prediction. This input uncertainty is more significant than the uncertainty associated with 
model parameterization (Mukolwe et al. 2014) or topographic data (Ali et al. 2015). How-
ever uncertainty associated with climate model parameterization has not been explored.

In regard to the input uncertainties (or inflow), one of the biggest challenges to cur-
rent flood risk management is the uncertainty associated with climate change (Collet 
et al. 2017) and the impact it may have on future floods (hazard and exposure) in terms of 
increasing frequency, duration and magnitude (Collet et al. 2017; 2018a, b; Thober et al. 
2018; Visser-Quinn et  al. 2019). For example, assuming a non-stationary climate under 
climate change:

• What is the likely magnitude of a future flood event (return period) in a particular loca-
tion, and how may that differ from flood events at present (Collet et al. 2018a)?

• How will this affect the future flood footprint of a given event in the future?
• Will this uncertainty be greater than the inherent uncertainty associated with flood fre-

quency estimation at present (e.g. Winter et al. 2018; Collet et al. 2017), or will param-
eter uncertainty in the model become more important?

To date, no study has attempted to answer these questions. Previous work by the 
authors (Collet et  al. 2017, 2018a, b) used the Future Flows Hydrology (FFH) database 
(Prudhomme et al. 2013), a set of spatially coherent daily flow projections, derived from 
an eleven-member Perturbed Parameter Ensemble (PPE) for 282 catchments across Great 
Britain. This work focused on analysing the change in extreme run-off for a range of return 
period events across Great Britain. National scale maps were created displaying the uncer-
tainty related to climate model and probabilistic distributions for flood events from 1 in 10 
to 1 in 200 year return periods, with 1 in 100 and 1 in 200 year return period events being 
the IL industry standard for flood management and general planning purposes (e.g. housing 
developments). Return periods were determined via two extreme value methods, general-
ized extreme value (GEV) and generalized Pareto (GP), for two time periods, a baseline 
(1961–1990) and the future (2070–2099). The analysis evaluated the uncertainty associ-
ated with the extreme value (EV) distributions and climate model parameters. For the same 
time period, the GP and GEV methods saw estimates of run-off with different mean values 
but similar uncertainty bounds, whilst between time periods, there was an increasing trend 
in both. Collet et al. (2017, 2018a, b) concluded that methods investigating the future flood 
hazard and extent should account for uncertainty associated with both the climate model 
parameters and the EV distribution.

Building on this previous work, the aim of this paper is to determine the relative role 
climate model uncertainty has in the prediction of future flood extents. To do this, the 
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run-off estimates must be used as hydrograph inputs to numerical hydraulic models to 
calculate flood inundations (cascading the uncertainty through the modelling process). 
This is achieved through the application of a probabilistic framework which explicitly 
captures the uncertainty associated with climate model parameterization alongside 
flood modelling uncertainty (extreme value estimation and hydraulic model roughness 
specifically).

The potential to reduce computational effort using numerical approaches is also con-
sidered. The method is demonstrated through application to a Scottish case study for 
two future return period events (1:10  year and 1:100  year) with focus on the higher 
magnitude 1:100 year event. Two return period events were considered to address the 
uncertainty of fitting extreme value statistics on limited time series (30 year time slices).

2  Data and models

2.1  Case study

The River Don (Fig. 1a), Aberdeenshire, north-east Scotland, serves as the case study 
catchment. It has a total catchment area of approximately  1300km2, and the river flows 
from the Cairngorms National Park to the North Sea at Aberdeen. Previous work by the 
authors (Collet et al. 2017, 2018a) identified the River Don as a catchment likely to see 
an increased flood hazard as a result of climate change.

This work focuses on a 5 km reach of the river downstream of the Parkhill flow gauge 
(station number: 11001, NRFA), which flows through Dyce, a suburb of Aberdeen. 
The gauging station has flow records since 1950 and shows frequent flood events (most 
recently in 2016); the highest water levels on record occurred on 8 January 2016. This 
is a relatively short and hydraulically simple reach of the river, with a topographically 
variable floodplain, allowing the exploration of complex uncertainties in a systematic 
manner.

Fig. 1  Case study catchment; a location and extent of the flood model; b land use and roughness parameters
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2.2  Hydraulic model: LISFLOOD‑FP

LISFLOOD-FP (Bates and De Roo 2003) is selected as the hydraulic model, due to its 
computational efficiency, and reduced physics formulation. The LISFLOOD-FP model 
requires input data in the form of boundary conditions, a digital elevation model, chan-
nel geometry and friction coefficients. The upstream boundary was located at the Parkhill 
gauging station, with a free boundary located 5 km downstream of the gauge as the out-
flow of the domain (Fig. 1). The Scottish Environment Protection Agency (SEPA 2015) 
provided the digital elevation model (1 m LiDAR) as well as 13 river cross sections from 
which channel geometry was derived. A land cover map was determined using OS data at 
a 5 m resolution, with the associated Manning’s n determined from the literature (Chow 
1959); see Table 1.

The LISFLOOD-FP model was built using the sub-grid channel solver for main channel 
flow and the acceleration solver for floodplain flow. The model was calibrated for Novem-
ber 2002, October 2002 and September 1995 flood events [daily gauged flow and digitized 
maximum flood extent maps (SEPA)] and validated to National Flood Hazard Maps for 
1:10, 1:200 and 1:1000 return periods. Roughness (Manning’s n) was adjusted in order to 
maximize agreement between observed and simulated maximum flood extents using the 
fit statistic Fstat (the overlap between observed and predicted as a proportion of wet cells); 
Fstat ranges from 0 to 1, with 1 indicating perfect agreement (Goudet 1995).

2.3  Flow projections

Following Collet et  al. (2017), this study utilized daily flow projections from the FFH 
database, an 11-member perturbed parameter ensemble. It is through this perturbing of 
parameters that climate model parameter uncertainty may be explored. Flow projections 
were extracted for the Don River at Parkhill gauging station. As is standard in climate 
impact assessment (Allen et al. 2018), this study focuses on two 30-year climate normals, 
a 1961–1990 baseline and the 2080s (2069–2098). To ensure consistency in the analysis, 
only flow projections are utilized. The focus is on the change in extreme events between the 
time periods, i.e. the changes in peak flow and uncertainty due to climate change.

3  Methods

This paper aims to understand the role of climate model parameter uncertainty in future 
flood inundation projections through a case study catchment (Sect. 2.1). In order to achieve 
this aim, the role of uncertainty associated with climate model parameters was explored in 

Table 1  Roughness coefficients, 
an input to the hydraulic model 
LISFLOOD-FP, for the study 
area

Category Land cover (%) Manning’s n

Paths/roads 6 0.02
River/canal 7 0.025–0.05
Pasture, no brush 59 0.025–0.05
Heavy growth trees 21 0.08–0.12
Buildings 7 1.00
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context with other sources of uncertainty by sampling across the distributions of inputs for 
the hydraulic model following four structured tests (Sect. 3.1 and Fig. 2):

a. Climate model uncertainty (CMU), as quantified in Collet et al. (2017) (Fig. 2a). The 
empirical CDF of the return period estimates for the 11-member ensemble;

b. Extreme value (structure and parameter) uncertainty (EVDU) for two different extreme 
value models, the generalized extreme value (GEV) and generalized Pareto (GP) dis-
tributions (Fig. 2b). Parameter uncertainty is considered through the 95% confidence 
intervals. After Collet et al. (2017), in order to isolate this uncertainty from the climate 
model uncertainty, only the ensemble median return period estimate was considered;

c. Hydraulic model parameter uncertainty (HMPU; Fig. 2c), the roughness (Manning’s 
n) values for the floodplain and channel definition. This test fixes the Qpeak used to the 
median estimate across the ensemble;

Fig. 2  Uncertainty quantification framework: a regional climate model parameter uncertainty (CMU); 
b extreme value distribution parameter and structure uncertainty (EVDU); c hydraulic model parameter 
uncertainty (HMPU); and d total uncertainty; n: number of sampled values, varies depending on the chosen 
probabilistic framework
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d. Total uncertainty (Fig. 2d), to determine the relative uncertainty associated with each 
source. Total uncertainty is measured as a combination of tests a–c, where all three fac-
tors are varied.

The tests were applied for the 1:10- and 1:100-year return period flood events for the 
baseline (1961–1990) and future (2070–2099) time periods (to understand the influence of 
a non-stationary climate), across the 11 equally plausible hydroclimatological realizations 
for the Parkhill gauge station.

The tests were applied through two probabilistic frameworks (Sect.  3.2). The first, a 
full Monte Carlo analysis, is a computationally expensive approach where a large num-
ber of randomly sampled realizations are assumed to represent the distributions in their 
entirety. Whilst computational power is increasing, there is still a need to explore more 
time-efficient strategies which may result in a similar estimate of the full uncertainty. As a 
first step, this paper also explored a simple stratified sampling approach in order to reduce 
this computational burden.

3.1  Uncertainty tests

3.1.1  Climate model parameter uncertainty (CMU)

In order to determine the 1:10- and 1:100-year return period flood events (Qpeak), GEV 
and GP distributions (Coles 2001) were fitted to annual maxima (AMAX) and peak-over-
threshold (POT) flows, respectively. See Collet et al. (2017) for the detailed methodology. 
For both return periods (1:10 and 1:100) and each extreme value model (GEV and GP), 
Qpeak values were computed for the equally probable ensemble members, per time period 
( N = 11 × 2 ). Using the empirical CDF constructed by the 11 values of N , a total of n 
Qpeak values were randomly sampled across the distribution (where n is determined by the 
probabilistic framework outlined in Sect. 3.2, i.e. full Monte Carlo or LHS). These n Qpeak 
values served as the input to the hydraulic model (see Fig. 2a). The input hydrograph for 
the LISFLOOD-FP model was scaled for each simulation using the sampled Qpeak, generat-
ing corresponding hydrographs that were used to run the hydraulic model with the spatially 
distributed roughness (Manning’s n) values held constant.

3.1.2  Extreme value model (structure and parameter) uncertainty (EVDU)

For the N ensemble members and time periods, the median Qpeak value was determined 
across both EV distributions, after Collet et al. (2017). This median represents the struc-
tural uncertainty, whilst 95% confidence intervals capture parameter uncertainty. This 
range was randomly sampled following a normal distribution, generating n hydrographs 
which represent the boundary conditions in the hydraulic model. The spatially distributed 
roughness (Manning’s n) values were held constant in the hydraulic model (see Fig. 2b).

3.1.3  Hydraulic model parameter uncertainties (HMPU)

Assuming a uniform distribution, the HMPU was determined by sampling across the Man-
ning’s n parameter space (range—see Table 1), producing n maps. The input hydrograph 
to the hydraulic model was held constant, corresponding to the median value of the GEV 
distribution across the 11 ensemble members (see Fig. 2c).
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3.1.4  Total uncertainty

Total uncertainty simulations were then completed where all three factors from tests 
a–c were varied: (1) CMU, the uncertainty in Qpeak from across the empirical CDF; (2) 
EVDU, where the median Qpeak and 95% confidence intervals represent the structure 
and parameter uncertainty, respectively; and (3) the HMPU, captured through maps of 
roughness value.

3.2  Probabilistic frameworks

3.2.1  Full probabilistic approach: Monte Carlo analysis

The full probabilistic approach adopts a Monte Carlo approach (Mundform et  al. 2011). 
For each uncertainty test (Sect. 3.1), factor(s) are varied by sampling across the respective 
range of values with an associated probability distribution. A pseudo-random number gen-
erator (PRNG) was used to sample (n = 10,000) from the prescribed distributions for each 
test, for a total of 80,000 simulations ( 2 time periods × 4 tests × n).

3.2.2  Reducing the computational burden: stratified sampling: Latin hypercube 
sampling

Latin hypercube sampling (LHS) divides the distributions into regions of equal probability 
and randomly samples a value from each region. This increases the sampling efficiency by 
ensuring uniform coverage of the parameter space whilst using fewer samples (Helton and 
Davis 2003). Theoretical studies have shown that the sampling error for LHS, O

�

1
√

n

�

 , is 

quadratically faster than randomly sampled Monte Carlo simulations, 
(

1

n

)

 ; simply put, 
LHS can achieve the same accuracy as  n2 Monte Carlo simulations (Aistleitner et al. 2012). 
However, in practice, as the dimensionality of the input increases, the accuracy reduces 
(Huntington and Lyrintzist 1998). An extension of LHS, orthogonal sampling, has been 
employed in this study as this ensures that each subspace is evenly sampled.

The distributions for each test were binned, n = {50, 125, 250, 500, 1000} . Each bin was 
sampled once, with 10 replicates performed to test sample size variability. These replicates 
were tested to determine the minimum number of samples required for convergence (mean 
and standard deviation of the flooded area in the full Monte Carlo analysis).

4  Results

4.1  Model calibration

The final calibrated model has a reasonable fit and was found to perform best for higher 
(out of bank) events, making it suitable for this study (Table  2), where significant flow 
events (1: 10-year and 1:100-year return period) are chosen for analysis. Water levels at 
specified cross sections were within ± 0.2 m. The calibrated model was validated against 
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the more extreme out-of-bank events (1:200-year and 1:1000-year events), for which data 
were available, performing well and confirming reasonable calibration of the model.

4.2  Probabilistic framework: full Monte Carlo analysis

The outcomes from the full Monte Carlo analysis are first considered. The 1:100-year 
return period event results are presented in the main paper, whilst the results for the 

Table 2  Hydraulic model 
calibration and validation 
results: fit between observed and 
modelled extent

Calibration Validation

Event Fitting stat 
(Fstat)

Return period (National 
Flood Hazard Maps)

Fitting 
stat 
(Fstat)

November 2002 0.64 1:10-year 0.48
October 2002 0.66 1:200-year 0.74
September 1995 0.61 1:1000-year 0.76

Fig. 3  Flooded area versus Qpeak per test for both baseline (lighter colour) and future (darker colour) time 
periods: a the climate model parameter uncertainty (CMU); b the extreme value (model structure and 
parameter) uncertainty (EVDU); c the hydraulic model parameter uncertainty (HMP); and d the total uncer-
tainty
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1:10-year return period event are presented in the supplementary material. For the 1:100-
year return period event, Fig. 3 depicts the flooded area versus Qpeak per test; the test results 
are aggregated in Fig.  4, allowing comparison of the baseline and future uncertainties. 
Change in flooded area, per test, is further considered in Fig.  5 through a series of fre-
quency distributions. The change in output mean values (Delta mean) is indicated for each 
uncertainty, further measures of change are provided in Table 3. Finally, Fig. 6 presents the 
probabilistic flood maps for the total uncertainty (test d); see supplementary information 
for the probabilistic flood maps for tests a–c. The results consider the influence the differ-
ent sources of uncertainty provide, before exploring the impacts of considering all sources 
together. Results are presented in supplementary material for the 1:10-year return period 
event, as shown in Figs. 10, 11 and 12.

4.2.1  Sources of uncertainty: tests a–c

Figures 3 and 5 and Table 3 consider each source of uncertainty, as well as the total uncer-
tainty, separately (1:100-year return period event). It can be seen that, in the case of climate 
model parameter uncertainty (a), the range of uncertainty is smallest on the baseline, with 
∆-mean increasing by 20% in the future (Fig. 5; bias between the samples). With a ∆range 
of almost 40% (Table 3), the overall climate model parameter uncertainty can be seen to 
increase. Similar changes in mean (19%, Table 3) are observed for the EV model structure 
and parameter uncertainty (b). A change in distribution from the baseline (bimodal) to the 

Fig. 4  Aggregated flooded area versus Qpeak for the a baseline and b future
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future (normal) can be observed in Fig.  5b. This is likely due to topographic thresholds 
present in the baseline simulations but not observed in future outputs due to water levels 
higher than these features. Interestingly, the results of the 1:10-year return period event 
(supplementary material) reinforce the importance of the topographic control in this case 
study.

Despite this, the increase in overall uncertainty is lower than for the climate model param-
eter (∆range = 24%, Table 3). Test c saw Qpeak held constant as the roughness maps were var-
ied; accordingly, the plot in Fig. 3c is a horizontal line. The change in roughness under test 
c presents a different picture. The ∆-mean (31%) is higher than in tests a and b, whilst the 

Fig. 5  Frequency distribution of flooded area and ∆-mean from the baseline (lighter colour) to future 
(darker colour) time periods (see also Table  3). The sources and total uncertainty are considered across 
the panels: a climate model parameter (CMU); b extreme value (EVDU); c hydraulic model parameter 
(HMPU); and d total

Table 3  Percentage change to 
series statistics from the baseline 
to the future for a 1:100 year 
return period

Source of uncer-
tainty

∆mean ∆min ∆max ∆range

CMU 20.13 7.99 18.43 38.15
EVDU 19.29 2.71 12.46 23.98
HMPU 30.95 38.91 19.28 -63.90
Total 21.69 7.50 17.76 30.37
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∆-range sees a large reduction (64%). Overall, hydraulic model parameter uncertainty contrib-
utes the least to the range of modelled flooded area for both the baseline and future time peri-
ods, whilst the source of uncertainty contributing the most to the range of output is marginally 
EVD (over CMU). This finding is irrespective of return period explored (1:10 vs. 1:100), an 
interesting outcome particularly given the assumption that EVD uncertainty increases with 
higher return period estimates. This would appear to agree with previous studies, e.g. Apel 
et al. (2018).

Varying the roughness (test c) results in a range of flood extents across similar Qpeak values 
(roughness influencing the water level and thus extent). This adds a width or fuzziness to the 
flooded area ~ Qpeak relationship (Fig. 4a, b) and results from the consideration of two different 
factors (dimensions) within the uncertainty analysis.

It is interesting to notice from Fig. 3 that, independent of the test, inflexion points exist in 
the Qpeak ~ flooded area relationship, where the relationship between these variables changes. 
These points are observed throughout all four tests (for both baseline and future) and for both 
return period simulation ensembles, at around Qpeak = 230 m3/s and around Qpeak  = 270 m3/s. 
The relationship with flooded area flattens out between these two Qpeak values (230–270 m3/s), 
indicating that the flooded area is increasing more rapidly with an increasing Qpeak. It is very 
likely that these inflexions are related to topographic controls in the case study area. These 
observed relationships are context specific, and the details are non-transferable between case 
studies.

Fig. 6  Probabilistic flood map showing total uncertainty (test d) for the baseline (a) and the future (b)
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4.2.2  Total uncertainty—test d

Test d (Figs. 3d, 5d) explored the total uncertainty through consideration of the full param-
eter space. From Table 3, it can be seen that ∆mean and ∆range are within the range of 
the individual sources of uncertainty (tests a, b and c). Two dimensions of uncertainty, 
the hydraulic model parameter (HMPU) and the input uncertainty (Qpeak), arising from 
both climate model and extreme value distribution uncertainties (CMU and EVDU) are 
shown to result in fuzziness in the relationship. Figure 6 shows clearly the impact on the 
flood area and the change in probability of occurrence from the baseline to the future time 
periods. These probabilistic flood maps show areas which become much more likely to be 
flooded in the future given the same return period event, as well as some areas which are 
newly inundated in the future.

4.3  Probabilistic framework: stratified sampling LHS results

Figure  7 shows the results of the convergence of the mean and standard deviation for 
the LHS study for the four tests over two time periods (baseline and future). In the first 
three tests, where the sources of uncertainty are considered separately, the sample mean 

Fig. 7  Convergence of sample mean and standard deviation for Latin hypercube stratified sampling tech-
nique (towards full Monte Carlo analysis results): a climate model (CMU), b extreme value (EVDU), c 
hydraulic model parameter (HMPU), d total uncertainty
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converges for n = 1000, thereby suggesting that the n = 1,00 runs are able to capture the full 
uncertainty from the Monte Carlo analysis (n = 10,000). This is seen clearly on the baseline 
where the uncertainty range in the inputs is lower than for the future. For the hydraulic 
model parameters, the uncertainty range is relatively small; despite this, the uncertainty is 
well captured. By comparison, when the total uncertainty is explored using the full param-
eter space, the LHS stratified sampling performs poorly. This is likely due to the increase in 
dimensionality (three components, collapsed into two parameters) influencing the efficacy 
of stratified sampling; this is further considered in the discussion.

A total of ten ensembles were considered for each n = {50, 125, 250, 500, 1, 000} sample 
size. For the total uncertainty, the frequency distribution for each sample size is presented 
for the baseline (Fig. 8) and future (Fig. 9). For the baseline (Fig. 8), it can be seen that 
the shape of the distribution (bimodal) is well replicated from n = 125; however, with high 
variability across the ensemble, the associated uncertainty is high. At n = 1000, the varia-
bility is significantly reduced and in the variability associated with the ensemble, ability to 
replicate the shape has reduced. For the future time period, this reduction in variability is 
more distinct given the greater range of flooded area. In the future (Fig. 9), the sample size 
required for suitable replication of the frequency distribution increases to a minimum of 
n = 250. Improvements in the replication of the tails of the distribution (900,000–1,000,000 
 m2) can be seen at n = 500, whilst the ensemble can be seen to move towards convergence 
at n = 1000. From Figs. 8 and 9, it is clear that the LHS stratified sampling is able to pro-
vide a reasonable representation of the full Monte Carlo analysis. However, it is also appar-
ent that n = 100 is insufficient to capture the full range of uncertainty (as n2 MC simula-
tions; Aistleitner et al. 2012).

5  Discussion

5.1  Main results: uncertainty sources

For the full Monte Carlo simulations (for both return period events), the results for the 
baseline and future suggest that the dominant source of uncertainty is the estimated input 
hydrograph. This is a reflection of both the uncertainties associated with the parameteri-
zation of the regional climate model (CMU) and the extreme value method (EVDU). 
These findings are consistent for both return periods tested and with recent studies by 
Mukolwe et al. (2014) and Ali et al. (2015). It can thus be inferred that the relative scale 
of input hydrograph uncertainty to hydraulic model parameter uncertainty (CMU and 
EVDU > HMPU) is transferable between sites. However, the specifics of the relationship 
between Qpeak and flooded area are location and context specific, with local topographic 
controls, such as floodplains controlling the processes; thus, each case study location will 
deliver different findings. In such cases, where wetting and drying of cells becomes critical 
and therefore more sensitive to the modelling process (parameterization, technique, math-
ematical formulation), the relationship may become more complex.

The results presented in Figs. 3 and 4 suggest that there are certain inflexions within 
the Qpeak and flooded area relationship, where the relationship changes (230  m3/s and 
270  m3/s). Here, there is a range of values of Qpeak for which flooded area extent does 
not vary much despite a relatively larger increase in Qpeak. The identification of these 
thresholds may be possible with fewer simulations depending on the complexity of the 
modelled stretch; however, probabilistic methods are required to fully represent the 
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relationship and provide useful insights for planners and consultants. For example, in 
the UK this could inform the specification of flood zones in policy guidance from the 
Environment Agency, Natural Resources Wales or the Scottish Environmental Protec-
tion Agency.

Fig. 8  Frequency distribution of the total uncertainty on the baseline by sample 
sizen = {50, 125, 250, 500, 1000, 10000} across a–f. The uncertainty captured by the full MC analysis, the 
ensemble mean and ensemble range are represented in light blue, green and orange/brown, respectively
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The quantification of this relationship may allow for the use of surrogate models. Surrogate 
modelling is a technique that approximates a more computationally expensive model whilst 
honouring the underlying physics. A small sample size of well-chosen data points is used to 
model the response of the original model, creating an emulator that requires fewer simulations 

Fig. 9  Frequency distribution of the total uncertainty for the future projections by sample 
sizen = {50, 125, 250, 500, 1000, 10000} across a–f. The uncertainty captured by the full MC analysis, the 
ensemble mean and ensemble range are represented in dark blue, green and orange/brown, respectively
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to quantify the uncertainty. Surrogate models have already demonstrated their applicability to 
hydrological uncertainty quantification (Roy et al. 2018; Moreno-Rodenas et al. 2018) with 
the most common surrogate models being polynomial chaos expansion (PCE) and Gaussian 
processes (GP). The reduced sample size allows for more numerically intensive models to be 
used with little increase in computational burden, producing more accurate and efficient flood 
hazard assessments.

Non-stationarity in climate change impacts to flood inundation extents.
Climate ensembles project changes in climatic variables such as temperature and precipita-

tion (IPCC 2014), the two main drivers of the hydrological cycle. Research into the effects of 
climate change on the hydrological system has been ongoing in excess of 20 years (Augustin 
et al. 2008; Christierson et al. 2012). Although highly uncertain, recent work in Great Britain 
and the UK indicates an important change in future extreme flows (Collet et al. 2017; 2018a, 
b); spatial variability has also been highlighted as an important factor (Thober et  al. 2018; 
Visser-Quinn et al. 2019).

To understand the impact on population, exposure and subsequent risk, there is a clear need 
to characterize and quantify this uncertainty, cascade this into flood inundation assessment 
using flood models and compare consistently between the present climate (baseline) and in 
the future (e.g. the 2080s) climate model estimates. The results of this study show that input 
hydrographs dominate the uncertainty in flood modelling and interestingly showed that uncer-
tainty associated with climate model parameterization is at least as important to capture as 
the uncertainty associated with the extreme value distribution fit, irrespective of return period 
estimate. The range of possible inundation extents which capture the uncertainty in input 
parameters is significant for both return periods on the baseline and future, which suggests that 
probabilistic flood maps have an important role in future flood inundation assessments.

Presently, the UK utilizes standard hard edge flood maps. Derivation of probabilistic flood 
maps (such as Fig. 6) for a 1:100-year return period flood extent could serve to illustrate the 
projected change in flood probability and thus exposure through a model domain. Whilst this 
is computationally expensive and may be more difficult to communicate, probabilistic maps 
can provide a new level of information for use in future adaptation planning. Work over the 
last decade (Baldassarre and Montanri 2009) has increasingly called for this change in the way 
flood mapping is considered. Recent studies (Teng et al. 2017) predict that, going forward, 
probabilistic mapping will be in greater demand as the industry, insurance companies and 
policy makers alike grapple with how best to capture and convey uncertainty in projections 
within the context of flood legislation such as the EU Floods Directive (binding legislation for 
EU members states).

With an increase in mean flooded area for total uncertainty of between 18 and 22% (based 
on the two return periods explored in this paper), this work shows that it is critical to capture 
the change to inflows as a result of a non-stationary climate in future flood assessments and 
acknowledge the uncertainty associated with its projection. Thus, it seems sensible to suggest 
the non-stationarity of climate and its influence on extreme events in the future; alongside the 
uncertainty associated with these projections needs to be captured more routinely and explic-
itly in flood risk assessments, through probabilistic flood hazard maps.

5.2  Reducing the computational cost of uncertainty studies

This study has highlighted the ability of LHS to reduce computational cost with minimal 
to no loss of accuracy. Figure 7 shows that, for each source of uncertainty considered, a 
sample size of n = 500 was able to converge to the mean and standard deviation of the full 
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Monte Carlo simulation. For the total uncertainty, where both Manning’s n and the input 
hydrograph are varied, a sample size of n = 1000 was required (Figs. 8 and 9) to highlight 
variability in the LHS ensemble, suggesting n = 1000 provides the better replication of the 
full uncertainty. This was shown to be true for non-normal distributions (bimodal) in par-
ticular, with thresholds in the topography influencing tipping points (i.e. either wet or dry).

The theory indicated that LHS is quadratically faster, achieving the same accuracy as  n2 
Monte Carlo simulations (Aistleitner et al. 2012). The empirical findings in this study sug-
gest that in order to achieve adequate replication of the mean, standard deviation, range and 
frequency of the flooded area distribution, a sample size of n = 1000 is required (i.e. 
(

n

10

)2

 ). This is still computationally intensive, and the added complication is the dimen-
sionality of the uncertainty parameters considered in this study. Therefore, there is a criti-
cal need to investigate ways in which the computational cost can be reduced. In this study, 
a reduced physics numerical engine (LISFLOOD-FP) was used to drive the analysis. The 
benefit of this approach is the speed of numerical calculation. Whilst reducing the number 
of runs by a factor of ten is useful, there is a clear need for further work. However, in 
industry the majority of flood models use more computationally intensive fully 2D flood 
models (e.g. TuFLOW, TELEMAC, MIKE21) which are not well suited to this probabilis-
tic approach. Developments in other fields may provide alternative solutions. One example 
is Markov chain Monte Carlo (MCMC), an uncertainty quantification method that uses 
Markov chain to sample from the input distribution. The Markov chain is essentially a ran-
dom walk through the parameter space with each step depending only upon the previous 
value (memoryless). The most common MCMC method is the Metropolis–Hastings algo-
rithm (Chib and Greenberg 1995) which requires a reduced number of input values com-
pared to full Monte Carlo. The MCMC has been shown to converge faster than Monte 
Carlo (Elsakout et  al. 2015). With this increased rate of convergence, the application of 
more complex hydraulic models requiring larger simulation times is more feasible. The 
computational cost may be further reduced through application of Multi-Level Markov 
Chain Monte Carlo (MLMCMC), where multiple grids are used to estimate quantities of 
interest, whilst applying a Markov chain approach to sampling to ensure computational 
efficiency (Elsakout et al. 2015).

5.3  Limitations of the study

There are some limitations which are worth noting for this study and which warrant fur-
ther consideration in future research. This study utilized data from the FFH database for 
a single emissions scenario, SRES A1B. This data is derived from the UKCP09 projec-
tions, a perturbed physical ensemble based on a single climate model (HADCM3). Pro-
jections from a hydroclimatological modelling chain that utilizes a multi-model ensemble 
may yield different results (e.g. the EDgE projections, Thober et al. 2018). Other important 
considerations for future work include:

• Modelling with the most recent CMIP5 projections;
• Comparison across multiple emissions scenarios (e.g. RCP2.6 and RCP8.5);
• Modelling across a range of topographical diverse catchments or longer river reaches, 

which explores the dynamic interaction of floodplain inundation, flood defence fail-
ures and flood management within river reaches—adding hydraulic complexity into the 
analysis.
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This is particularly relevant for studies looking at surrogate methods (Sect.  5.1) and 
alternative uncertainty quantification methods (Sect. 5.3). Whilst this study demonstrated 
a reasonable reduction in computational cost through the application of a LHS approach, 
fully 2D codes, as used in industry, require more than a tenfold reduction in simulations. 
Alternative approaches need to be explored in order to open up the possibility of probabil-
istic flood assessments as part of routine practice, particularly in industry.

6  Conclusions

This study has explicitly captured the uncertainty associated with climate model param-
eterization and the flood modelling process (extreme value estimation and hydraulic model 
roughness specifically) using a probabilistic framework and investigated the influence of 
climate change projections on future flood hazard predictions. The findings clearly dem-
onstrate the need to capture climate change projections in future flood inundation estima-
tion. The results suggest that the uncertainties associated with hydrological uncertainty, 
or the flow input, result in the most substantial uncertainty in the flood inundation extent. 
Certainly, hydraulic parameter uncertainty is considerably less influential on the spread of 
inundation extents. These findings are consistent with recent studies (Mukolwe et al. 2014; 
Ali et al. 2015).

Uncertainty in the inflow parameters is important to the eventual outcome (inundation 
extents), and thus, there is a need to routinely include this uncertainty into flood inundation 
studies. From the findings of this study, the uncertainty associated with extreme value dis-
tribution models can result in a reasonably similar range of inundation extents as the uncer-
tainty arising from climate model parameterization; however, more importantly non-sta-
tionarity in climate (i.e. the impact of climate change) results in a considerable shift in the 
mean of inundation extents, as well as the range. Thus, alongside capturing the uncertainty 
in hydrological inputs and cascading this through hydraulic models, there is an urgent need 
to include non-stationarity in the climate.

Tipping points in the relationships between the peak flows and the resulting inunda-
tion extents can be useful for policy and in practice (e.g. planning control); however, these 
will be very context specific. These tipping points are strongly controlled by topographic 
features in the flood study areas, and this study constrained this issue through the selection 
of a short, reasonably simple hydraulic reach. For example, large floodplains will influence 
the relationship between flood peak and inundation area. Further investigation of such rela-
tionships is needed through more case study assessments.

Finally, in practice the ability to run repeated hydraulic simulations to capture the full 
uncertainty in the input and parameter space is unlikely. Due to computational burden, cap-
turing the full uncertainty is likely to be a luxury afforded in the research environment 
only. Thus, there is a real need to investigate the opportunities to reduce computational 
burden by reducing the number of hydraulic model runs necessary whilst still capturing the 
full range on possible inundation extents. This paper has explored a simple first approach 
to reducing simulations through the use of a stratified sampling approach (LHS). This 
method, whilst found to be effective, still has not reduced the number of runs sufficiently 
for it to be a routinely viable option in practice. Therefore, more sophisticated methods are 
needed to quantify uncertainty when considering uncertain parameter space in more than 
one dimension. This paper has suggested several different methods that could be explored, 
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by looking to other disciplines for inspiration, and is recommended as an avenue for future 
research.
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