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Abstract 31 

Understanding the relationships between host range and pathogenicity for parasites, and between 32 

the efficiency and scope of immunity for hosts are essential to implement efficient disease control 33 

strategies. In the case of plant parasites, most studies have focused on describing qualitative 34 

interactions and a variety of genetic and evolutionary models has been proposed in this context. 35 

Although plant quantitative resistance benefits from advantages in terms of durability, we presently 36 

lack models that account for quantitative interactions between plants and their parasites and the 37 

evolution of these interactions. Nestedness and modularity are important features to unravel the 38 

overall structure of host-parasite interaction matrices. Here, we analysed these two features on 32 39 

matrices of quantitative pathogenicity trait data gathered from 15 plant-parasite pathosystems 40 

consisting of either annual or perennial plants along with fungi or oomycetes, bacteria, nematodes, 41 

insects and viruses. The performance of several nestedness and modularity algorithms was evaluated 42 

through a simulation approach, which helped interpretation of the results. We observed significant 43 

modularity in only six of the 32 matrices, with two or three modules detected. For three of these 44 

matrices, modules could be related to resistance quantitative trait loci present in the host. In 45 

contrast, we found high and significant nestedness in 30 of the 32 matrices. Nestedness was linked to 46 

other properties of plant-parasite interactions. First, pathogenicity trait values were explained in 47 

majority by a parasite strain effect and a plant accession effect, with no parasite-plant interaction 48 

term. Second, correlations between the efficiency and scope of the resistance of plant genotypes, 49 

and between the host range breadth and pathogenicity level of parasite strains were overall positive. 50 

This latter result questions the efficiency of strategies based on the deployment of several 51 

genetically-differentiated cultivars of a given crop species in the case of quantitative plant immunity. 52 

 53 
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Introduction 57 

The effectiveness of strategies of disease control based on host immunity depends on the underlying 58 

capabilities of hosts to resist infection, of parasites to overcome this resistance and on the potential 59 

of these traits to evolve. Parasites and hosts can be specialists or generalists in, respectively, their 60 

capacity to infect and their immunity. Confronting multiple genotypes of a parasite with multiple 61 

genotypes of a host reveals their interaction patterns, i.e. the magnitude and arrangement of their 62 

mutual specialization or generalism, which gives insights into the underlying genetic bases of these 63 

characters and allows implementing strategies of disease management based on host diversification. 64 

Importantly, the word “interaction” has different meanings in this context. In ecology, interactions 65 

between hosts and parasites are the effects that each of these two categories of living organisms 66 

have on each other. These host-parasite interactions can involve molecular interactions, which are 67 

attractive or repulsive forces between molecules, for example between parasite elicitors or effectors 68 

and host receptors. Finally, quantitative pathogenicity traits can be analysed thanks to statistical 69 

models that include, or not, a significant interaction between variables representing hosts and 70 

parasites. In the latter acception, “interaction” means that the model departs significantly from a 71 

purely additive model, including only a parasite effect and a host effect. Statistical interactions are 72 

used in the context of quantitative data and linear regression models, but not for qualitative binary 73 

data. 74 

The structure of any host-parasite interaction can be represented as a matrix where columns 75 

correspond to host genotypes (either inbred lines, clones or F1 hybrids) and rows to parasite strains 76 

(either isolates, clones or populations depending on the considered parasite). Each cell in the matrix 77 

indicates the result of the pairwise confrontation between the corresponding host genotype and 78 

parasite strain. Qualitative interactions generate binary matrices with 1 and 0 grades, which 79 

correspond to successful and unsuccessful infections. Nestedness and modularity are two 80 

quantitative properties that reveal non-random distributions of 1 and 0 grades in such matrices 81 

(Weitz et al. 2013). Nestedness measures the tendency of the hosts of a parasite to have a 82 

hierarchical organization, where the set of hosts of a given parasite (a species or a genotype) is a 83 

subset (respectively superset) of that of the parasites of broader (respectively narrower) host ranges. 84 

Here, the breadth of the host range of a given parasite is defined as the percentage of host species 85 

(or genotypes) that are infected by this parasite. The same tendency is observed for host immunity 86 

(Fig. 1A): the set of parasites that are controlled by the immunity of a given host is a subset 87 

(respectively superset) of that of hosts with broader (respectively narrower) scopes of resistance. 88 

Here, the scope of the resistance of a given host is defined as the percentage of parasite species (or 89 

strains) that are targeted by this resistance. 90 
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Modularity measures the strength by which the matrix can be divided into several modules grouping 91 

subsets of hosts and parasites characterized by successful infections, infections being rare for hosts 92 

and parasites belonging to different modules (Fig. 1B). Depending on the genetic, evolutionary and 93 

mechanistic patterns of host-parasite interactions, contrasted scores for nestedness and modularity 94 

are expected. 95 

Three main models of host-parasite interactions have been proposed for qualitative plant-parasite 96 

interactions (Fig. 1C to F; see Thrall et al. 2016 for details). These models represent the mutual 97 

specialization of hosts and parasites in terms of underlying molecular mechanisms, genetic 98 

determinism and coevolution pattern. Each one generates a specific structural pattern in the 99 

corresponding interaction matrix. Historically, the first model was the gene-for-gene (GFG) model 100 

proposed to describe interactions between crop plants and their parasites, based on genetic studies 101 

of flax and rust (Flor 1956). In this model, plant immunity is inducible and requires recognition of the 102 

parasite by its host. Recognition occurs between a host receptor and a parasite elicitor, each of them 103 

being encoded by a single gene. The loss or alteration of the elicitor in the parasite or the absence of 104 

a cognate resistance allele in its host results in infection. Here, the word ‘elicitor’ is used in the broad 105 

sense of a parasite component triggering plant defenses, and thus includes effectors and avirulence 106 

factors (Bent and Mackey 2007). This model is coherent with dominant resistance that involves plant 107 

proteins containing nucleotide-binding and leucine-rich-repeat domains as receptors, and that 108 

mounts hypersensitive reactions (programmed cell death) upon recognition of various kinds of 109 

parasite elicitors. In this system, a parasite strain may have universal infectivity, i.e. may be able to 110 

infect all host genotypes, if it lacks all the elicitors that correspond to the host resistance factors. 111 

Accordingly, the matrix has a global nested pattern, with partial or complete overlap of the host 112 

ranges of the parasite strains and of the resistance spectra of the host genotypes (Fig. 1C,D). 113 

Secondly, the matching-allele (MA) model was proposed to describe the self/non-self recognition 114 

system of invertebrate immunity (Grosberg and Hart 2000). In that case, infectivity requires a specific 115 

match between the host genotype and the parasite strain and, accordingly, universal infectivity is 116 

impossible. The corresponding host-parasite matrix has a modular structure. Cross-infections are 117 

frequent between hosts and parasites belonging to the same module but rare between hosts and 118 

parasites belonging to distinct modules. In extreme cases of specialization, modules can be as small 119 

as a single host-parasite pair (Fig. 1E). Mechanistically, this model is coherent with recessive plant 120 

resistance to viruses mediated by eukaryotic translation initiation factors (e.g. Sacristán and García-121 

Arenal 2008) and with necrotrophic fungi which secrete elicitors of programmed cell death that 122 

increase plant susceptibility by allowing the fungus to feed on dying cells (Peters et al. 2019). In the 123 

context of plant necrotrophic parasites, this model is also confusingly named ‘inverse gene-for-gene’ 124 
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(Peters et al. 2019). Thirdly, the inverse-matching-allele (IMA) model was proposed to reflect the 125 

adaptive immune system of vertebrates, where the host resists through recognition of the parasite 126 

and infections occur when the parasite mismatches the host (Kidner and Moritz 2013; Thrall et al. 127 

2016). The IMA model was defined in the context of multi-allelic series of resistance and 128 

pathogenicity genes. Mechanistically very similar to the GFG model, it assumes that recognition 129 

between host and parasite genotypes is highly specific. The corresponding host-parasite matrix is 130 

therefore similar to the matching-allele model but with 0 and 1 grades replaced by 1 and 0 grades, 131 

respectively (Fig. 1F). Hence, a modular pattern is the expected result when immunity levels (instead 132 

of the degree of pathogenicity) are indicated in the matrix. 133 

The distinguishing feature of the genetic models described above is that they describe qualitative 134 

binary interactions, where each host-parasite pair is characterized by its compatibility or non-135 

compatibility. Models that describe quantitative host-parasite interactions are rare and their 136 

adequacy to represent empirical data have not been extensively tested (Lambrechts 2010; Wang et 137 

al. 2018). Analysis of quantitative plant immunity has mostly been confined to the framework of 138 

quantitative genetics and QTL (quantitative trait loci) mapping. These methods usually assume that 139 

resistance is determined by the additive effect of QTLs. More complex effects (dominance, epistasis) 140 

are rarely considered (Gallois et al. 2018). Furthermore, there are few studies of quantitative 141 

genetics and QTL mapping of parasite pathogenicity traits, especially in the case of plant parasites 142 

(Wang et al. 2018). Most importantly, these few analyses were conducted either with a set of hosts 143 

confronted to a single parasite or with a set of parasites confronted to a single host. In any case, 144 

there is a clear need for new models describing quantitative host-parasite interactions while properly 145 

accounting for the variability of both partners (Lambrechts 2010; Bartoli and Roux 2017). Moreover, 146 

previous work has shown that the outcome of analysis of matrix structure is markedly impacted 147 

when quantitative interactions are considered. Quantitative data are especially influencing the 148 

significance of nestedness (Staniczenko et al. 2013). 149 

These considerations motivated us to conduct a comprehensive analysis of the nestedness and 150 

modularity of interaction matrices to deepen our knowledge in the specialization between plants and 151 

diverse parasites using quantitative data. The objectives of this work are (i) to assess the 152 

performance of available algorithms to identify nested and modular patterns in matrices of 153 

quantitative data and (ii) to determine if these patterns are specific to each pathosystem or show a 154 

general trend. In addition, our work provides a new perspective and insight into appropriate genetic 155 

and evolutionary models for representing quantitative plant-parasite interactions and for outcomes 156 

for plant resistance management. 157 
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 158 

Results 159 

We gathered 32 matrices corresponding to 15 plant-parasite pathosystems and containing 160 

quantitative pathogenicity trait values (Table 1; Fig. 2). Among the 13 parasite species included, most 161 

were fungi or oomycetes (five and four, respectively), while bacteria, nematodes, insects and viruses 162 

were represented only once. Only three pathosystems included perennial (tree) plants and all plant 163 

species were temperate-climate crops (or crops adapted to both temperate and tropical climates). 164 

Each pathosystem included a set of strains belonging to the same parasite species and a set of 165 

accessions belonging to the same plant species with four exceptions, matrices 9, 18, 19 and 26, 166 

where accessions belonged to several closely-related plant species. Among the matrices, the number 167 

of plant accessions varied from seven to 53 (median 12) and the number of parasite strains varied 168 

from six to 98 (median 11.5). The number of matrix cells varied from 49 to 1470 (median 180). For 169 

most pathosystems, we analyzed several matrices corresponding to either different pathogenicity 170 

traits, different plant-parasite sets or different experiments. In order to meet the requirements of 171 

methods that allow the estimation of nestedness and modularity of matrices, the pathogenicity traits 172 

in each matrix were standardized into integer values ranging from 0 (minimal plant resistance and/or 173 

maximal parasite pathogenicity) to 9 (maximal plant infection and/or minimal parasite 174 

pathogenicity). We then tested for the occurrence of nestedness and modularity. For significance 175 

assessment, the nestedness/modularity scores of the matrices derived from experimental data were 176 

compared to those of simulated null-model matrices that are not expected to possess any nested or 177 

modular pattern (Supplementary Methods 1). Nestedness (or modularity) is significant if the actual 178 

matrix is more nested (or modular) than at least 95% of the matrices simulated under a given null 179 

model (black numbers on grey background in Tables 2, 3 and 4). As there are many possible null 180 

models and because their choice is crucial to conclude about the significance of nestedness or 181 

modularity, we analyzed the performance of the different available nestedness/modularity 182 

algorithms and of different null models by estimating their type I and type II error rates through a 183 

simulation approach (Supplementary Methods 1; Tables S1 to S18). 184 

 185 

Ubiquitous nestedness in quantitative plant-parasite interactions 186 

First, we evaluated the performance of two algorithms, WINE and wNODF (Galeano et al. 2009; 187 

Almeida-Neto and Ulrich 2011), to estimate the nestedness of the 32 matrices. Simulations revealed 188 

that statistical significance with both null models C1 and R1 (or C2 and R2) provided the lowest false 189 

positive rates for nestedness (Supplementary Methods 1; Tables S1 and S2). Under null models C1 190 
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and R1, matrices are generated column by column or row by row, respectively, and the cell numbers 191 

are chosen randomly in order that (i) the marginal sums of cells and (ii) the numbers of zero-valued 192 

cells are kept the same as in the actual matrix. To generate matrices under null models C2 and R2, 193 

the cell values of the actual matrix are shuffled column by column or row by row, respectively. 194 

With the WINE algorithm, nestedness values were quite high in general (from 0.46 to 1.04; mean 195 

0.77 on a scale varying from 0 to ≈1). Thirty of the 32 matrices showed significant nestedness (p-196 

values ≤ 0.05) with null models C1, R1, C2 and R2 (Table 2). Only matrices 21 and 32 were not 197 

significantly nested with either null model C1, R1, C2 or R2.  198 

With the wNODF algorithm, nestedness estimates varied from 6.1 to 75.4 (mean 38.2) on a scale 199 

varying from 0 to 100 and nestedness was significant for only 19 of the 32 matrices with null models 200 

C1, R1, C2 and R2 (Table 2). This lower number of matrices showing nestedness is consistent with the 201 

lower statistical power of wNODF compared to WINE (Supplementary Methods 1). As both methods 202 

are based on different principles, the correlation of their nestedness scores among the 32 matrices is 203 

only moderate (Pearson’s r = 0.37; p-value = 0.038). Importantly, unlike the WINE method, wNODF 204 

cannot estimate the nestedness of matrices devoid of zero-valued cells and underestimates 205 

nestedness when zero-valued cells are scarce. Indeed, most of the matrices significantly nested with 206 

WINE but not significantly nested with wNODF contained few zero-valued cells, most of which being 207 

distributed on a single row or column. Consequently, the discrepancy between results obtained by 208 

WINE and wNODF may be a bias due to the lack or peculiar distribution of the zero-valued cells. Five 209 

more matrices (numbers 13, 15, 20, 29 and 31) were significantly nested with wNODF if 1-valued 210 

cells or 1- and 2-valued cells were transformed into 0-valued cells. 211 

With wNODF (but not with WINE), several matrices were less nested than at least 95% of the 212 

matrices simulated under one or several null models (white numbers on black background in Table 213 

2), a property that we will name anti-nestedness. Matrix 14 was significantly anti-nested with null 214 

models N, C1, R1 and R2. For six other matrices, significant anti-nestedness was detected with one or 215 

a few null models, a bias attributable to the small number of 0-valued cells (matrices 12, 23 and 24) 216 

which disappeared largely when 1- and 2-valued cells were transformed into 0-valued cells. 217 

Overall, taking into account the limitations of the wNODF algorithm, our analysis revealed that the 218 

huge majority of the matrices (30/32; 94%) were significantly nested. 219 

 220 

Investigation of the biological significance of nestedness 221 

Adequacy of an additive linear regression model for pathogenicity matrices 222 
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The high and significant nestedness observed among most of the analysed matrices suggests that an 223 

additive model combining pathogenicity QTLs in the parasites and resistance QTLs in the hosts, with 224 

no QTL x QTL interactions between hosts and parasites, would fit well with the data (Fig. 1G). We 225 

evaluated the performance of the linear regression model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant 226 

accession’, with no interaction term, on the datasets. For each plant accession-pathogen strain pair, 227 

the mean pathogenicity value was considered for the ‘pathogenicity’ variable. The ‘parasite strain’ 228 

and ‘plant accession’ effects were highly significant (p-value < 0.0012), except for matrices 21 and 32 229 

which were the only ones not significantly nested according to the WINE method (Table 2). Omitting 230 

these two matrices, the multiple coefficient of determination (R²) indicating model fit varied from 231 

0.49 to 0.98 (mean 0.75) (Table 1), which lends support to the suggested genetic model. Moreover, 232 

the multiple R² values of the linear regression model were significantly correlated with the 233 

nestedness scores obtained with the WINE algorithm (Pearson’s r = 0.73; p-value = 2.6e-06) across 234 

the 32 matrices. They were only marginally correlated with the nestedness scores of the wNODF 235 

algorithm (r = 0.32; p-value = 0.07). 236 

 237 

Evaluating potential trade-offs: Host range breadth vs. pathogenicity in parasites and scope vs. 238 

efficiency of resistance in host plants 239 

The ubiquitous nestedness detected suggests a positive correlation between the host range breadth, 240 

i.e. the percentage of host accessions that a parasite can efficiently infect, and the pathogenicity 241 

level of the parasite. Similarly, a positive correlation is expected between the scope of the resistance 242 

and the resistance efficiency of the plants. Given the continuous distribution of the quantitative 243 

pathogenicity traits, we defined arbitrary pathogenicity thresholds to distinguish host and non-host 244 

accessions for a given parasite strain, and to distinguish parasite strains included or not included in 245 

the scope of the resistance of a given plant accession. Nine thresholds were defined, varying from 246 

10% to 90% of the maximal pathogenicity value in the whole matrix by increments of 10%, and 247 

allowed estimating the percentage of plant accessions included in the host range of each parasite 248 

strain (i.e. the host range breadth) and the percentage of parasite strains included in the scope of 249 

resistance of each plant accession. The mean Pearson’s coefficient of correlation (r) between host 250 

range breadth and pathogenicity varied from 0.20 to 0.38 across the different threshold values 251 

(mean 0.31). Depending on the threshold, from 23.1% (6/26 matrices) to 40.6% (13/32) (mean 252 

31.9%) of the matrices showed significantly positive r values, whereas from 0 (0/11) to 9.7% (3/31) 253 

(mean 4.8%) of the matrices showed significantly negative r values (Fig. 3). Note that the coefficient 254 

of correlation could not be calculated for several matrices for some of the thresholds because of the 255 
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lack of pathogenicity values above (for correlation between host range breadth and pathogenicity) or 256 

below (for correlation between resistance scope and efficiency) that threshold. 257 

The mean r between resistance scope and efficiency varied from 0.18 to 0.59 across the different 258 

threshold values (mean 0.39). Depending on the threshold, from 25.0% (6/24) to 46.9% (15/32) 259 

(mean 35.8%) of the matrices showed significantly positive r values, whereas from 0 (0/32) to 9.4% 260 

(3/32) (mean 2.9%) of the matrices showed significantly negative r values (Fig. 3). 261 

 262 

Rare cases of modularity in quantitative plant-parasite interactions 263 

We applied five algorithms to estimate the modularity of the 32 matrices (Newman and Girvan 2004; 264 

Clauset et al. 2004; Newman 2006; Blondel et al. 2008; Traag and Bruggeman 2009; Supplementary 265 

Methods 1). By maximizing a modularity score, these algorithms estimate the optimal number of 266 

modules and the distribution of plant and parasite genotypes in the modules. Modularity scores 267 

were low overall, with a maximum of 0.240 and a mean of 0.075, on a scale varying from 0 to 1 268 

(Tables 3 and 4). The fast greedy, louvain and leading eigenvector methods provided highly similar 269 

modularity scores among the 32 matrices, with Pearson’s coefficients of correlation r > 0.91 (p-values 270 

≤ 1e-12). Scores of the edge betweenness method were highly correlated with the previous three 271 

methods (0.58 < r < 0.74; p-values ≤ 6e-04) whereas scores of the spinglass method were moderately 272 

correlated with the previous ones (0.39 < r < 0.61; p-values ≤ 0.027). Our analysis of the performance 273 

of these methods showed that the spinglass algorithm had a very low rate of false positive 274 

modularity, whatever the null model (Supplementary Methods 1). In contrast, the fast greedy, 275 

louvain and edge betweenness algorithms had high rates of false positive modularity with several null 276 

models, except models S (where cell values of the actual matrix are shuffled, with no constraints on 277 

row or column marginal sums), C2 and R2 (Tables S7-S9). 278 

According to the spinglass method, six matrices (numbers 5, 6, 10, 11, 14 and 17b) were significantly 279 

modular with a majority of null models (Table 3), though their modularity scores were low (≤ 0.102). 280 

Depending on the matrix, spinglass defined an optimal number of two or three modules, which 281 

provided the maximal modularity score (Table 3; Fig. 4). In addition, matrices 8 and 22 were only 282 

significantly modular with one null model. Evidence of modularity with the edge betweenness, fast 283 

greedy, louvain and leading eigenvector methods was scarce, significant modularity being usually 284 

observed for one of the null models S, C2 or R2 only and not for all methods (Table 4). 285 

With all modularity methods, several matrices were less modular than at least 95% of the matrices 286 

simulated under one or several null models (white on black numbers in Tables 3 and 4), a property 287 
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that we will name anti-modularity. For spinglass, only matrix 7 was significantly anti-modular with 288 

null models N, C1 and R1 (Table 3). The other methods detected significant anti-modularity in most 289 

matrices with most null models but suffered high rates of false positive anti-modularity for many null 290 

models (Supplementary Methods 1; Tables S11-S13). Considering only matrices that are significantly 291 

anti-modular with both null models C2 and R2, which correspond to the lowest rates of false 292 

positives (null model CR2 in Tables S11 to S13), 13 matrices were significant with at least two 293 

methods and three (matrices 17, 28 and 29) were significant with the four methods (Table 4). Results 294 

obtained with the other matrices varied according to algorithms and null models, showing both 295 

significant modularity and anti-modularity, which could be due to low type I error performances of 296 

the algorithms for detection of modularity and/or anti-modularity. 297 

 298 

Investigation of the biological significance of modularity 299 

We examined the relevance of the detected modules for the six matrices showing significant 300 

modularity with most null models with spinglass (Table 2) by analysing whether the plant and 301 

parasite genotypes belonging to each module shared common properties (common resistance gene 302 

or QTL for plants; common pathogenicity factor for parasites; common origin for plants or parasites). 303 

For matrix 5 (Puccinia hordei-barley), two modules were detected (Fig. 4). The first one grouped the 304 

five accessions with resistance QTLs Rphq3 and Rphq11, showing delayed infection with most isolates 305 

of the second module, and one accession carrying QTLs Rphq1, Rphq2 and Rphq3, showing delayed 306 

infection with almost all isolates (González et al. 2012). The second module contained four 307 

accessions with either no resistance QTL or QTL Rphq18, that were quickly infected by almost all 308 

isolates. The country of origin or date of collection of the isolates did not explain their distribution in 309 

the two modules (Marcel et al., 2008). 310 

For matrix 6 (Venturia inaequalis-apple), three modules were detected. The first one grouped the 311 

eight accessions carrying QTL T1 and the four V. inaequalis isolates collected on apple trees carrying 312 

T1 (Laloi et al. 2017). The two other modules grouped (i) the remaining accessions that were either 313 

carrying no resistance QTL or QTLs F11 or F17 that have only a low effect on disease reduction and 314 

(ii) isolates collected on these accessions. One of these modules grouped a single isolate and a single 315 

accession. Infections were on average high within all modules and low between any pair of modules. 316 

Two modules were also detected for matrix 14 (Zymoseptoria tritici-bread wheat). These modules 317 

could be partially explained by the interaction between the resistance gene Stb6 (Saintenac et al. 318 

2018), that confers a high level of resistance in the absence of a hypersensitive response, and the 319 
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pathogen avirulence gene AvrStb6 (Zhong et al. 2017). Six of the eight cultivars in the first module 320 

carry Stb6, while at least six of the seven cultivars in the second module do not carry Stb6. Moreover, 321 

the 44 fungal isolates structuring the first module are pathogenic on Stb6 while the 54 isolates from 322 

the second module are either pathogenic or not pathogenic on Stb6. 323 

Concerning matrices 10, 11 (Podosphaera xanthii-melon) and 17b (Phytophthora capsici-pepper), 324 

three modules were detected but there was no evidence of similarity in the genetic composition of 325 

accessions, the presence of particular resistance genes or QTLs or the origin of isolates belonging to a 326 

same module. 327 

 328 

Modularity of reverse matrices 329 

To test the occurrence of IMA patterns (Fig. 1F), we also analyzed the modularity of the 32 matrices 330 

transformed such that a grade of 0 corresponds to the maximal plant susceptibility and grades 1 to 9 331 

correspond to the range of increasing plant resistance (hereafter “reverse matrices”). Using the 332 

spinglass algorithm, four matrices (numbers 10, 11, 14 and 15) showed significant but low modularity 333 

(≤0.078) with either null models C1 and R1 or C2 and R2. Depending on the matrix, spinglass defined 334 

an optimal number of two to five modules (Fig. 5). 335 

The modules identified in reverse matrices 14 and 15 using the spinglass algorithm were biologically 336 

more meaningfull than the two modules previously identified for matrix 14. Matrices 14 and 15 337 

correspond to two different phenotypic traits measured in the same plant-parasite interactions (i.e. 338 

necrosis and sporulation, respectively). Interestingly, modules identified in the two matrices were 339 

similar but not identical since five modules were identified in matrix 14 and four modules were 340 

identified in matrix 15. This may reflect differences in the genetic determinism of the two phenotypic 341 

traits measured or differences in the mechanisms of various Stb resistance genes. For matrix 14, 342 

three modules correspond to the presence of resistance genes Stb7 (one cultivar), Stb9 (three 343 

cultivars) and Stb6 (four cultivars), one module to cultivars carrying various Stb genes (three 344 

cultivars), and one module to susceptible (or partially resistant) cultivars (four cultivars). For matrix 345 

15, the modules corresponding to the presence of Stb6 and Stb9 are also identified (with an 346 

additional cultivar in the Stb6 module), the module corresponding to susceptible cultivars as well 347 

(with two additional cultivars), and the cultivar Salamouni carrying Stb13 and Stb14 forms the fourth 348 

module. As above, there was no evidence of similarity in the composition of accessions and isolates 349 

belonging to the same module for reverse matrices 10 and 11. 350 
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Overall, considering both the initial and reverse matrices, our analysis revealed that only a minority 351 

of the matrices (7/32; 22%) were significantly modular. 352 

 353 

Discussion 354 

There is nothing more fundamental to the concepts in Plant Pathology as a science and to the 355 

practical strategies used for managing plant health than the host range of a parasite and the scope of 356 

resistance of a plant (Morris and Moury 2019). Based on the patterns in matrices of plant-parasite 357 

interactions, we can conceive and test hypotheses about the molecular and evolutionary processes 358 

that underlie plant-parasite interactions, develop robust diagnostic tools, design breeding programs 359 

and strategies for deploying resistant cultivars, and construct models to anticipate disease 360 

emergence. Given the complexity of the mechanisms involved in disease, it would be reasonable to 361 

assume that the particularities of each pathosystem would be an impediment to identifying universal 362 

principles that can guide these efforts. However, here we have used network-based analyses to 363 

reveal the quasi-universal principle that the structure of quantitative matrices of plant-parasite 364 

interactions is nested. Indeed, evidence of nestedness was found in 94% (30/32) of the matrices that 365 

we analyzed and one of the two non-nested matrices (number 32) was one of the smallest ones, 366 

which may have precluded the detection of a significantly nested pattern. Our results were based on 367 

statistically robust analyses of quantitative assessments of compatible interactions between hosts 368 

and parasites for large interaction matrices involving from 49 to 1470 (median 180) host-parasite 369 

combinations. Quantitative data are key to the accuracy and genericity of these analytical methods. 370 

Indeed, in a study of 52 published matrices containing data on plant-pollinator, plant-seed disperser 371 

and parasitoid-host interactions, Staniczenko et al. (2013) found evidence of nestedness in only 3% 372 

of matrices including quantitative data, whereas the same matrices considered in a binary manner 373 

showed evidence of nestedness in 98% of cases. 374 

Network theory has its origins in the study of social networks and in ecology of interacting organisms 375 

(Patterson and Atmar 1986). Ecological networks are typically identified by counting in natura the 376 

interactions between (or co-occurrence of) two sets of taxa. Evidence of nestedness was frequent for 377 

all kinds of matrices, including interactions between hosts and symbionts, either mutualistic or 378 

parasitic (Bascompte et al. 2003; Joppa et al. 2010; Dormann et al. 2017). A number of factors that 379 

are external to the interacting organisms can affect properties of such ecological networks. For 380 

example, nestedness increases with the abundance of taxa (Joppa et al. 2010; Staniczenko et al. 381 

2013; Suweis et al. 2013; Valverde et al. 2018), with heterogeneous distribution of connections, i.e. 382 

of numbers of links between interacting taxa (Jonhson et al. 2013), with the occurrence of broad 383 
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connectivities (Feng and Takemoto 2014) and with spatially-limited interactions between taxa 384 

(Valverde et al. 2017). These analytical methods were recently used to analyse host-symbiont 385 

interactions resulting from cross-inoculation experiments, where every host taxon was inoculated 386 

with every symbiont taxon, and the compatibility of each host-symbiont pair was reported in the 387 

matrix (Flores et al. 2011; Flores et al. 2013; Weitz et al. 2013). The structural patterns of such 388 

matrices, where all host-symbiont pairs are evaluated under the same experimental and 389 

environmental conditions, are mainly the result of intrinsic, mostly genetic, differences between host 390 

or symbiont taxa. 391 

Network analyses can also be strongly affected by the choice of null models (Gotelli and Graves 392 

1996). This is why we conducted a thorough evaluation of the performance of several null models 393 

with simulations (Supplementary Methods 1). The null models should keep, as much as possible, 394 

everything identical to the actual matrix apart from the pattern of interest, nestedness or 395 

modularity. Many null models have unacceptably loose constraints. For example, null models that do 396 

not force row or column marginal sums to be constant create distributions of taxa that do not match 397 

those usually observed, leading to falsely positive nestedness (Brualdi and Sanderson 1999; Joppa et 398 

al. 2010). Accordingly, high rates of false positives were observed with null models N and S in our 399 

simulations (Tables S1 and S2). Since parasites typically differ greatly in the number of hosts they 400 

exploit and the efficiency with which they exploit them, we did not want null models to detect 401 

significant nestedness when the heterogeneity of infection was shuffled randomly among hosts, as 402 

was frequently observed for null models N and S with test matrices M1R to M5R (Tables S1 and S2). 403 

Null models R1 and R2 that force row marginal sums to be constant avoided this problem (Tables S1 404 

and S2). The same was true for the scope and efficiency of resistance that differ greatly between 405 

plant accessions. In that case, the C1 and C2 null models efficiently avoided an excess of falsely 406 

positive nestedness due to the hererogeneity of resistance (because C1 and C2 are equivalent to R1 407 

and R2 when the rows and columns of the matrix are exchanged, which leaves the nestedness scores 408 

unchanged; data not shown). Overall, to account for both plant resistance and parasite infection 409 

heterogeneities, we found that the CR1 (or CR2) null model, that combines null models C1 and R1 (or 410 

C2 and R2, respectively), is the most efficient as it showed acceptable type I error rates 411 

(Supplementary Methods 1). Null model B, based on Patefield’s (1981) algorithm, maintains both the 412 

row and column marginal sums of the actual matrix. However, it does not maintain the connectance 413 

(i.e. number of non-zero-valued cells of the matrix), which has a strong impact on the estimation of 414 

nestedness. Consequently, the type I error rates associated with null model B were frequently higher 415 

than those obtained with models CR1 or CR2. Moreover, using quantitative instead of binary data 416 
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contributed to lowering the nestedness false positive rate (Staniczenko et al. 2013; Dormann et al. 417 

2017). 418 

Overall, we obtained strong and consistent evidence of nestedness for almost all matrices (except 419 

matrices 21 and 32), whatever the parasite type, the plant species or the pathogenicity trait 420 

measured. Nestedness was linked to two important features of quantitative plant-parasite matrices: 421 

(i) scarcity and/or low level of statistical interactions between plant and parasite genotypes in terms 422 

of infection intensity and (ii) lack of trade-offs between host range and pathogenicity among parasite 423 

strains and between efficiency and scope of the resistance among plant accessions. 424 

The former feature is supported by the fact that an additive linear model - containing only a plant 425 

accession effect and a parasite strain effect with no interaction term - showed high multiple 426 

coefficients of determination (from 0.49 to 0.98) across matrices (Table 1). This result is compatible 427 

with a genetic model where pathogenicity in the parasite and resistance in the host plant are 428 

determined by a varying number of QTLs, but the statistical interaction between effects of QTLs from 429 

the parasite and QTLs from the host is rare and/or of small magnitude (Table 1; Fig. 1G). In other 430 

words, plants and parasites differ by their QTL assemblage (i.e. QTL numbers and/or effects) but 431 

plant resistance QTLs have similar effects towards all parasite strains and, reciprocally, parasite 432 

pathogenicity QTLs have similar effects towards all plant genotypes. Quantitative models usually 433 

used to analyse empirical data on plant-parasite interactions are quite simplistic, e.g. assuming or not 434 

a statistical interaction between plant and parasite genotypes (Parlevliet 1977). Models that are 435 

more complex have been proposed in the frame of theoretical modelling (e.g. Fenton et al. 2009) but 436 

their relevance to represent biological data was not evaluated. Importantly, we do not argue that 437 

evidence of nestedness supports a single genetic model of plant-parasite interaction. Instead, we 438 

suggest that an additive linear model with a plant accession and a parasite strain effects is the 439 

simplest model that accounts for the empirical data but we cannot exclude that other models could 440 

be suitable, like the modified GFG model of Fenton et al. (2009). A future challenge, requiring more 441 

in-depth genetic studies, would be to evaluate the adequacy of these different models to represent 442 

empirical plant-parasite interactions. New analytical methods can provide a better understanding 443 

and quantification of host-parasite genetic interactions, such as the host-parasite joint genome-wide 444 

association analysis recently developed by Wang et al. (2018). Applied to the Arabidopsis thaliana–445 

Xanthomonas arboricola pathosystem, this model showed that 44%, 2% and 5% of the phenotypic 446 

variance could be explained respectively by the parasite strain, the host accession and the parasite-447 

host interaction. As in our results, only a small parasite-host interaction effect was detected. 448 
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The latter feature of quantitative plant-parasite matrices is supported by the fact that we observed a 449 

majority of positive, rather than negative correlations (i.e. trade-offs), between the infectivity and 450 

the breadth of host range of parasites on the one hand and, especially, between the efficiency and 451 

scope of the resistance of plants on the other hand (Fig. 3). Few studies have examined the 452 

relationships between the scope and efficiency of plant resistance. In contrast with our results, 453 

Barrett et al. (2015) hypothesized evolutionary trade-offs between resistance efficiency and scope 454 

because quantitative resistance had a broader scope compared to qualitative resistance in the Linum 455 

marginale – Melampsora lini interactions. The difference between our studies could be that we 456 

focussed on quantitative resistance and included few qualitative resistance genes in our dataset (or 457 

these were overcome by most parasite strains). The positive correlation between parasite infectivity 458 

and host range breadth contrasts with qualitative host-parasite interactions and especially the GFG 459 

model, where the expansion of the host range of parasites is associated with a cost in fitness during 460 

infection of the previous hosts. Such so-called “virulence costs” have been experimentally measured 461 

in many plant-parasite systems, including viruses (Jenner et al. 2002; Desbiez et al. 2003; Janzac et al. 462 

2010; Poulicard et al. 2010; Fraile et al. 2011; Ishibashi et al. 2012; Khatabi et al. 2013), fungi (Bahri 463 

et al. 2009; Huang et al. 2010; Caffier et al. 2010; Bruns et al. 2014), oomycetes (Montarry et al. 464 

2010), bacteria (Vera Cruz et al. 2000; Leach et al. 2001; Wichmann and Bergelson 2004) or 465 

nematodes (Castagnone-Sereno et al. 2007), and could explain why universal pathogenicity is not 466 

fixed in pathogen populations (Tellier and Brown 2011). For quantitative plant resistance, few studies 467 

have estimated the occurrence of pathogenicity costs. Montarry et al. (2012) showed a cost for PVY 468 

to adapt to a quantitative pepper resistance when inoculated to a susceptible pepper genotype, 469 

whereas Delmas et al. (2016) showed, on the opposite, that there was no fitness cost associated with 470 

the adaptation of Plasmopara viticola to partially resistant grapevine varieties. Fournet et al. (2016) 471 

even highlighted that nematode populations that had adapted to potato quantitative resistance were 472 

more pathogenic on a susceptible potato genotype than were naïve nematode populations. The 473 

present study focused mostly on interactions between plants and parasites at the intraspecific level, 474 

but other studies have revealed a similar trend when strains of a given parasite species are 475 

confronted with numerous plant species. For example, a positive correlation was observed between 476 

species host range and pathogenicity for Pseudomonas syringae (Morris et al. 2000, 2019). For this 477 

bacterium, the most pathogenic strains were also the most ubiquitous in the environment, 478 

suggesting also an absence of trade-off between host range and dispersal capability or survival in the 479 

environment (Morris et al. 2010). 480 

In contrast to nestedness, we obtained little evidence of modularity among the matrices that we 481 

analysed. Modularity scores were low for all matrices. In only seven matrices, representing either 482 
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infection or resistance scores (i.e. reverse matrices), did we detect significant modularity with a 483 

majority of null models (Tables 3 and 4; Fig. 4 and 5). For four of these matrices (matrices 5, 6, 14 and 484 

15), modularity was linked to the presence of particular resistance genes or QTLs in the plant 485 

accessions and, for the parasite strains, to the presence of particular avirulence genes or to a 486 

common origin in terms of host genotype. For the remaining matrices (10, 11 and 17b), no common 487 

property could be found for plant accessions and parasite strains belonging to the same module. The 488 

lack of modularity of infection matrices and of reverse matrices suggests that the MA and IMA 489 

genetic models are either inadequate to represent the structure of quantitative plant-parasite 490 

interactions or explain only marginally their structure (Fig. 1E,F). 491 

 492 

Conclusion 493 

The ubiquitous nested patterns observed in quantitative plant-parasite interaction matrices have 494 

important implications for our understanding and management of plant diseases. They can help infer 495 

the underlying genetic bases of quantitative aspects of disease manifestation and their evolution. 496 

Our results are compatible with an additive model comprising a plant resistance effect, a parasite 497 

pathogenicity effect and no (or little) plant-parasite interaction effect. 498 

A major enigma that we highlight is the apparent lack of trade-off between pathogenicity and host 499 

range breadth among strains of a parasite, which has important implications on the efficiency of 500 

plant resistance management through cultivar rotation, mixtures or mosaics. Indeed, these strategies 501 

rely at least in part on a counter-selection of the most pathogenic parasite strains by a diversification 502 

of plant cultivars (Brown 2015). The efficiency of these strategies would certainly be reduced in 503 

absence of costs of adaptation to plant resistance. Therefore, in absence of such costs, the efficiency 504 

of the rotation, mixtures or mosaic strategies would rather depend on barrier effects designed to 505 

limit parasite dispersal in agricultural landscapes. 506 

 507 

Materials and Methods 508 

Datasets 509 

To be able to analyse plant-parasite interaction networks, we selected datasets containing at least 6 510 

plant accessions and 6 parasite strains. A brief description of these datasets is provided in Table 1 511 

and in the following text. 512 

 513 
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Matrices 1 to 4: Pseudomonas syringae-Prunus armeniaca (apricot) 514 

Nine strains of Pseudomonas syringae, the causal agent of bacterial canker of apricot, were 515 

inoculated on dormant tissues of twenty apricot cultivars chosen according to their differential 516 

susceptibility in orchard conditions. The strains were chosen mainly within phylogroups 1 and 2, the 517 

most abundant groups of P. syringae in contaminated apricot orchards in France (Parisi et al. 2019). 518 

Seven strains were isolated from symptomatic trees and two in crop debris and soil. Bacterial 519 

inoculum was prepared by cultivation on King's B medium for 48h at 24°C. The concentration of the 520 

bacterial suspension was adjusted at 108 CFU.ml-1. A volume of 25 μl of inoculum was deposited at 521 

the level of a wound made superficially with a scalpel on the bark of one-year-old twigs grown in 522 

orchard. Five months after inoculation, twigs were removed and the length of flat zone around the 523 

inoculation point at the surface of the shoot (matrices 1 and 2) and the length of browning zone 524 

around the inoculation point below the bark of the shoot (matrices 3 and 4) were measured. Two 525 

independent tests were performed in 2017 (matrices 1 and 3) and 2018 (matrices 2 and 4). 526 

 527 

Matrix 5: Puccinia hordei-Hordeum vulgare (barley) 528 

Fourteen Puccinia hordei isolates (from Europe, Morocco, Israel and the USA) were inoculated on a 529 

differential series of 12 H. vulgare lines carrying different Rphq QTLs (González et al. 2012). The first 530 

seedling leaves of each barley line were inoculated with ≈240 spores/cm2. The relative latency period 531 

(RLP) (Table 3 in González et al. 2012) was estimated by the number of hours from inoculation to the 532 

moment at which 50% of the ultimate number of uredinia was visible.  533 

 534 

Matrices 6 to 8: Venturia inaequalis-Malus domestica (apple tree) 535 

Grafted plants of different apple accessions (Malus domestica) carrying resistance QTLs (T1, F11, F17, 536 

F11 + F17 or T1 + F11 + F17) or no resistance QTL were inoculated in controlled conditions with isolates 537 

of Venturia inaequalis, a fungal pathogen responsable of apple scab. The percentage of sporulating 538 

leaf area was assessed from 8 to 21 days post inoculation (dpi) on a scale with eight levels: 0 = no 539 

visible symptom, 0.5 = 0–1%, 3 = 1–5%, 7.5 = 5–10%, 17.5 = 10–25%, 37.5 = 25–50%, 62.5 = 50–75%, 540 

and 87.5 = 75–100%. 541 

Matrix 6 (Laloi et al. 2017) consisted of interactions between 10 V. inaequalis isolates sampled in one 542 

orchard (Angers, France) on apple trees carrying T1, F11+F17, T1+F11+F17 or no QTL and 14 apple 543 

accessions carrying the matching resistance QTL or no QTL.  544 
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Matrix 7 (Caffier et al. 2016) consisted of interactions between 14 V. inaequalis isolates sampled in one 545 

orchard (Angers, France) on apple trees carrying or not T1 and 12 apple accessions carrying or not T1 546 

(with six accessions for each of the two classes). Matrices 6 and 7 represent the Area Under the Disease 547 

Progress Curve (AUDPC) of the percentage of sporulating leaf area from eight to 21 dpi. 548 

Matrix 8 (Caffier et al. 2014) consisted of interactions between 24 V. inaequalis isolates sampled in 549 

two orchards (Lanxade and Villeneuve d’Ascq, France) on apple trees carrying F11, F17, F11+F17 or 550 

no QTL and eight apple accessions carrying the matching QTL or no QTL (with two accessions for each 551 

of the four classes). Matrix 8 represents the percentage of sporulating leaf area 14 dpi. 552 

 553 

Matrix 9: Botrytis cinerea-Solanum lycopersicum / Solanum pimpinellifolium (tomato) 554 

Leaves of 12 tomato accessions (six domesticated accessions of Solanum lycopersicum and six 555 

accessions of the close wild relative S. pimpinellifolium) were infected with single droplets of spore 556 

suspensions of 94 B. cinerea isolates. The size of lesions was measured from digital images 72 hours 557 

after inoculation (Soltis et al. 2019). One isolate was poorly infectious on all tomato accessions (grade 558 

0 after data transformation) and was withdrawn.  559 

 560 

Matrices 10 and 11: Podosphaera xanthii-Cucumis melo (melon) 561 

Nineteen melon differential lines were inoculated with 26 Podosphaera xanthii isolates collected in 562 

2013 and 2014 in melon, squash, watermelon and cucumber crops in Southern Europe or Northern 563 

Africa (France, Spain, Italy, Morocco, Turkey, Greece). Each P. xanthii isolate was propagated on 564 

cotyledons of Lagenaria ciceraria for seven days and spores were blown on eight leaf disks per melon 565 

line-P. xanthii isolate combination using an inoculation tower (Perchepied et al. 2005). Sporulation 566 

intensity was scored 14 days after inoculation and data were transformed in percentage of leaf disk 567 

surface using the class mean as suggested by Nicot et al. (2002): 0 = 0%, 1 = 2.5%, 2 = 7.5%, 3 = 568 

17.5%, 4 = 37.5%, 5 = 67.5%, 6 = 82.5%, 7 = 92.5%, 8 = 97.5%, and 9 = 100%. The mean score for 569 

melon accession - P. xanthii isolate combinations was reported in matrix 10. For matrix 11, 31 570 

isolates were inoculated to 19 differential lines on leaves of entire plants. The sporulation intensity 571 

was scored similarly as for leaf disks using a 0 to 9 scale. The mean score for melon accession - P. 572 

xanthii isolate combinations was reported in matrix 11. 573 

 574 
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Matrices 12 to 15: Zymoseptoria tritici-Triticum aestivum (bread wheat) or T. turgidum subsp. durum 575 

(durum wheat) 576 

Matrices 12 and 13 were built by inoculating 12 lineages from a durum wheat landrace called 577 

Mahmoudi with 15 Zymoseptoria tritici isolates. The 12 plant lineages were fixed from individivuals 578 

coming from a single field at Joumine in Tunisia and corresponded to 12 different multilocus genotypes 579 

(MLGs) as defined previously by Ben Krima et al. (2020). The 15 isolates were collected in situ either 580 

from the landrace Mahmoudi or from the cultivar Karim, at Joumine in 2018. Matrices 14 and 15 were 581 

built by inoculating 15 bread wheat cultivars (Triticum aestivum), 12 of which carrying different Stb 582 

resistance genes, with 98 Z. tritici isolates collected mostly on cultivars Apache and Premio, all over 583 

France between 2009 and 2010. These bread wheat cultivars belong to a series of differential 584 

genotypes used to characterize the pathogenicity of Z. tritici isolates. All wheat-Z. tritici pairwise 585 

confrontations were evaluated under controlled conditions, in growth chambers at 18°C/22°C 586 

night/day and 16 hours light at 300 µmol.m-2.s-1. The first true leaf of 16-day-old seedlings were marked 587 

with a black felt to delimit a 7.5 cm length that was inoculated with a solution of water containing 106 588 

spores.mL-1 and one drop of Tween®20 per 15 mL. The inoculum was applied with a square-tipped flat 589 

paintbrush six times on each leaf, repeated twice. After inoculation the plants were placed in 590 

transparent polyethylene bags for 72 hours to initiate infection. At 10 dpi, i.e. before the appearance 591 

of symptoms, leaves above the inoculated leaf were cut to homogenize light exposure. Visual 592 

estimations of necrotic leaf area and sporulating leaf area were done at 14 dpi, 20 dpi and 26 dpi for 593 

matrices 12 and 13, and only once at 21 dpi for matrices 14 and 15. For matrices 12 and 13, these 594 

observations were used to calculate, for each plant lineage-isolate combination, an area under disease 595 

progress curve (AUDPC) for the percentages of necrotic and sporulating leaf areas. The interactions for 596 

matrices 12 and 13 were evaluated on three leaves repeated twice in time (total of six leaves) and for 597 

matrices 14 and 15 on three leaves repeated thrice in time (total of nine leaves). 598 

 599 

Matrices 16, 17 and 17b: Phytophthora capsici-Capsicum annuum (pepper) 600 

To build matrix 16, the pathogenicity of six isolates of Phytophthora capsici, the causal agent of root 601 

and crown rot of chilli and bell peppers, collected in pepper fields in Algeria was measured in ten 602 

Capsicum annuum cultivars (F1 hybrids or inbred lines) (Messaouda et al. 2015). Six plants per accession 603 

were inoculated by depositing a plug of 4 mm in diameter of mycelium of P. capsici cultivated on V8 604 

medium on the fresh section of the primary stem extemporaneously decapitated (Lefebvre and Palloix 605 

1996). Inoculated plants were kept in a growth chamber under controlled conditions with 12h 606 

photoperiod, a temperature of 22 ± 2°C and 100% relative humidity. P. capsici progresses to the 607 
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bottom of the stem causing a necrosis of the stem. The length of stem necrosis at 15 dpi is reported in 608 

matrix 16. 609 

For matrix 17, 53 accessions of C. annuum were inoculated by six isolates of P. capsici. The C. annuum 610 

accessions originated from 20 countries from America, Europe, Asia and Africa, and included 611 

accessions that had different levels of partial resistance to isolate P. capsici ‘Pc101’ and a few 612 

susceptible accessions. The six P. capsici isolates were isolated from pepper plants in France and 613 

Turkey, were of A1 mating type and differed in pathogenicity. A minimum of six plants per accession, 614 

seven-eight week old, were inoculated as described for matrix 16. Inoculated plants were kept in a 615 

growth chamber under controlled conditions with a photoperiod of 12h at 24°C under artificial light 616 

and 22°C at obscurity. The length of stem necrosis was measured six times from three to 21 dpi and 617 

the Area Under the Disease Progress Curve (AUDPC) of necrosis length was considered in matrix 17. 618 

Because matrix 17 contained a large number of zero-values cells, matrix 17b was derived by 619 

withdrawing redundant columns and columns entirely made of zero-valued cells. 620 

 621 

Matrix 18: Phytophthora infestans-Solanum lycopersicum 622 

Matrix 18 was built by inoculating eight Solanum sp. accessions with seven isolates of Phytophthora 623 

infestans, the causal agent of tomato late blight. The accessions consisted of three inbred lines of 624 

cultivated tomato (Solanum lycopersicum) and five accessions of the wild relative species S. 625 

pimpinellifolium, S. habrochaites and S. pennellii. Some of them are known to carry the Ph-1, Ph-2 or 626 

Ph-3 genes, controlling resistance to races 0, 1 and 2 of P. infestans, respectively. The P. infestans 627 

isolates were collected on tomato or potato plants in France and Poland and were chosen because 628 

they varied in mating type (A1 or A2) and differed in pathogenicity. Mycelium was grown on pea juice-629 

based agar medium for 10 days and six plants per accession, 3-4 week old, were inoculated using the 630 

protocol described for matrix 16 (Danan et al. 2009). Inoculated plants were kept in a growth chamber 631 

under controlled conditions with a photoperiod of 14h at 21°C under artificial light and 17°C at 632 

obscurity. High humidity was maintained by artificial mist. Stem necrosis length was scored four times 633 

from three to 14 dpi and the AUDPC was calculated. 634 

 635 

Matrix 19: Aphanomyces euteiches-Fabaceae (pea, vetch, faba bean, alfalfa) 636 

Eight accessions from four leguminous species (pea, alfalfa, vetch, faba bean), which previously 637 

showed various levels of resistance, were inoculated with 34 Aphanomyces euteiches isolates 638 

sampled from the main French pea growing regions in a growth chamber (thermo period: 25/23°C 639 

and 16h photoperiod). Seven-day-old plants (5 plants * 4 replicates * 2 experiments for each 640 

accession-isolate combination) were inoculated by applying 5 mL of a zoospore suspension adjusted 641 
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to 5.103 spores / mL. After inoculation, the vermiculite substrate was saturated with water to provide 642 

favorable conditions for infection. After 10 days, the plants were carefully removed from the 643 

vermiculite, the roots were washed in tap water and disease severity (DS) was scored on each plant 644 

using a 0–5 scale: 0 = no symptoms; 1 = traces of discoloration on the roots (<25%); 2 = discoloration 645 

of 25 to 50% of the roots; 3 = discoloration of 50 to 75% of the roots; 4 = discoloration of >75% of the 646 

roots; 5 = dead plant. ANOVA was performed with the DS score as the dependent variable, the A. 647 

euteiches isolate and the plant accession as fixed factors and the replicate and experiment as random 648 

factors. From the ANOVA, least square means (LSmeans) were calculated for each A. euteiches 649 

isolate-plant accession combination. In the present study, LSmeans values of root DS scores were 650 

analysed. More details are provided in Quillévéré-Hamard et al. (2018). 651 

 652 

Matrix 20: Aphanomyces euteiches-Pisum sativum 653 

Ten pea accessions were inoculated with 43 A. euteiches isolates sampled from the main French pea 654 

growing regions in a growth chamber. The ten pea accessions consisted of (i) eight Near-Isogenic-655 

Lines (NILs) carrying one, two, three or five resistance alleles at main QTLs, in a common genetic 656 

background and (ii) two control lines, including one susceptible variety and one highly resistant line. 657 

The experimental design, inoculation procedure, disease scoring scale and statistical analysis were 658 

similar to that described for matrix 19, except for inoculum concentration (2.102 spores / mL) and the 659 

scoring date (seven days after inoculation). LSMean values of root DS scores were used. More details 660 

are provided in Quillévéré-Hamard et al. (2020). 661 

 662 

Matrices 21 and 22: Plasmopara viticola-Vitis vinifera (grapevine) 663 

A set of 33 Plasmopara viticola strains, the causal oomycete of grapevine downy mildew, was 664 

inoculated on eight grapevine varieties. The host panel was constituted of seven grapevine varieties 665 

carrying the main resistance factors currently used in European breeding programs (Rpv1, Rpv3.1, 666 

Rpv3.2, Rpv5, Rpv6, Rpv10 and Rpv12) and one susceptible variety (Chardonnay). Cuttings from these 667 

varieties were grown in a glasshouse under natural photoperiod. Each strain-variety combination was 668 

replicated on five leaf discs from five different plants that were excised in the fourth leaf below the 669 

apex. Leaf discs were sprayed with 4 mL of a suspension of 105 / mL sporangia of P. viticola. They 670 

were incubated in a climatic chamber for six days at 18°C with 12h/12h light/dark photoperiod. At six 671 

dpi, necrosis was rated on a scale of 0 to 4, based on the number of necroses counted per leaf disk (0 672 

= no necrosis; 1 = <10 necroses; 2= from 10 to 30 necroses; 3= from 30 to 60 necroses; 4= > 60 673 
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necroses) (matrix 21) and sporulation was assessed on leaf discs by automatic image analysis 674 

(number of black pixels on the total leaf disc area) (matrix 22). 675 

 676 

Matrices 23 and 24: Aphis gossypii-Cucumis melo 677 

Matrices 23 and 24 were obtained through assessment of the resistance of 13 melon accessions to 678 

nine aphid (Aphis gossypii) clones (Boissot et al. 2016). The host panel consisted in twelve partially-679 

resistant lines originating from Africa, India, China, Asia and Far East Asia, Mediterranean basin and 680 

North America and a susceptible cultivar originating from Mediterranean basin. Two lines were wild 681 

accessions and the others from breeding programs. They contained at least one to three homologs of 682 

Vat, a gene conferring resistance to A. gossypii. The 13 melon lines belonged to three genetic groups 683 

representative of melon diversity (Boissot et al., submitted). The aphid panel consisted in nine clones 684 

collected in France and French West Indies. Except clone NM1 that was observed on plant species 685 

belonging to six families, the clones have been observed exclusively (or almost exclusively) on 686 

cucurbit plants and belong to the same genetic cluster. 687 

For phenotyping, ten adult aphids were deposited on melon plantlets. Three days later, the number 688 

of aphids remaining on the plantlets was recorded as the ‘Acceptance’ parameter (matrix 23). Seven 689 

days after aphid deposition, the adults were counted, and the density of nymphs was estimated on a 690 

scale of 0 to 6. The ‘Colonization’ parameter was calculated as [density of nymphs + ln(number of 691 

adults + 0.001)] (matrix 24). The ‘Acceptance’ and ‘Colonization’ parameters were collected for at 692 

least eight plantlets of each melon accession. Each test was conducted with one aphid clone on a 693 

subset of melon accessions. 694 

 695 

Matrices 25 and 26: Globodera pallida-Solanum tuberosum (potato) 696 

Matrix 25 was obtained through the inoculation of 20 populations of the potato cyst nematode 697 

Globodera pallida on ten potato accessions. Those potato accessions were characterized by different 698 

levels of quantitative resistance. A susceptible potato cultivar, Désirée, was also used as a control. 699 

Among the 20 G. pallida populations, 14 came from South-America (Peru and Chile) and six from 700 

Europe. To perform G. pallida inoculation, ten cysts were locked in a tulle bag and placed in a pot 701 

three-quarter filled with a soil mixture free of cysts (2/3 sand and 1/3 natural field soil). Four 702 

replicates were performed for each potato accession - G. pallida population combination, i.e. for 703 

each G. pallida population, four bags were inoculated to four tubers of the same potato accession. 704 

One potato tuber was planted per pot and covered with the same soil mixture. Potato plants grew in 705 
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the greenhouse, under controlled conditions (15°C night during 8h and 20°C day during 16h), for 120 706 

days. After 120 days, newly formed cysts were extracted from the soil, using a Kort elutriator. The 707 

number of newly formed cysts was counted using a magnifying stereomicroscope, and divided by the 708 

number of newly formed cysts produced on the susceptible cultivar Désirée (relative value). 709 

For matrix 26, the measured fitness trait was the hatching of cysts which is induced by host root 710 

exudates. It was produced using a cross-hatching assay between 13 populations of G. pallida and 711 

root exudates from 12 wild potato accessions, belonging to species Solanum huancabambense, S. 712 

mochiquense, S. sogarandinum, S. ambosinum, S. medians, S. pampasense, S. santalallae, S. 713 

marinasense, S. sparsipilum, S. raphanifolium, S. limbaniense and S. leptophyes, to test the 714 

hypothesis of local adaptation between Peruvian G. pallida populations and Peruvian wild potato 715 

accessions (Gautier et al. 2020). All details about G. pallida populations, root-exudates and the in 716 

vitro hatching assay are available in Gautier et al. (2020). Briefly, three cysts of each population were 717 

put on a sieve in 1.5 mL of root exudates (with four to five replicates) and after 30 days, the number 718 

of hatched juveniles was counted. At the end of the experiment, cysts were crushed and the number 719 

of unhatched viable eggs was counted, in order to calculate a hatching percentage. 720 

 721 

Matrices 27 to 32: Potato virus Y-Capsicum annuum 722 

The Capsicum annuum accessions were doubled-haploid lines issued from the F1 hybrid between 723 

accessions Perennial, carrying several Potato virus Y (PVY) resistance QTLs, and the susceptible 724 

accession Yolo Wonder. They were chosen based on the lack of a major-effect resistance gene but 725 

contrasted levels of quantitative resistance (Caranta et al. 1997). The PVY populations were issued 726 

from cDNA clones of isolates SON41p and LYE84.2 and recombinants between these two cDNA 727 

clones (Montarry et al. 2012). Capsicum annuum accessions were mechanically inoculated with the 728 

different PVY populations and the virus load at the systemic level was estimated one month post 729 

inoculation by quantitative DAS-ELISA as described in Quenouille et al. (2014) (matrices 27 and 28). In 730 

addition, the area under the disease progress curve (AUDPC) was calculated using a semi-731 

quantitative scoring scale as in Caranta et al. (1997) (matrices 29 and 30) and the dry weight of 732 

infected relative to mock-inoculated plants was estimated as in Montarry et al. (2012) (matrices 31 733 

and 32). Matrices 27, 29 and 31 on one side and matrices 28, 30 and 32 on the other side correspond 734 

to two independent experiments with slightly different sets of PVY populations. 735 

 736 

Network analyses 737 
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The nestedness and modularity of the different matrices were estimated, and their statistical 738 

significance tested respectively with the ‘bipartite’ and ‘igraph’ packages of the R software version 739 

3.5.1 (http://cran.r-project.org/). These analyses were initially developed for the study of social, then 740 

of ecological, networks (or equivalently matrices) containing counts of links between individuals or 741 

between interacting species. Hence, to perform these analyses, the matrices should only contain 742 

integer values. Moreover, some nestedness or modularity algorithms cannot run in the absence of 743 

zero-valued matrix cells or in the presence of an excess of zero-valued cells leading to an 744 

unconnected network. 745 

Consequently, the first step consisted in transforming the actual matrices accordingly. In all matrices, 746 

pathogenicity trait values were transformed into integers from 0 to 9. For this, ten intervals with 747 

equal sizes and spanning the range of the pathogenicity trait values of the actual matrix were 748 

defined. The bounds of these intervals are [Pmin + (Pmax – Pmin)*i/10 , Pmin + (Pmax – Pmin)*(i + 1)/10], 749 

with i being an integer in the [0,9] interval and Pmax and Pmin being the maximal and minimal 750 

pathogenicity trait values in the whole matrix, respectively. Then, depending on its inclusion in a 751 

given pathogenicity trait value interval defined as above, each matrix value was transformed into the 752 

corresponding i integer value. When necessary, the matrix was modified in order that grades 0 and 9 753 

correspond to the minimal and maximal pathogenicity classes, respectively, and not the opposite. A 754 

continuous distribution of the pathogenicity grades was observed in 30 of 32 matrices (Fig. 2). 755 

However, for matrices 17b and 22 that contained a large number of zero-values cells, phenotypic 756 

values were log-transformed to spread out the data more evenly among the ten phenotypic classes. 757 

As these log-transformed matrices produced similar results to the actual matrices in terms of 758 

significance of nestedness and modularity, only the latter are shown. To test if the matrices could fit 759 

with the inverse-matching-allele model (Fig. 1), we also analyzed the “reverse matrices”, where 0 and 760 

9 correspond to the minimal and maximal plant resistance classes, respectively. Methods to estimate 761 

nestedness and modularity are detailed in Weitz et al. (2013). Whereas many algorithms can 762 

measure the nestedness of matrices containing binary data (0 and 1), only two algorithms were 763 

available for matrices containing quantitative numeric data: the weighted nestedness metric based 764 

on overlap and decreasing filling (wNODF algorithm) (Almeida-Neto et al. 2008) and the weighted-765 

interaction nestedness estimator (WINE algorithm) (Galeano et al. 2009). In the R software, the 766 

‘nested’ and ‘wine’ functions were used to estimate the wNODF and WINE scores, respectively. 767 

Because none of the module detection algorithms developed to date provide consistently optimal 768 

results in all matrices (Aldecoa and Marín 2013), we used seven different algorithms implemented 769 

into the R software (see Supplementary Methods 1 for details). To determine the statistical 770 

significance of the patterns (nestedness or modularity) of the plant-parasite interaction matrices, the 771 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433745doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433745
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

actual interaction matrices were compared to matrices simulated under several null models 772 

(Supplementary Methods 1). 773 

As the modularity algorithms (and nestedness algorithms to a lower extent) and null models 774 

provided contrasted results (Tables 2 to 4), we used simulations to compare their performances 775 

(type I and type II error rates) and help the interpretation of the results (Supplementary Methods 1; 776 

Tables S1 to S18). 777 

Two modularity algorithms (walktrap and label prop) provided modularity estimates of 0 (or near 0) 778 

for almost all actual matrices and associated null models. Moreover, almost all simulations also 779 

provided modularity estimates of 0 with these algorithms, hampering the evaluation of type I and 780 

type II error rates (Supplementary Methods 1). Consequently, these two algorithms were not 781 

considered for further analyses. 782 
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Table 1: Datasets used to analyze the structure of quantitative plant-parasite interaction matrices. AUDPC : Area under the disease progress curve. 

Matrix 
number 

Parasite Host plant Matrix size 
(host × 

parasite) 

Phenotype Multiple 
R²a 

Reference or source 

Bacterium  
1 Pseudomonas syringae Prunus armeniaca (apricot) 20 × 9 Length of flat zone around the inoculation 

point at the surface of the shoot 
0.69 Omrani et al., unpublished 

2 P. syringae P. armeniaca 20 × 9 Length of flat zone around the inoculation 
point at the surface of the shoot 

0.84 Omrani et al., unpublished 

3 P. syringae P. armeniaca 20 × 9 Length of browning zone around the 
inoculation point below the bark of the shoot 

0.68 Omrani et al., unpublished 

4 P. syringae P. armeniaca 20 × 9 Length of browning zone around the 
inoculation point below the bark of the shoot 

0.75 Omrani et al., unpublished 

Fungi  
5 Puccinia hordei Hordeum vulgare (barley) 12 × 14 Relative latent period 0.84 González et al., 2012 
6 Venturia inaequalis Malus domestica (apple) 14 × 10 % sporulating leaf area (AUDPC) 0.64 Laloi et al., 2017 
7 V. inaequalis M. domestica 12 × 14 % sporulating leaf area (AUDPC) 0.49 Caffier et al., 2016 
8 V. inaequalis M. domestica 8 × 24 % sporulating leaf area 0.71 Caffier et al., 2014 
9 Botrytis cinerea Tomatob 12 × 94 Lesion size on leaves 0.59 Soltis et al., 2019 

10 Podosphaera xanthii Cucumis melo (melon) 19 × 26 Sporulation surface on leaf disks 0.93 Dogimont et al., unpublished 
11 P. xanthii C. melo 19 × 31 Sporulation surface on plants 0.94 Dogimont et al., unpublished 
12 Zymoseptoria tritici Triticum turgidum subsp. 

durum (durum wheat) 
12 × 15 % necrotic leaf area (AUDPC) 0.77 Marcel et al., unpublished 

13 Z. tritici T. turgidum subsp. durum 12 × 15 % sporulating leaf area (AUDPC) 0.76 Marcel et al., unpublished 
14 Z. tritici Triticum aestivum (bread 

wheat) 
15 × 98 % necrotic leaf area 0.63 Marcel et al., unpublished 

15 Z. tritici T. aestivum 15 × 98 % sporulating leaf area 0.63 Marcel et al., unpublished 
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Oomycetes  
16 Phytophthora capsici Capsicum annuum (pepper) 10 × 6 Necrosis length on stem (15 days post 

inoculation) 
0.98 Messaouda et al., 2015 

17 P. capsici C. annuum 53 × 6 Necrosis length on stem (AUDPC) 0.78 Cantet et al., unpublished 
17bc P. capsici C. annuum 42 × 6 Necrosis length on stem (AUDPC) - Cantet et al., unpublished 
18 Phytophthora infestans Solanum lycopersicum 

(tomato), S. pimpinellifolium, S. 
habrochaites and S. pennellii 

8 × 7 Necrosis length on stem (AUDPC) 0.90 Ruellan et al., unpublished 

19 Aphanomyces euteiches Fabaceaed 8 × 35 Root disease severity 0.85 Quillévéré-Hamard et al., 2018 
20 A. euteiches Pisum sativum 10 × 43 Root disease severity 0.86 Quillévéré-Hamard et al., 2020 
21 Plasmopara viticola Vitis vinifera (grapevine) 8 × 33 Necrosis on leaves 0.76 Paineau and Delmotte, 

unpublished 
22 P. viticola V. vinifera 8 × 33 Sporulation on leaves 0.80 Paineau and Delmotte, 

unpublished 

Insect  
23 Aphis gossypii C. melo 13 × 9 Acceptance of plants 0.61 Boissot et al., 2016 
24 A. gossypii C. melo 13 × 9 Ability to colonize plants 0.59 Boissot et al., 2016 

Nematode  
25 Globodera pallida Solanum tuberosum (potato) 10 × 20 Cyst number (relative values) 0.58 Fournet et al., unpublished 
26 G. pallida Wild potato species 12 × 13 Cyst eclosion rate 0.81 Gautier et al., 2020 

Virus  
27 Potato virus Y (PVY) C. annuum 7 × 8 Virus load 0.79 Doumayrou et al., unpublished 
28 PVY C. annuum 9 × 7 Virus load 0.73 Doumayrou et al., unpublished 
29 PVY C. annuum 8 × 7 Symptom intensity (AUDPC) 0.78 Doumayrou et al., unpublished 
30 PVY C. annuum 7 × 7 Symptom intensity (AUDPC) 0.81 Doumayrou et al., unpublished 
31 PVY C. annuum 8 × 7 Relative dry matter weight 0.66 Doumayrou et al., unpublished 
32 PVY C. annuum 7 × 7 Relative dry matter weight 0.45 Doumayrou et al., unpublished 

a Fit of the linear model: pathogenicity ~ ‘parasite strain’ + ‘plant accession’ (multiple coefficient of determination). 

b Two species: cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). 

c Matrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were removed. 

d Four species: three pea (Pisum sativum) accessions, two vetch (Vicia sativa) accessions, two faba bean (Vicia faba) accessions and one alfalfa (Medicago sativa) accession.  
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Table 2: Analysis of nestnedness of plant-parasite interaction matrices with two methods. 

Matrix 
number 

WINE method  wNODF method 

Nestedness 
scorea 

Null modelb  Nestedness 
score 

Null modelb 

B N C1 R1 S C2 R2  B N C1 R1 S C2 R2 

1 0.78 0c 0 0 0 0 0 0  30.9 0.05 0 0 0 0 0 0 
2 0.81 0.01 0 0 0 0 0 0  43.7 0.06 0 0 0 0 0 0 
3 0.82 0 0 0 0 0 0 0  47.6 0 0 0 0 0 0 0 
4 0.82 0 0 0 0 0 0 0  46.9 0 0 0 0 0 0 0 
5 0.83 0 0 0 0 0 0 0  23.2 0.24 0 0.42 0 0 0.36 0 
6 0.70 0.12 0 0 0 0 0 0  55.4 0.15 0 0 0 0 0 0 
7 0.60 0.49 0 0 0 0 0 0  43.9 0.41 0 0 0 0 0 0 
8 0.58 0.01 0 0 0 0 0 0  49.4 0.66 0 0 0 0 0 0 
9 0.46 0 0 0 0 0 0 0  42.4 0.01 0 0 0 0 0 0 

10 1.01 0 0 0 0 0 0 0  72.7 0 0 0 0 0 0 0 
11 1.04 0 0 0 0 0 0 0  75.4 0 0 0 0 0 0 0 
12 0.69 0 0 0 0 0 0 0  10.1 0.68 0.85 0.67 1 0.73 0.54 0.90 
13 0.73 0 0 0 0 0 0 0  30.0 0.16 0.38 0.48 0.07 0.35 0.39 0.52 
14 0.76 0 0 0 0 0 0 0  22.3 0.76 1 1 1 0.06 1 0.22 
15 0.68 0.12 0 0 0 0 0 0  41.9 0.31 0 0 0 0 1 0 
16 0.84 0 0 0 0 0 0 0  38.6 0.09 0 0 0 0 0 0 
17 0.84 0 0 0 0 0 0 0  51.0 0 0 0 0 0 0 0 
18 0.93 0 0 0 0 0 0 0  59.2 0 0 0 0 0 0 0 
19 0.79 0 0 0 0 0 0 0  9.4 0.89 0.01 0.01 0.80 0.04 0 0.01 
20 0.80 0 0 0 0 0 0 0  15.0 0.98 0 0 0 0 0.12 0 
21 0.75 0.90 0 0.07 0 0 0.46 0  27.6 0.33 0.42 0.68 0 0.51 1 0.59 
22 0.91 0 0 0 0 0 0 0  49.2 0 0 0 0 0 0 0 
23 0.75 0 0 0 0 0 0 0.04  6.1 0.65 0.82 0.28 1 0.82 0.48 0.85 
24 0.68 0.12 0 0 0.01 0 0 0.02  22.4 0.29 0.98 0.96 0.72 0.95 0.93 0.72 
25 0.82 0.01 0 0 0 0 0 0  44.1 0.20 0 0 0 0 0.02 0 
26 0.86 0 0 0 0 0 0 0  34.3 0 0 0 0 0 0 0 
27 0.69 0.37 0 0 0 0 0 0  51.2 0.41 0 0 0.01 0 0.01 0 
28 0.63 0.46 0 0.01 0 0 0 0  58.0 0.27 0 0 0 0 0 0 
29 0.78 0.01 0 0 0 0 0 0  22.3 0.97 0.81 0.62 0.02 0.88 0.96 0.18 
30 0.84 0.03 0 0 0 0 0 0  66.8 0.01 0 0 0 0 0 0 
31 0.77 0 0 0 0 0 0 0.01  21.3 0.05 0.30 0.49 0.04 0.21 0.35 0.06 
32 0.52 0.31 0.06 0 0.36 0.06 0.01 0.71  11.1 0.13 0.65 0.55 0.90 0.62 0.51 0.74 

aMean of 100 estimates. 

bSee Supplementary Methods 1 for details of the null models. 
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cNestedness significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly higher nestedness score than that of the actual matrix. P-

values ≤ 0.05 (significant nestedness) are in bold on grey cells and p-values > 0.95 (significant anti-nestedness) are in white on black cells.  
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Table 3. Analysis of modularity of plant-parasite interaction matrices with the spinglass method. 

Matrix 
number 

Spinglass 

Modularity scorea 

Number of 
modulesb 

Null modelc 

B N C1 R1 S C2 R2 

1 0.058 - 0.69d 0.76 0.79 0.71 0.93 0.89 0.93 
2 0.070 - 0.86 1 1 0.84 1 1 0.92 
3 0.084 - 0.32 0.68 0.38 0.42 0.36 0.20 0.22 
4 0.095 - 0.95 1 1 0.97 0.99 0.98 0.89 
5 0.070 2 0 0 0 0 0 0 0 
6 0.102 3 0 0 0 0 0 0 0 
7 0.079 - 0.97 1 1 1 0.99 0.96 0.95 
8 0.069 - 0.07 0.53 0.35 0.05 0.70 0.66 0.34 
9e 0.069 - 0.96 1 1 0.97 0.89 0.97 0.86 
10 0.077 3 0 0.07 0 0.03 0.01 0.05 0.04 
11 0.086 3 0 0 0 0 0 0 0 
12 0.057 - 0.98 0.98 0.99 0.96 1 0.99 0.91 
13 0.072 - 0.08 0.27 0.23 0.06 0.73 0.43 0.38 
14 0.062 2 0 0 0 0 0 0.01 0 
15e 0.079 - 0.06 0.61 0.14 0.68 0.13 0.08 0.39 
16 0.078 - 0.20 0.39 0.32 0.37 0.66 0.41 0.86 

17bf 0.097 3 0.05 0.25 0.15 0.06 0.05 0.01 0.02 
18 0.097 - 0.77 0.98 0.97 0.93 0.95 0.71 0.97 
19 0.051 - 1 1 1 1 1 1 1 
20 0.040 - 1 1 1 1 1 1 1 
21 0.092 - 0.44 0.97 0.59 1 0.99 0.56 0.98 
22 0.083 - 0.15 NAg 0.06 0.44 NAg 0.02 0.30 
23e 0.072 - 0.41 0.39 0.27 0.36 0.65 0.57 0.54 
24 0.063 - 0.30 0.52 0.58 0.27 0.81 0.77 0.53 
25 0.091 - 0.75 0.99 0.78 0.99 0.75 0.58 0.45 
26e 0.045 - 0.79 0.91 0.86 0.90 1 0.99 1 
27 0.130 - 0.73 0.83 0.74 0.85 0.76 0.74 0.89 
28 0.090 - 0.96 0.98 0.98 1 0.91 1 0.98 
29e 0.078 - 0.89 0.79 0.91 0.79 0.93 1 0.89 
30 0.095 - 0.49 0.80 0.82 0.56 0.59 0.58 0.49 
31 0.061 - 0.98 1 0.98 1 1 1 0.99 
32 0.065 - 1 0.99 1 0.99 0.97 0.97 0.99 

aMaximum of 100 estimates. 

bThe optimal number of modules determined by spinglass is indicated only for matrices significantly modular with a majority of null models (Fig. 4). 
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cSee Supplementary Methods 1 for details of the null models. 

dModularity significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly higher modularity score than that of the actual matrix. P-

values ≤ 0.05 (significant modularity) are in bold on grey cells. Significant anti-modularity, when ≤ 5% of null-model matrices show a strictly lower modularity degree than that of the 

actual matrix, are indicated in white on black cells. Note that some of the indicated p-values are ≥ 0.95 but do not correspond to significant anti-modularity because the modularity 

degrees of the actual matrix and of some null-model matrices are identical. 

eRows and/or columns entirely made of zero-valued cells were removed since the spinglass method cannot estimate the modularity under such circumstances (unconnected graphs). 

fMatrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were removed. 

gNA: not available; many null-model matrices had rows and/or columns entirely made of zero-valued cells and the spinglass method could not estimate their modularity. 
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Table 4. Analysis of modularity of plant-parasite interaction matrices with four methods. Only the three null models S, C2 and R2 that provided the lowest rates of 

false positive modularity in our performance study (Supplementary Methods 1) are presented. 

Matrix 
number 

Edge betweenness Fast greedy Louvain Leading eigenvector 

Modularity 
scorea 

Null modelb Modularity 
scorea 

Null modelb Modularity 
scorea 

Null modelb Modularity 
scorea 

Null modelb 

S C2 R2 S C2 R2 S C2 R2 S C2 R2 

1 0.012 1c 1 0.99 0.074 1 0.99 0.51 0.073 1 1 1 0.061 0.87 0.77 0.62 
2 0.022 1 1 0.97 0.091 1 1 0.98 0.091 1 1 1 0.088 1 1 0.37 
3 0.099 0.88 0.53 0.06 0.126 1 0.96 0.38 0.127 1 1 0.64 0.116 0.85 0.62 0.12 
4 0 1 1 1 0.113 1 1 1 0.115 1 1 1 0.113 1 1 0.40 
5 0.018 1 0.01 1 0.065 0.99 0 0.99 0.069 1 0 1 0.069 0.58 0 0.57 
6 0.085 1 0.99 1 0.209 0.88 0.03 0.17 0.209 0.96 0.10 0.42 0.206 0.50 0.01 0.07 
7 0.138 0.96 0.45 0.79 0.240 1 0.84 1 0.240 1 0.98 1 0.160 1 0.97 0.99 
8 0.003 1 1 1 0.121 1 1 0.98 0.125 1 1 1 0.116 0.99 0.97 0.43 
9 0 1 1 1 0.074 1 1 1 0.069 1 1 1 0.061 0.99 0.84 0.59 

10 0 1 1 1 0.073 1 1 1 0.073 1 0.98 1 0.072 1 0.40 0.47 
11 0 1 1 1 0.085 1 0.98 1 0.091 1 0.93 1 0.058 1 0.96 0.99 
12 0.004 1 1 0.50 0.041 1 1 0.16 0.044 1 1 0.98 NAc NAd NAd NAd 
13 0.004 1 1 0.95 0.061 1 1 0.56 0.063 1 1 0.88 0.039 0.96 0.94 0.64 
14 0 1 1 1 0.044 0.87 0.04 0.35 0.046 0.48 0.04 0.15 0.010 1 0.41 1 
15 0 1 1 1 0.089 1 0.98 1 0.087 1 1 1 0.063 0.99 0.64 1 
16 0.007 1 1 1 0.032 1 1 1 0.036 1 1 1 0.022 0.99 0.92 1 
17 0.071 1 0.99 1 0.172 1 1 1 0.177 1 1 1 0.155 1 0.99 0.99 

17be 0.040 1 1 0.99 0.155 1 1 1 0.158 1 1 1 0.131 0.38 0.21 0.96 
18 0.079 1 1 1 0.186 1 1 0.35 0.186 0.99 1 0.16 0.169 0.98 1 0.32 
19 0 1 1 1 0.028 1 1 1 0.031 1 1 1 0 1 1 1 
20 0 1 1 1 0.029 1 1 1 0.029 1 1 1 0.029 0.97 0.88 0.83 
21 0.036 1 0.23 1 0.110 1 0 1 0.109 1 0.01 1 0.096 0.99 0 1 
22 0.020 1 0.98 1 0.165 1 0.89 1 0.165 1 0.93 1 0.157 1 0.27 1 
23 0.011 1 1 0.88 0.068 0.91 0.81 0.22 0.070 0.99 0.99 0.70 0.058 0.67 0.44 0.26 
24 0.035 0.99 0.86 0.91 0.092 0.79 0.75 0.20 0.095 0.94 0.93 0.60 0.066 0.90 0.82 0.74 
25 0.066 1 0.35 1 0.167 1 0.49 1 0.168 1 0.84 1 0.118 1 0.78 1 
26 0 1 1 1 0.041 1 1 1 0.046 1 1 1 0.044 0.82 0.39 0.84 
27 0.034 0.96 0.86 0.69 0.102 1 1 1 0.103 1 1 1 0.086 1 1 1 
28 0 1 1 1 0.151 1 1 1 0.153 1 1 1 0.108 1 1 1 
29 0.008 1 1 1 0.069 1 1 1 0.069 1 1 1 0.048 1 0.95 1 
30 0.043 0.98 0.91 0.91 0.087 1 1 1 0.092 1 1 1 0 1 1 1 
31 0.013 0.98 0.97 0.65 0.062 1 1 0.89 0.062 1 1 1 0.055 0.69 0.71 0.59 
32 0.058 0.70 0.84 0.72 0.062 0.95 0.99 0.59 0.062 1 1 1 0.022 0.97 0.96 0.73 

aMaximum of 100 estimates. 
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bSee Supplementary Methods 1 for details of the null models. 

cModularity significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly higher modularity score than that of the actual matrix. P-

values ≤ 0.05 (significant modularity) are in bold on grey cells. Significant anti-modularity, when ≤ 5% of null-model matrices show a strictly lower modularity degree than that of the 

actual matrix, are indicated in white on black cells. Note that some of the indicated p-values are ≥ 0.95 but do not correspond to significant anti-modularity because the modularity 

degrees of the actual matrix and of some null-model matrices are identical. 

dNA: not available; the leading eigenvector algorithm failed to converge. 

eMatrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were removed. 
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Figure 1. Matrices corresponding to different mechanistic, genetic and evolutionary models of 

qualitative or quantitative host-parasite interactions. In each case, host genotypes correspond to 

different columns and parasite genotypes to different rows) and black and white cells (or 1 and 0 

grades) correspond to infection or lack of infection, respectively. A: Illustration of an imperfectly 

nested pattern. B: Illustration of a perfectly modular pattern (modules are delimitated with red 

lines). C and D: Gene-for-gene (GFG) models with partial or perfectly nested patterns. C: Case of two 

genes with two alleles in both hosts and parasites. Infection occurs only when no elicitor in the 
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parasite is recognized by a product of the resistance alleles in the host. In the other situations, 

resistance is induced and there is no infection. D: Case of a single gene with five alleles in both hosts 

and parasites. Resistance alleles have various levels of specificity: in some plant accessions resistance 

can be induced by several parasite strains. E: Matching-allele model. Infection occurs only if the 

product of the pathogenicity allele is recognized by the product of the susceptibility allele in the host. 

F: Variation of D with higher specificity: resistance is induced by a specific product present in a single 

parasite genotype. This model was named "inverse matching-allele" model (Thrall et al. 2016) and 

has an anti-modular structural pattern. G: Additive QTL model with no plant-parasite QTL × QTL 

interaction. For each parasite strain i with pathogenicity level Pi and each plant accession j with 

resistance level Rj, infection score corresponds to Pi x (1-Rj). 

Superscript figures correspond to alleles of a given gene whereas normal font figures correspond to 

different genes. Matching genes or alleles at resistance and pathogenicity loci in host and parasite 

genotypes share the same figure. For simplicity, hosts and parasites are considered haploid. R: 

resistance allele; r or R+: susceptibility allele; P: allele controlling lack of pathogenicity; p: 

pathogenicity allele. 
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Figure 2. Overview of the 32 analyzed plant-parasite matrices (Table 1). Different plant accessions 

and parasite strains correspond to different columns and rows, respectively. White to black shades in 

each cell correspond to an increasing gradient of pathogenicity or infectivity (corresponding to 0 to 9 

values in the analysed matrices) for a given plant and parasite pair. Rows and columns were ordered 

by increasing marginal totals, revealing the nested patterns. Red numbers correspond to significant 

nestedness (WINE algorithm) (Table 2). 
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Figure 3. Distributions of Pearson’s coefficients of correlation (r) between parasites host range 

breadth and pathogenicity (left) or between plant resistance efficiency and scope (right) across the 

32 analysed matrices for different thresholds separating hosts and non-hosts (or parasites included 

or not included in the resistance scope). Each threshold corresponds to a percentage of the maximal 

pathogenicity value in each matrix (only results obtained with thresholds corresponding to 30%, 50% 

and 70% of the maximal pathogenicity value are shown; results were similar for other thresholds). In 

blue and red: significantly negative or positive r values (p-value < 0.05). For some thresholds and 

some matrices, the coefficient of correlation could not be calculated because too few pathogenicity 

data remained.  
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Figure 4. Overview of the six plant-parasite matrices showing significant modularity with the 

spinglass algorithm (Table 3). Rows and columns were ordered by modules, delimited by red lines. 

See legend of Figure 2 for the representation of matrices. 
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Figure 5. Overview of the four plant-parasite matrices showing significant modularity with the 

spinglass algorithm when matrices were transformed such that 0 values correspond to the maximal 

plant susceptibility and 9 values to the maximal plant resistance (but note that the matrices are 

represented such that 0 to 9 values correspond to a plant resistance to susceptibility gradient, as in 

the original matrices). Rows and columns were ordered by modules, delimited by red lines. See 

legend of Figure 2 for the representation of matrices. 
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