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Milk synthesis being a continuous process in lactating sows, the mammary gland has to adapt its metabolism in
response to extreme short-term changes in nutrient availability in the arterial bloodstream, due to the feeding
pattern. The objective of the present study was to better quantify and understand these adaptations. The effect
of morning refeeding after an overnight 16-h feed withdrawal was measured on the uptake of energy-
supplying nutrients, amino acids (AA), and some vitamins and minerals. After farrowing, catheters were fitted
in the right anterior mammary vein and in the carotid artery of six sows. Blood samples were drawn on days
7, 14, and 21 of lactation, every 30 from 60 min before the morning meal to 300 min after the morning meal.
Plasma concentrations of glucose, lactate, triglycerides (TG), non-esterified fatty acids (NEFA), glycerol,
α-amino nitrogen (N), vitamins B12, and folates were determined on all samples. Riboflavin and AA concentra-
tions were only measured 30 min before the meal and 120 min after the meal. Arterial and venous plasma con-
centrations of glucose, lactate, and α-amino N increased after the meal (P < 0.01), and concentrations of NEFA,
glycerol, and TG decreased (P < 0.01). Mammary arteriovenous concentration difference increased after the
meal for glucose, lactate, and α-amino N (P < 0.01), remained constant for TG, and decreased for NEFA (P <
0.01) and glycerol (P< 0.05). Arterial concentrations of all AA increased after themeal, but changes of arteriove-
nous difference with the meal differed among AA. Arteriovenous difference of energy (7.6 kJ/l plasma) concen-
tration was similar in feed-deprived and fed sows, but the contribution of the various nutrients differed, and
the respiratory quotientwas lower (P< 0.01) before themeal (0.95) than after themeal (1.54). The relative con-
tributions of glucose, lactate, TG, NEFA, andAA to arteriovenous difference in energy concentrationwere 50.2, 3.8,
25.1, 0, and 20.8% in fed and 24.6, 2.2, 24.9, 32.9, and 15.0% in feed-deprived sows, respectively. The daily mam-
mary extraction of vitamin B12, estimated from arteriovenous differences was higher than the amount of this vi-
tamin bioavailable from the diet, probably contributing to the 50%decrease in plasma concentration between day
7 and day 21 of lactation. For both riboflavin and folates, arteriovenous differences in plasma concentrationswere
small or not different from zero. These results indicate that themammary gland has a great capacity to adapt nu-
trient uptake very rapidly and modify its metabolism according to the nutrients available in the bloodstream.
© 2020 The Authors. Published by Elsevier Inc. on behalf of The Animal Consortium. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The mammary gland has a great capacity to adapt its metabolism
very rapidly to the nutrients available in the bloodstream, be they
energy-supplying nutrients or amino acids. These results contribute to
better understanding and consider in practice the effects of feed sup-
plies or appetite on sowmammary glandmetabolism, and they provide
original quantified data for improving the dynamic modeling of metab-
olism of sow's mammary gland.
mad).

vier Inc. on behalf of The Anim
Introduction

Inmammals during lactation, the bulk of absorbed nutrients is taken
by the mammary gland for milk synthesis. In lactating sows, milk pro-
duction represents about 75% of total energy requirement (Noblet
et al., 1990) and 90% of amino acid (AA) requirement (Dourmad et al.,
1998; National Research Council NRC, 2012). As reviewed by Farmer
et al. (2008), compared to ruminants, only limited research has been
conducted on themetabolism of themammary gland in the pig species,
except for AA metabolism, which has been studied more extensively
(Trottier et al., 1997; Guan et al., 2002; Nielsen et al., 2002). The
pioneering studies on this subject were conducted by Linzell et al.
(1969) and Spincer et al. (1969). Usingmeasurements of arteriovenous
concentration differences, they showed that glucose, triglycerides (TG),
al Consortium. This is an open access article under the CC BY-NC-ND license
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and, to a lesser extent, lactate, were themain non-AA sources of carbon
for milk synthesis. More recently, Renaudeau et al. (2003) and Krogh
et al. (2017) showed that in some situations non-esterified fatty acids
(NEFA) and glycerol might also contribute to the energy supply. To
the best of our knowledge, none of these studies has dealt with vitamin
uptake for milk synthesis.

Milk synthesis in sows being a continuous process, the mammary
gland has to adapt its metabolism in response to rather extreme
changes in nutrient availability in arterial bloodstream occurring in
the short term, over the course of the day, due to the feeding pattern
(Père and Etienne, 2007), or in the longer term, due to the changes in
feed intake and milk production over the course of lactation. Since
most of the studies on mammary uptake in sows were conducted on
fed animals, close to steady-state conditions, this adaptation has not
been well evaluated.

The objective of the present study was therefore to quantify the ef-
fect of changes in the nutritional status of sows, obtained by overnight
feed withdrawal followed by morning refeeding, on the utilization by
the mammary gland of energy supplying nutrient, essential and non-
essential AA, and some vitamins andminerals. This will also provide in-
teresting information for the dynamicmodeling of sowmammary gland
metabolism.

Material and methods

Animal management

Six multiparous large white sows, parity 3 to 5, were used in the ex-
periment. At day 110 of pregnancy, the sows were moved to farrowing
crates (2.4×2.0 m) with slatted floors, and the ambient temperature
was set at 24 °C. Sows had free access towater from a low-pressure nip-
ple. Litter size was standardized to 11 piglets within 48 h after
farrowing. A heating zone was provided for the piglets using an IR
lamp. Piglets were weaned at 22days of age on average.

During lactation, sowswere fed twice a daywith a standard lactation
diet (13.2 MJ/kgME, 9.6 g/kg total lysine, Supplementary Table S1). The
feeding level was set at 3.5 kg/d on day 1 of lactation and was increased
by 0.5 kg each day until day 6. From day 6 to day 21, the feeding level
was set at 6 kg/d to avoid feed refusal and limit the variability of feed in-
take between sows.

Surgery

About 4 days after farrowing, sows were transferred to the surgery
room, while their litters remained in their farrowing. Anesthesia and
surgery followed the same protocol as described by Renaudeau et al.
(2003). For the arterial cannulation, an indwelling Tygon catheter
(Tygon Tubing®, Cole Parmer Inst. Company, IL, USA; 2.29 mm o.d.,
1.27 mm i.d.) was inserted into the carotid artery up to a distance of
40 cm. The mammary vein cannulation was performed according to
Trottier et al. (1995). A 4-cm incision was made between the first and
the second gland on the right side, and a Tygon catheter (1.78 mm o.
d., 1.02mm i.d.) was implanted up to a distance of 18 cm in the anterior
mammary vein. Postsurgical monitoring followed the same protocol as
described by Renaudeau et al. (2003).

Blood sampling

Blood sampling procedure was the same as described in Renaudeau
et al. (2003). Before the blood sample was taken, 5 ml of blood was
drawn and discarded to eliminate dilution from the heparin block, and
then 10 ml of blood was collected in heparinized syringes from the ar-
tery and the vein simultaneously and subsequently transferred to hep-
arinized tubes. In addition, 2 ml of blood was collected in heparinized
syringes for blood gas analysis.
2

On the day preceding blood sampling, the remaining feed was re-
moved from the trough at 1730 and no feed was distributed until
0930 the next morning, when sows received 2.5 kg of feed. The arterial
(A) and venous (V) samples were obtained simultaneously every 30
min between 0830 and 1400 on days 7, 14, and 21 of lactation. A total
of 11 arterial and 11 venous samples were obtained per sow daily. Im-
mediately after sampling, blood packed-cell volume and blood gases
were measured and the remaining blood was centrifuged for 3 min at
8500 × g at 4 °C (Renaudeau et al., 2003). The supernatant fluid was di-
vided into subsamples and stored at −20 °C for further analysis.

Milk sampling

On days 7, 14, and 21 piglets were separated from the dam after
suckling. Forty minutes later, sows were injected 20 IU of oxytocin
(Intervet) in the arterial catheter and hand milked. A total of about
350 ml of milk was collected and stored at−20 °C for further analysis.

Chemical analyses

Chemical analyses were performed in the same way as described in
Renaudeau et al. (2003). Glucose, insulin, lactate, TG, glycerol, free fatty
acid (FFA), α-amino acid N, urea, calcium, and phosphorus were mea-
sured on all plasma samples as well as blood concentrations of O2,
CO2, and pH. Oxygen concentration was measured on a Ciba Corning
270 co-oximeter (Ciba, Cergy, France). Carbon dioxide concentration
and pH were analyzed simultaneously using a Ciba Corning 768 blood
gas system. Plasma glucose, FFA, lactate, TG, glycerol, urea, α-amino
acids N, calcium, and phosphorus were analyzed using enzymatic
methods adapted to a Cobas Mira multianalyzer apparatus (Roche,
Basel, Switzerland). Insulin concentrationwasmeasured using radioim-
munoassay commercial kits (GIS Bio Int., Gif, France; Pharmacia, St.
Quentin, France; Linco Research Inc., St. Louis, MO, USA, respectively).

The AA content in feed and milk was determined by ion-exchange
liquid chromatography (Biochrom 20, Pharmacia, Saclay, France) after
24-h hydrolysis in HCl (6 mol/l). For sulfur AA, the hydrolysis was per-
formed by performic acid oxidation. Free amino acid content in plasma
was determined in the samples collected 30 min before and 120 min
after the meal. The diluted samples (1:10) were analyzed by chroma-
tography on a cation-exchange resin column (Beckman 6300 analyzer,
Global Medical Instrumentation Inc., Albertville, MN, USA), as previ-
ously described by Guan et al. (2002).

Three B-vitamins (folate, vitamin B12, and riboflavin)were chosen to
explore the relevance of the arteriovenous balance for assessing vitamin
uptake by the mammary gland in sows and its eventual impact on vita-
min requirements of lactating sows. Folates and vitamin B12 determina-
tions were done on all serum samples according to Tremblay et al.
(1986) and Simard et al. (2007), respectively. Riboflavin was analyzed
in plasma samples collected 60 min before and 150 min after the meal
according to an HPLCmethod that included all active forms of this vita-
min: flavin mononucleotide, flavin adenine dinucleotide, and riboflavin
(Giguère et al., 2002).

AOAC (1990) methods were used for analyzing feed and milk for
moisture, ash, N, and fat, and feed for crude fiber. Gross energy in feed
and milk was measured using an adiabatic bomb calorimeter.

Calculations and statistical analysis

Average milk production over 21 days of lactation was calculated
from piglet BW gain and litter size (Hansen et al., 2012). The extraction
rates of nutrients were calculated as the ratio between A–V difference
and arterial concentration, and expressed as a percentage. The respira-
tory quotient (RQ) at the mammary gland level was calculated as the
ratio between the volume of CO2 eliminated and the volume of O2

consumed.
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Arterial concentrations, A–V differences, and extraction rates of nu-
trients were analyzed with an ANOVA for repeated measurements
(GLM procedure, SAS Inst. Inc., Cary, NC, USA), including the effect of
sows, lactation stage, and sampling time. The effect of the interaction
between sampling time and lactation stage was also tested but was re-
moved from themodel because itwas not significant. Variancehomoge-
neity was validated using Levene's test. A paired t-test was performed
for testing the hypothesis that A–V differences were significantly differ-
ent from zero. Linear regressions (SAS Inst. Inc., Cary, NC, USA) between
A–V differences and arterial concentrations were calculated.
Results

Sow and litter performance

The performance of sows and their litter is presented in Supplemen-
tary Table S2. Average feed consumption during lactation was 5.18 ±
0.34 kg/d. It increased from 4.34 ± 0.38 kg/d in the first week to
5.38 ± 0.35 kg/d in the second week, and 5.81 ± 0.65 kg/d in the
third week. The average litter weight gain over lactation was 2042 ±
302 g/d with 10.2 ± 1.3 suckling piglets on average. The average milk
production over lactationwas 8.37 kg per day. The detailed composition
of milk is given in Supplementary Table S2.
Arterial and venous concentrations and arterio-venous difference in
nutrient concentrations

Hematocrit was greater (P < 0.05) in arterial than in venous blood
(Table 1). Blood pH was lower (P < 0.05) in venous blood because of
the higher CO2 content (P < 0.05). The average O2 extraction rate was
34.8%. Arteriovenous difference and extraction rate of O2 were lower
(P < 0.01) after the meal, whereas CO2 production was not affected
(Table 1). The RQ averaged 1.10, and was lower (P < 0.01) before the
meal (0.95) than after the meal (1.54).
Table 1
Effect of stage of lactation of sows andmeal on arterial (A) and venous (V) pH, concentration ofO

Day of lactation1

7 14 21

Red cells, A 26.1 25.2 26.2
% V 26.7 25.8 26.7

A–V4 −0.63* −0.55* −0.47t
pH A 7.47 7.47 7.47

V 7.43 7.42 7.41
A–V 0.05 0.05 0.06

Insulin, A 65.0 65.8 62.7
μUI/ml V 64.8 69.9 59.1

A–V 0.2 −0.9 2.6
O2 total, A 118 112 115
ml/l V 79 72 74

A–V 38* (32%) 40* (36%) 41* (35%)
CO2 total, A 752a 768a 732b

ml/l V 811a 810ab 779b

A–V −59* (− 8%) −42* (− 5%) −48* (− 7%)
Folates, A 68.7 61.1 52.6
ng/ml V 69.5 60.5 53.7

A–V −0.8 0.6 −1.1
Vitamin B12, A 506 391 249
pg/ml V 502 385 237

A–V 3.6 5.6 12.3* (4%)
Riboflavine, A 288 282 316
pmole/ml V 283 273 327

A–V 5 9* (3%) −11

1 Means with different superscripts differ significantly (P < 0.05).
2 P-value. ***: P < 0.001, **: P < 0.01, *: P < 0.05. The effect of sow was significant for all crite
3 Effect of meal: value measured on fasted (sampling time −60 to 0 min) versus fed animals
4 A–V: From a Student's paired t-test, different from zero: t: P < 0.10, *: P < 0.05. Between bra

3

The effect of sow on arterial and venous concentration and A–V dif-
ference was significant for most nutrients and vitamins. Plasma arterial
and venous concentrations of glucose increased (P < 0.001) after feed-
ing (Fig. 1, Table 2). Glucose A–V difference differed from zero (P <
0.05) at all sampling times. It was at its lowest before the meal. It in-
creased 60 min after feeding and subsequently remained at a high
level. On average, glucose plasma arterial and venous concentrations
and A–V differencewere about two times greater (P<0.001) after feed-
ing (sampling time +60 to +180 min) than before feeding (sampling
time −60 to 0 min), whereas the extraction rate (19.3% on average)
did not differ (P> 0.10, Table 2). Like for glucose, lactate plasma arterial
and venous concentrations and A–V difference increased (P < 0.001)
drastically after feeding (by almost 80%), whereas the extraction rate
did not change (16.5% on average). Plasma insulin concentration in-
creased (P < 0.001) after the meal (Table 1), peaking at 60 min post-
prandial. Insulin A–V difference never differed from zero (P > 0.10).

Arterial and venous concentrations of NEFA, glycerol, and TG de-
creased (P < 0.001) after feeding (Fig. 1, Table 2). That reduction was
particularly marked for NEFA, which dropped from 1100 before to
120 μmol/l after the meal. In the case of NEFA, these changes resulted
in a pronounced reduction of A–V difference (P< 0.01), which even be-
came negative 2 to 3 h after themeal (P< 0.05), indicating an apparent
production of NEFA by the mammary gland. A similar pattern was ob-
served for glycerol. Although the arterial concentration of TG decreased
after the meal, its A–V difference was not affected (P > 0.10) by the
meal, as a result of the increase (P < 0.05) in the extraction rate from
24.2 to 33.3% between before and after feeding (Fig. 2, Table 2).

Arterial and venous concentrations andA–Vdifference ofα-aminoN
increased (P < 0.001) after the meal, with the highest concentration
measured 2 h after feeding (Fig. 1, Table 3). The large increase (P <
0.001) in A–V difference of α-amino N after the meal resulted from
both an increase in arterial concentration and extraction rate. The A–V
difference of urea concentration was low with an average extraction
rate of only about 3%. A significant uptake by the mammary gland was
measured for all essential AA (P < 0.05) before as well as after the
2, CO2, insulin, and some vitamins, and their arteriovenous (A–V) concentration difference.

Nutritional status/meal P-value2

Before After RSD Day Time Meal3

26.0 24.9 2.4 *** **
26.3 25.6 2.1 *** *
−0.30 −0.70 1.8 *
7.46 7.49 0.03 * ***
7.46 7.49 0.02 *
0.04 0.07 0.03 * *
5.1 116 46.2 *** ***
4.3 116 49.3 *** ***
0.8 1.3 20.3 *
108 115 14.6 *** *
64 80 12.0 *** ***
44* (47%) 35* (30%) 15.8 ** **
757 764 50.6 ** *** *
799 818 53.2 * *** *
−42* (− 6%) −54* (− 7%) 29.0 * *
55.2 63.2 4.5 *** ***
55.9 64.6 4.6 *** ***
−0.7 −1.3 3.3 **
426 412 52.5
424 410 53.2
1.6 2.1 28.0
292 298 11.9
286 302 13.1 * *
5.0 −3.5 9.4 *

ria (P < 0.05).
(sampling time +60 to +180 min).
ckets: extraction rate (%).
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Fig. 1. Changes in sows' arterial (A) and venous (V) concentrations, and arteriovenous concentration difference (A–V) of glucose, lactate, triglycerides, glycerol, non-etherified fatty acids
(NEFA), and α-amino nitrogen, with sampling time (0 = feed distribution).
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meal (Table 3). Arterial concentration of all essential AA was greater
(P< 0.01) after the meal (+120 min) than before the meal (−60 min,
see Table 3), along with an increase in mammary A–V difference that
was significant (P < 0.05) for methionine, leucine, isoleucine, and phe-
nylalanine (Fig. 3). This was however not the case for valine, histidine,
and arginine as their A–V difference was similar or tended to be greater
during feed withdrawal (Fig. 3), due to a higher extraction rate. Arterial
concentration of non-essential AAwas lower before themeal than after
the meal (P < 0.001, Table 3). On average, extraction rates of essential
and non-essential AA were similar (18.4%).

Arterial and venous concentrations of plasma vitamin B12 tended to
decrease (P=0.09) on days 7 and 21 but were not affected by themeal
(Table 1). Arteriovenous differences in vitamin B12 concentrationswere
4

positive (P < 0.05) only on day 21 and were not influenced by day of
lactation or meal intake. For riboflavin, there was no effect of day of lac-
tation or meal intake on arterial plasma concentrations but, for venous
concentration, postprandial values were higher (P < 0.05) than pre-
prandial. Arteriovenous differences in riboflavin concentrations were
positive and differed from 0 only on day 14 (P < 0.05). None of these
values were influenced by day of lactation, but, a trend toward a reduc-
tion of mammary extraction after the meal was observed for the meal
response (P= 0.06), although neither pre- nor postprandial values de-
viated from zero. For folates concentrations, there was a marked post-
prandial increase (approximately 15%, P < 0.01) for both arterial and
venous values. None of the A–V differences for folates deviated from
zero nor were affected by day of lactation or meal intake.



Table 2
Effect of stage of lactation of sows and meal on arterial (A) and venous (V) concentration of different nutrients and their arteriovenous (A–V) concentration difference.

Day of lactation1 Nutritional status/meal P-value2

9 14 21 Before After RSD Day Time Meal3

Glucose, A 1038 1064 980 624 1268 153 *** ***
mg/l V 847 897 769 502 1026 149 *** ***

A–V4 191* (18.4) 185* (17.4) 210* (21.4) 122* (19.6) 242* (19.1) 86 *** ***
Lactate, A 905b 1080a 1198a 721 1289 334 * *** ***
μmol/l V 780 926 955 593 1069 259 *** ***

A–V 125* (13.8) 153* (14.1) 243* (20.2) 128* (17.8) 220* (17.1) 196 **
Triglycerides, A 184 179 169 211 150 45.7 *** ***
mg/l V 133 134 113 160 100 47.1 *** ***

A–V 50.9ab* (27.7) 45.3b* (25.3) 56.3a* (33.3) 51.0* (24.2) 50.0* (33.3) 37.1 **
NEFA5, A 500 422 519 1 094 121 206 *** ***
μmol/l V 369 370 430 831 130 187 *** ***

A–V 90ab* (18.0) 52a* (12.3) 131a* (25.2) 264* (24.1) −9 169 * *** ***
Glycerol, A 8.1 6.6 7.6 12.8 4.0 2.7 *** ***
mg/l V 7.0 7.1 6.5 10.8 4.3 3.3 *** ***

A–V 1.08* (13.3) −0.5 (− 5.0) 1.03* (13.5) 1.9* (14.8) −0.3 3.4 * ***
Calcium, A 86.4 89.3 90.2 84.3 91.8 4.9 *** ***
mg/l V 84.2 85.8 86.6 82.2 88.0 4.1 *** ***

A–V 2.2* (2.5) 3.5* (3.9) 3.6* (4.0) 2.1* (2.5) 3.8* (4.1) 5.7
Phosphorus, A 59.7 59.8 62.9 56.1 63.3 3.5 *** ***
mg/l V 58.1 55.7 61.7 55.8 61.3 3.3 *** ***

A–V 1.6* (2.7) 2.0* (3.3) 1.2 0.3ns 2.0* (3.1) 2.8 **
α-amino N5, A 791 805 800 143 214 98 *** ***
mg/l V 741 709 712 133 191 95 *** ***

A–V 41.5t (5.2) 96.0* (11.9) 88.4* (11.0) 7.0* (4.9) 23.8* (11.1) 101 *** ***
Urea, A 402a 404a 358b 338 403 23.4 * *** ***
mg/l V 394 400 360 336 398 14.0 *** ***

A–V 8.1a* (2.0) 4.3ab −2.2b 2.3 5.1t (1.3) 23.8 *

1 Means with different superscripts differ significantly (P < 0.05).
2 P-value. ***: P < 0.001, **: P < 0.01, *: P < 0.05. The effect of sow was significant for all criteria (P < 0.05).
3 Effect of meal: value measured on fasted (sampling time −60 to 0 min) versus fed animals (sampling time +60 to +180 min).
4 A–V: From a Student's paired t-test, different from zero: t: P < 0.10, *: P < 0.05. Between brackets: extraction rate (%).
5 NEFA: non-esterified fatty acids; α-amino N: α-amino nitrogen.
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Discussion

Hematocrit was significantly greater by 0.6 percentage points, in ve-
nous than in arterial blood, the difference being greater after the meal
than before (0.7 vs 0.3 percentage points), in line with the results ob-
tained by Renaudeau et al. (2003). This increased hematocrit value of
venous blood can be explained by the water uptake by the mammary
gland.

Arterial concentrations of glucose, lactate, AA, urea, andminerals in-
creased after the meal, whereas those of FFA, TG, and glycerol de-
creased. Similar results were found in various studies in which
lactating sows were fed after overnight feed withdrawal (Messias de
Bragança and Prunier, 1999).

Average glucose A–V difference (196 mg/l) was similar to the aver-
age value measured by Spincer et al. (1969), Renaudeau et al. (2003),
and (Krogh et al., 2017, 198, 247, and 178mg/l, respectively). Lactate
A–V difference (175 μmol/l) was within the range of values measured
by Linzell et al. (1969), Renaudeau et al. (2003), and (Krogh et al.,
2017, 90, 60, and 220μmol/l, respectively). Like in lactating cows
(Rulquin, 1997), we observed a linear relationship, according to nutri-
tional status, between A–V concentration difference and arterial con-
centration of glucose (R2 = 0.72, Fig. 2). A similar linear relationship
(R2= 0.77, Fig. 2) was found for lactate. These nutrients with a high os-
motic gradient are transferred from blood to the lumen of the acinus in
the Golgi vesicles. This transfer requires the presence of transporters,
among which GLUT1, that is not insulin-dependent, is the primary one
for glucose transport to mammary gland (Camps et al., 1994).

For NEFA, average A–V difference (93 μmol/l) was higher than the
average values measured by Linzell et al. (1969) and (Krogh et al.,
2017, 8 and 25μmol/l, respectively). These differences between studies
may be related to the nutritional status of sows and the duration of
feed withdrawal. The elevated preprandial level of arterial NEFA
5

concentration indicates a mobilization of body lipids (Dunshea et al.,
1989; Père and Etienne, 2007) that contributes to the supply of energy
to the mammary gland, as indicated by the increased A–V difference
in NEFA concentration during feed withdrawal, in keeping with the re-
sults of Krogh et al. (2017). After the meal, NEFA plasma concentration
decreased drastically, concomitantly with increasing levels of glucose
and insulin that inhibit lipolysis, as already shown by Père and Etienne
(2007). This resulted in a transient negative A–Vdifference of NEFA con-
centration, in line with the results of Krogh et al. (2017) who suggested
that this release of NEFA after themeal could be related to themobiliza-
tion of body fat from the mammary gland or the hydrolysis of TG, as
shown in goat mammary gland (West et al., 1972). Plasma arterial con-
centration of glycerol was about three times higher before than after the
meal, with an average value of 7.5 mg/l, which is close to the 6.4 mg/l
value measured by Renaudeau et al. (2003). Like with NEFA, we ob-
served a release of glycerol by the mammary gland after the meal
which may also be related to TG hydrolysis as observed in the goat
mammary gland (West et al., 1972). The absorption of NEFA and glyc-
erol by the mammary gland depends on their arterial concentrations,
with a closer relationship for NEFA than for glycerol. The greater A–V
difference of these nutrients during feed withdrawal results from both
the increase in their arterial concentration and their extraction rate. Ac-
cording to Veerkamp (1995), the extraction rate of NEFA depends on
their metabolic utilization. This would explain the much lower and
even negative uptake of NEFA by the mammary gland when the avail-
ability of glucose is high after feeding.

Average A–V difference in TG concentration (51mg/l) was similar to
the values measured by Spincer et al. (1969), Renaudeau et al. (2003),
and (Krogh et al., 2017, 72, 47, and 51mg/l, respectively). From our re-
sults, it appears that A–V difference in TG concentration is not affected
by the nutritional status of the sow, since the decreased arterial concen-
tration is offset by the increased extraction rate.
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Average α-amino N A–V difference (18 mg/l) was similar to the
values measured by Linzell et al. (1969), Spincer et al. (1969), and
(Renaudeau et al., 2003, 16, 24, and 21mg/l, respectively). The increase
inα-amino N concentration after themeal resulted in a drastic increase
(× 3.4) of A–V difference which originated from increases in both arte-
rial concentration (Fig. 2) and extraction rate.

The average extraction rate of total essential AA did not differ signif-
icantly between 30 min before (20.9%) and 120 min after the meal
(16.7%). These values are similar to those measured by Renaudeau
et al. (2003), Guan et al. (2002), and (Krogh et al., 2017, 23, 21, and
20%, respectively). The change after the meal in A–V differences of es-
sential AA concentrations depends on the AA. It increased significantly
for methionine, leucine, isoleucine, and phenylalanine, but decreased
significantly for arginine, which might thus play a specific role during
fasting.

The respiratory coefficient calculated from A–V difference in O2 and
CO2 concentrations was lower before the meal (0.95) than after the
meal (1.54). This is consistent with the high A–V difference in glucose
concentration across the mammary gland after the meal. Conversely,
before the meal, the A–V difference in glucose concentration decreased
and the A–V difference of NEFA and TG concentrations increased,
resulting in a lower RQ.

The A–V difference in energy concentration can be calculated from
A–V difference in nutrients concentrations and their energy content, as-
suming these energy-providing nutrients are all oxidized for ATP pro-
duction or transferred directly into the milk. From the results in the
present study, A–V energy concentration difference was 7.6 kJ/l plasma
6

on average. This value is similar to the values that can be calculated from
the studies of Renaudeau et al. (2003) and (Krogh et al., 2017, 8.3 and
7.9 kJ/l plasma, respectively, Fig. 4). Although nutritional status had no
significant effect on energy A–V difference (7.8 and 7.5 kJ/l plasma for
feed-deprived and fed sows, respectively), it had a large effect on the
relative contribution of the different nutrients to energy supply. In fed
sows, the contribution of glucose to total energy uptake averaged
50.2%, compared to 24.6% in feed-deprived sows. Conversely, the contri-
bution of NEFA to energy supplywasmuch higher in fasted (32.9%) than
in fed sows (0%). The contribution of TG was similar in feed-deprived
and fed sows with 24.9 and 25.1%, respectively. In the study from
Renaudeau et al. (2003) with restrictedly fed sows the results were in-
termediate, withNEFA andglucose contributing to 14 and 45%of energy
intake, respectively. In the study of Krogh et al. (2017), with sows fed
more liberally, the relative contribution of the different nutrients was
closer to the results obtained in the present study with fed sows.

These results indicate that the mammary gland has a great capacity
to adapt its metabolism to the nutrients available in the bloodstream.
This adaptation may occur in the very short term with, for instance, a
very rapid switch of energy uptake from NEFA to glucose after the
meal, over a period of less than 1 hour. In ruminants, because of the
buffering effect of the rumen on artery nutrient content such rapid
and extreme changes have not been observed, although some adapta-
tions also exist in the longer term.

These results are consistent with the results on whole-body energy
metabolism (Noblet and Etienne, 1986), which indicate that energy re-
striction in lactating sows results in increased mobilization of body fat



Table 3
Effect of the meal on sows' arterial concentration (A, mg/l) arteriovenous concentration
difference (A–V, mg/l), and mammary extraction rate (E, %)1 of amino acids.

Average −30mn +120mn Statistical
significance

RSD Day Meal2

Lysine A 39.5 29.0 50.1 9.4 0.68 <0.001
A–V3 6.8* 6.2* 7.3* 5.1 0.36 0.51
E 17.1 21.3 14.7

Methionine A 4.0 3.3 4.7 1.1 0.79 0.001
A–V 1.0* 0.7* 1.3* 0.7 0.05 0.02
E 24.0 19.5 27.1

Threonine A 15.1 11.8 18.3 3.9 0.70 <0.001
A–V 3.4* 2.8* 4.1* 3.0 0.23 0.23
E 22.8 23.8 22.2

Leucine A 33.3 28.2 38.4 6.6 0.39 <0.001
A–V 7.1* 5.2* 9.1* 4.1 0.05 0.01
E 21.4 18.4 23.7

Isoleucine A 22.5 18.8 26.2 4.2 0.81 <0.001
A–V 4.5* 3.5* 5.6* 2.4 0.03 0.03
E 20.2 18.8 21.3

Valine A 45.8 40.0 51.6 5.6 0.20 <0.001
A–V 6.5* 6.9* 6.1* 4.4 0.31 0.59
E 14.2 17.2 11.7

Arginine A 21.2 15.5 26.9 8.3 0.41 0.001
A–V 5.5* 6.4* 4.5* 5.1 0.22 0.29
E 25.9 41.0 16.7

Histidine A 17.9 15.6 20.2 3.8 0.86 0.002
A–V 1.9* 2.1t 1.7t 3.7 0.83 0.75
E 10.8 13.6 8.6

Phenylalanine A 14.5 10.0 19.1 4.0 0.98 <0.001
A–V 3.7* 2.7* 4.6* 2.4 0.83 0.04
E 25.3 27.3 24.2

Tyrosine A 17.4 12.0 22.9 4.9 0.70 <0.001
A–V 3.6* 3.2* 4.0* 3.0 0.22 0.42
E 20.6 26.5 17.5

Total essential A 213.8 172.1 255.5 40.6 0.75 <0.001
A–V 40.4* 36.5* 44.3* 18.9 0.15 0.25
E 18.9 21.2 17.3

Total non-essential A 180.3 142.2 218.5 30.6 0.01 <0.001
A–V 32.1* 28.7* 35.6* 20.0 0.04 0.33
E 17.8 20.2 16.3

1 Extraction rate was calculated as (A–V)/A × 100 when A–V was significantly different
from zero.
2 Effect of sampling time (−30 min vs +120 min after meal distribution).
3 From a Student's t-paired test procedure, A–V significantly different from zero: t:
P < 0.10, *: P < 0.05.

Fig. 3. Relationship between sows' arteriovenous concentration difference (A–V) of
essential amino acids (mg/l plasma) measured 30 min before or 120 min after the
distribution of the meal (● significant increase ○ non-significant increase ■ significant
decrease □ non-significant decrease).
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reserves and increased fat content in milk, with limited effects on total
energy production in milk. In humans, Mahmoud et al. (2014) also
showed that the nutritional status of women (fasted or fed) and the
composition of the diet (high carbohydrate or high fat) affected the
lipid content and composition of human milk.

For vitamins, mammary extraction was generally very small, with
some A–V values slightly positive (≤ 4.5%) for riboflavin and vitamin
B12 during the second half of lactation whereas those for folates never
differed significantly from zero. Nevertheless, although it is apparently
small, such extraction, depending on the vitamin, might be sufficient
to account for amounts that are transferred toward milk synthesis. For
vitamin B12, using dailymammary blood plasmaflows between approx-
imately 4000 (Renaudeau et al., 2003) to 7000 l/d (Krogh et al., 2017),
the daily total extractionmay be estimatedwithin a range of 50 to 86 μg
toward the end of lactation. This estimated amount is probably a major
contributor to the strong tendency of arterial and venous plasma con-
centrations of vitamin B12 to decline by asmuch as 50% during lactation,
an observation also reported by Simard et al. (2007). During the last
third of lactation, the estimated extraction by the mammary gland
may be twice as high as the net amount of vitamin B12 available from
the diet, given a dietary supply of vitamin B12 of approximately 100
μg/d and an intestinal bioavailability between 10 and 38% (Matte
et al., 2010). The present estimation of dailymammary extraction for vi-
tamin B12 is consistentwith the total content of vitamin B12 in sowmilk,
given the presentmilk yield (Supplementary Table S2) and a concentra-
tion of vitamin B12 of approximately 6 μg/l ofmilk, as reported earlier by
Audet et al. (2015).

For riboflavin, the daily total extraction, as estimated for vitamin B12,
ranged between 36 and 63μmole (13.6 to 23.8 mg) at mid-lactation.
There was apparently no impact of the mammary extraction of ribofla-
vin on changes in plasma arterial or venous concentrations of riboflavin
during lactation. With a dietary supply of riboflavin of roughly 62 mg/d
and intestinal bioavailability of approximately 80%, thenet amount of ri-
boflavin available for the whole body during mid-lactation was appar-
ently sufficient for the transfer of this vitamin to the mammary gland.
The present estimation of mammary extraction for riboflavin is in line
with the total riboflavin content in sow milk, given the present milk
yield (Supplementary Table S2) and a riboflavin concentration of 3.5
(range of 1.3 to 8.2)mg/l ofmilk as reported by Pond andHoupt (1978).

For folates, it appears that the present approach was not sensitive
enough to detect significant A–V differences. Using the present daily
milk production and concentrations of folates in sow milk as reported
by Barkow et al. (2001), the total amount of folates in sow milk can be
estimated at 90 μg. If this is equivalent to the dailymammary extraction,
it could correspond to A–V differences within a range of 0.01 to 0.02
ng/ml of plasma folate. Such values are likely much too small to be de-
tected by the current analytical procedure and are in linewith the pres-
ent statistical results, where none of A–V differences for folates deviate
from 0. Therefore, the mammary extraction is apparently negligible as
compared to the overall metabolic folates status and then did not affect
profiles of plasma arterial and venous folates during lactation of sows.

Conclusion

The results obtained in this study indicate that the mammary gland
has a great capacity to very rapidly adapt its nutrient uptake andmodify
its metabolism according to the nutrient available in the bloodstream.
After feeding, glucose contributed to 50% of energy uptake, compared
to 25% before feeding. Conversely, NEFA contributed to 33% of energy
uptake before feeding whereas no significant uptake was measured
after feeding. The relative contribution of AA to energy uptake increased
after themealwhereas contribution of TGwas not affected by the nutri-
tional status. The change after themeal in A–V difference of essential AA
concentration depended on the AA, indicating that some of them could
play a specific role during fasting. Concerning the vitamins, the present
exploratory studywith three B-vitamins showed that the arteriovenous



Fig. 4. Partition of energy uptake from various nutrients by the sow mammary gland in different studies. [1] Renaudeau et al. (2003), [2] Krogh et al. (2017), [3] present study, a:
postprandial, b: feed-deprived. A–V: arteriovenous concentration difference, NEFA: non-esterified fatty acids.
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balance may be used for assessing vitamin uptake by the mammary
gland in sows but it might not apply to all vitamins.
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