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Abstract: IMproving PRedictions and management of hydrological EXtremes (IMPREX) was a
European Union Horizon 2020 project that ran from September 2015 to September 2019. IMPREX
aimed to improve society’s ability to anticipate and respond to future extreme hydrological events in
Europe across a variety of uses in the water-related sectors (flood forecasting, drought risk assessment,
agriculture, navigation, hydropower and water supply utilities). Through the engagement with
stakeholders and continuous feedback between model outputs and water applications, progress
was achieved in better understanding the way hydrological predictions can be useful to (and
operationally incorporated into) problem-solving in the water sector. The work and discussions
carried out during the project nurtured further reflections toward a common vision for hydrological
prediction. In this article, we summarized the main findings of the IMPREX project within a
broader overview of hydrological prediction, providing a vision for improving such predictions.
In so doing, we first presented a synopsis of hydrological and weather forecasting, with a focus on
medium-range to seasonal scales of prediction for increased preparedness. Second, the lessons learned
from IMPREX were discussed. The key findings were the gaps highlighted in the global observing
system of the hydrological cycle, the degree of accuracy of hydrological models and the techniques
of post-processing to correct biases, the origin of seasonal hydrological skill in Europe and user
requirements of hydrometeorological forecasts to ensure their appropriate use in decision-making
models and practices. Last, a vision for how to improve these forecast systems/products in the future
was expounded, including advancing numerical weather and hydrological models, improved earth
monitoring and more frequent interaction between forecasters and users to tailor the forecasts to

Atmosphere 2020, 11, 237; doi:10.3390/atmos11030237 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-7947-3737
https://orcid.org/0000-0003-1133-4164
https://orcid.org/0000-0002-3416-317X
https://orcid.org/0000-0001-5776-6275
https://orcid.org/0000-0003-3726-7086
https://orcid.org/0000-0002-3249-8363
https://orcid.org/0000-0002-1472-868X
https://orcid.org/0000-0002-5182-7898
https://orcid.org/0000-0003-1766-2898
http://dx.doi.org/10.3390/atmos11030237
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/3/237?type=check_update&version=3


Atmosphere 2020, 11, 237 2 of 12

applications. We conclude that if these improvements can be implemented in the coming years,
earth system and hydrological modelling will become more skillful, thus leading to socioeconomic
benefits for the citizens of Europe and beyond.

Keywords: IMPREX; extreme hydrometeorological events; hydrological modelling;
Numerical Weather Prediction; global earth observations; users

1. Overview of Atmospheric and Large-Scale Hydrological Forecast Systems

Hydrological forecasts are employed for many purposes. They are used, for instance, by civil
protection authorities to prepare society for upcoming extreme hydrological events, such as floods
and droughts; by reservoir managers to decide on releasing or storing water for a variety of uses
(e.g., agriculture, hydropower, water supply); by watershed managers to anticipate drought risks
and for navigation and aquatic ecosystems needs. A typical hydrological forecast system uses
hydrometeorological observations to determine the initial hydrological conditions in (near-) real-time;
weather forecasts of precipitation and other atmospheric variables to drive a hydrological and/or
hydrodynamic model over a particular river basin; forecasters (experts) to evaluate model outputs,
risks, and when necessary, issue warnings; a mechanism to communicate the hydrological forecasts
and warnings to users and the public (including visualisation practices, dissemination channels and
metadata, forecast products and services); a server to archive past and current forecasts; and evaluation
protocols to assess the forecast quality and usefulness through post-event analyses. The hydrological
model plays a key role in the forecast chain. It is the component responsible for representing surface
physical characteristics, accounting for human impacts in surface and groundwater flows within the
catchment, and linking river catchment topography, landscape, soil types, land use and storages to
river flows. It transforms precipitation into runoff and propagates it through the river network to
predict the river discharge in space and time. By integrating processes evolving in space and time
within the river basin boundaries, from its headwaters to its outlet, a reliable hydrological model may
become a main source of skill for flood forecasting (e.g., by taking into account river levels and soil
moisture conditions before a storm affects the catchment), drought risk assessment (e.g., by taking
into account groundwater levels and recharge), and water reservoir management (e.g., by taking into
account seasonal snow storage and melting).

A key aspect of hydrological forecasting is the driving meteorological forecast. Weather forecasting
is achieved through a process known as Numerical Weather Prediction (NWP), whereby, based on
observations of the initial state (or conditions) of the atmosphere, numerical models that describe
atmospheric and oceanic motions are integrated to determine future weather conditions [1]. For skillful
NWP forecasts, it is essential to have a global observation network, including, for example, low Earth
orbit and geostationary satellites, aircraft, radiosondes and ocean buoys. These observations are
blended into NWP models in a procedure called data assimilation to generate the initial atmospheric
conditions from which the weather forecasts are run for a given forecast time horizon. As the future
evolution of weather conditions may be very sensitive to uncertainties in the initial atmospheric
conditions and because of errors in the numerical model formulations, an ensemble of weather
forecasts is often created. This ensemble is used to estimate the probability of future weather events
and quantify the degree of (un)certainty of the forecast. There are multiple time horizons that can
be targeted by the forecasts: From the short-range (hours to 3 days ahead), to the medium-range
(3–15 days ahead), to the subseasonal scale (up to eight weeks ahead), up to seasonal time scales
(several months ahead). Meteorological centres provide operational weather forecasts over these
time horizons for several quantities: Land and sea surface temperatures, pressure, humidity, wind,
cloud cover, precipitation (rainfall and snow) and others. Surface temperature and precipitation are
the quantities that most hydrological models need to produce hydrological forecasts. Weather forecasts



Atmosphere 2020, 11, 237 3 of 12

are produced in grids covering the whole Earth and can be found at different temporal scales (hours
to months) and spatial scales (grid resolutions of several square meters to kilometres). Hydrological
models can be run at the scale of small (a few kilometres) to large (thousands of kilometres) hydrologic
units or river catchments and may cover entire countries or continents depending on specific model
setups and targeted users.

Today, several systems run on a pan-European scale to deliver probabilistic weather and river flow
forecasts. One such system is the operational Early Warning System (EWS) for floods of the Copernicus
Emergency Management Service (CEMS), called the ‘European Flood Awareness System’ (EFAS; [2,3]).
The development of EFAS started within a research programme of the European Commission in 2002
and has been running operationally at the European Centre for Medium-Range Weather Forecasts
(ECMWF) since 2012. It uses weather forecasts from several NWP models and a hydrological model
to provide early information on potential upcoming floods in Europe to national flood forecasting
agencies and the European Civil Protection and Humanitarian Aid Operations. Given its proven
usefulness for forecasting early signs of flooding, sometimes up to two weeks ahead, the EFAS forecast
horizon was extended during the IMPREX project. Therefore, currently, EFAS forecasts are produced
operationally up to seven months ahead for research purposes [4], and given research results showing
its skillfulness are communicated to EFAS users through an operational outlook platform online for a
forecast horizon of eight weeks. Figure 1 illustrates how these two forecast horizons are presented
in the EFAS-CEMS hydrological service. It shows EFAS flood warnings over Europe with a 10-day
forecast horizon (left panels) and an EFAS hydrological outlook for up to 8 weeks (right panels) for a
forecast initialized on the 01 June 2019. We can see that users can enhance their decision-making by
focusing on the early flood warnings of an upcoming event (e.g., blue colours across eastern Europe in
Figure 1), thus gaining awareness of the expected hydroclimatic conditions (e.g., river levels above or
below normal) in their catchments of interest and/or in the surrounding regions over the following
weeks. This combined medium- to long-range information can be especially useful when dealing
with a potential series of events or occurrences of floods, when managing water resources use in
transboundary river basins, or to support the strategic planning of EU-wide emergency operations.

There has been an increasing interest in the implementation of large-scale months-ahead
hydrological forecasting systems to serve the water sector. Further examples at the European
scale are the pan-European hydroclimatic seasonal forecasting service from the Swedish Meteorological
and Hydrological Institute (SMHI; based on the hydrological model E-Hype [5]), and the EDgE
project end-to-end demonstrator for improved decision-making in the water sector [6,7] (based
on the Mesoscale Hydrologic Model (mHM) [8], PCR-GLOBWB [9], Variable Infiltration Capacity
(VIC) [10] and Noah-MP [11]), both developed under the Copernicus Climate Change Service (C3S)
to support society and European authorities with consistent climate data and enhanced information
on impacts. At the global scale, the global operational seasonal hydrometeorological forecasting
system, GloFAS-Seasonal (based on the one-way coupled HTESSEL and Lisflood models) [12] and
the global system based on the North American Multimodel Ensemble (NMME) [13] are examples
of recent developments. Continental and global systems can address various user needs, notably in
areas of sparse observational networks. Since they are based on global climate datasets, they also
offer consistency among the meteorological data used in the setup and running of catchment-based
hydrological models, even though they may lack accuracy at local scales due to local anthropogenic
influences that are not usually taken into account in global models [14].

Although often accompanied by stakeholders’ consultation and user needs assessments,
large-scale hydrological forecast systems have not yet been thoroughly validated in real-time,
operational conditions. Besides, they often lack a comprehensive analysis of the main drivers
of hydrological forecast skill (e.g., what influences forecast performance and how performance can
be improved to go beyond climatological information and increase the accuracy and usefulness of
hydrological predictions). These were also aspects investigated in the IMPREX project. The lessons
and weaknesses identified during the project are summarised in Figure 1.
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Figure 1. An example of four screenshots from the European Flood Awareness System (EFAS) system 
at the two forecast horizons: (left) Medium-range (10-day) forecasts showing a map (top) of the 
reporting points where the system forecasts exceedances of flood thresholds, and (bottom) an 
example hydrograph forecast at a river location in Romania (10-day forecasts issued on 1 June 2019). 
(right) The sub-seasonal (eight-week) EFAS outlook (top) showing areas with flows forecasted to be 
above the 90th percentile (blue) and below the 10th percentile (red) of river climatology, and (bottom) 
example boxplots of ensemble discharge predictions for a region encompassing parts of Romania, 
Bulgaria and Serbia (eight-week forecasts issued on 01 June 2019). 

2. Main Lessons and Weaknesses Identified Toward Improving Hydrological Prediction 

Although hydrometeorological forecast skill is improving gradually, probabilistic forecasting 
systems can still present biases due to their limitations in representing local processes and real-time 
conditions that influence the evolution of river flows and extremes. These biases can affect the quality 
of the forecasts in terms of reliability, sharpness and accuracy, meaning that users not only need to 
develop or adapt their procedures to ingest probabilistic forecast information into their decision-
making procedures, but they also need to employ techniques to consider these imperfections of the 
forecasts. In this section, we highlight four main aspects arising during the IMPREX project. We 
believe these deserve careful attention from the forecasting and user communities in order to improve 
the quality and usefulness of hydrological predictions in the future. 

2.1. Gaps in Global Observed Data 

The global hydrological cycle describes the circulation of water through the atmosphere, land, 
rivers, lakes and oceans. In coupled hydrometeorological NWP models, its two main branches are 
represented by the atmospheric branch, which mostly consists of evapotranspiration, water vapour 
fluxes, condensation and precipitation, and the terrestrial branch, which focuses on the movement 
and storage of water in continents and oceans. For both branches, modelling efforts rely on global 
observations, which consist of a complex system of surface- and space-based sensors (e.g., in situ 
stations, radar, rain and river discharge gauges, satellite, radiosondes) owned and operated by 
national and international agencies. 

Figure 1. An example of four screenshots from the European Flood Awareness System (EFAS) system
at the two forecast horizons: (left) Medium-range (10-day) forecasts showing a map (top) of the
reporting points where the system forecasts exceedances of flood thresholds, and (bottom) an example
hydrograph forecast at a river location in Romania (10-day forecasts issued on 1 June 2019). (right) The
sub-seasonal (eight-week) EFAS outlook (top) showing areas with flows forecasted to be above the
90th percentile (blue) and below the 10th percentile (red) of river climatology, and (bottom) example
boxplots of ensemble discharge predictions for a region encompassing parts of Romania, Bulgaria and
Serbia (eight-week forecasts issued on 01 June 2019).

2. Main Lessons and Weaknesses Identified Toward Improving Hydrological Prediction

Although hydrometeorological forecast skill is improving gradually, probabilistic forecasting
systems can still present biases due to their limitations in representing local processes and real-time
conditions that influence the evolution of river flows and extremes. These biases can affect the quality
of the forecasts in terms of reliability, sharpness and accuracy, meaning that users not only need to
develop or adapt their procedures to ingest probabilistic forecast information into their decision-making
procedures, but they also need to employ techniques to consider these imperfections of the forecasts.
In this section, we highlight four main aspects arising during the IMPREX project. We believe these
deserve careful attention from the forecasting and user communities in order to improve the quality
and usefulness of hydrological predictions in the future.

2.1. Gaps in Global Observed Data

The global hydrological cycle describes the circulation of water through the atmosphere, land,
rivers, lakes and oceans. In coupled hydrometeorological NWP models, its two main branches are
represented by the atmospheric branch, which mostly consists of evapotranspiration, water vapour
fluxes, condensation and precipitation, and the terrestrial branch, which focuses on the movement
and storage of water in continents and oceans. For both branches, modelling efforts rely on global
observations, which consist of a complex system of surface- and space-based sensors (e.g., in situ
stations, radar, rain and river discharge gauges, satellite, radiosondes) owned and operated by national
and international agencies.

There are many gaps in global observation coverage, which, in turn, affect hydrometeorological
forecasting and its quality. For example, there are spatial gaps in hydrological records stored in
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hydrological databases such as the Global Runoff Data Centre, and downward trends in river flow
data availability have been observed since the 1980s. An IMPREX-led study by Lavers et al. [15]
highlighted this issue by comparing the lack of data sharing in the hydrological sciences to the NWP
community, a situation partly arising from geopolitical contexts and the voluntary nature of the data
upload process [15–17]. In addition to the challenges of maintaining large hydrological data archives,
hydrological data must also be updated in unstable rivers. Extreme flows may cause changes in
riverbed morphology which, in turn, cause changes in the river stage-discharge relation, introducing
nonstationary behaviours in the data time series [18]. These issues not only reflect the challenges related
to assessing historic data for the calibration of flood forecasting models, but also to using real-time
data to update forecasting models with river runoff conditions before issuing a hydrological forecast.

In terms of the atmosphere, many data sparse regions exist, especially over the global oceans.
A diagnostics study undertaken in IMPREX identified errors in the atmospheric branch of the global
hydrological cycle [19]. Using ECMWF medium-range forecasts and unique flexible dropsonde
observations (measuring atmospheric pressure, temperature, wind and humidity) deployed from
research aircraft, the assessment showed that the source of the largest uncertainties in the flux of water
vapour over the northeast Pacific Ocean was due to the winds above the planetary boundary layer,
i.e., at about 1-1.5 km of altitude. As such, accurate wind observations over the ocean made regularly
would benefit the modelling of the global hydrological cycle.

The paucity of global surface observations of the terrestrial branch of precipitation and river
discharge (and the unknown anthropogenic influences, such as irrigation and reservoir regulation)
hamper the undertaking of many verification studies at the global scale. Currently, there is sparsity in
spatiotemporal coverage (e.g., fewer precipitation gauges or radar imagery in mountainous regions),
a lack of consistent global discharge datasets and inadequate hydrometeorological data sharing between
countries (e.g., a lack of standardisation protocols and legal and financial mechanisms to support
shareable databases). As a consequence, it is currently not possible in many regions to accurately
evaluate the skill of predictions from coupled large-scale hydrometeorological models. An example
is given by the ongoing efforts toward building a global dataset of (near) real-time daily discharges.
Discharges come from the GloFAS-ERA5 river discharge reanalysis dataset based on runoff from the
ECMWF ERA5 global reanalysis coupled to a hydrological and river routing model. It thus corresponds
to a proxy for observed discharges and has the advantage of offering a coherent and homogeneous
vision over the entire globe, providing a unique benchmark dataset against which to verify the forecast
skill and identify key areas for model improvement (Figure 2; [20]).

The performance of large-scale hydrological predictions for local (catchment-based) applications
in the water sector needs particular attention, acknowledging the fact that it varies widely according
to the physiographic characteristics of the location, the use of water resources in space and its
variability in time (e.g., storage, diversions, withdrawals) and users’ needs for information in their
decision-making process (e.g., nature of information and resolution). Pathways for facing these
challenges have recently merged. For instance, in IMPREX, a high-resolution (both temporally and
spatially) dataset of area-average precipitation, temperature and potential evapotranspiration (based
on satellite downwelling shortwave radiation) was developed for the Rhine River and used to verify
the ECMWF ensemble weather forecasts [21,22]. These high-resolution datasets have the advantage of
better representing the heterogeneities that are not captured by the relatively coarse grid scale of the
atmospheric model.
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Second, especially in low flow conditions, forecast errors are dominated by (systematic and 
statistical) uncertainty in the hydrological model and the initial conditions (soil moisture, reservoir 
water level and snowpack). To improve the estimation of the initial conditions of the hydrological 
model, and thus improve the hydrological forecasts, data assimilation methods (most commonly 
based on the Ensemble Kalman Filter approach) are applied. Another way to improve hydrological 
forecasting skill is to improve hydrological modelling (e.g., using better historical forcing datasets), which 
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predictive uncertainty is provided to the end-user that rational decision-making based on a cost-
benefit analysis is possible. For instance, when an IMPREX-led study used seasonal hydrological 
forecasts from the pan-European forecasting system E-HYPE for hydropower reservoir management 
in Spain, we found that raw forecasts could not be directly applied to the optimization models 
defined for the Jucar river system due to their strong biases. We observed that the complex 
hydrological behaviour of the river basin was not adequately reproduced by the pan-European 
model. A post-processing method was developed and applied to correct for the biases and bridge the 
gap between the local and the pan-European scales. The post-processing method relied on first 
comparing the E-HYPE pan-European discharges without accounting for human influence, obtained 
with historical meteorological forcing, to the impaired (human-influenced) discharges of the Jucar 
river basin using fuzzy logic. Once fuzzy logic systems were trained and validated for all subbasins, 
they were then applied (via a fuzzy inference) to the pan-European seasonal forecasts of the Jucar 

Figure 2. Mean daily river discharge over 2018 for each GloFAS river grid cell with an upstream area
greater than 1000 km2 for the GloFAS-ERA5 river discharge reanalysis. Darker blue river sections
have larger river discharge. Data can be freely downloaded from 1979 to (near) real-time from the
Copernicus Climate Change Service (C3S) Climate Data Store (CDS): https://cds.climate.copernicus.eu/

cdsapp#!/dataset/cems-glofas-historical?tab=overview.

2.2. Hydrological Model Biases and Post-Processing

The application of medium- and long-range NWP ensemble forecasts in water sectoral applications
in IMPREX showed several shortcomings in the hydrometeorological forecasting chain. First,
NWP ensemble forecasts from global models are often biased and have prediction intervals that
are too narrow for surface variables of interest to hydrology, such as precipitation. These biases
typically propagate through to the hydrological forecasts, and the lack of adequate ensemble spread is
exacerbated after weather forecasts are processed through the hydrological model [23,24].

Second, especially in low flow conditions, forecast errors are dominated by (systematic and
statistical) uncertainty in the hydrological model and the initial conditions (soil moisture, reservoir water
level and snowpack). To improve the estimation of the initial conditions of the hydrological model,
and thus improve the hydrological forecasts, data assimilation methods (most commonly based on the
Ensemble Kalman Filter approach) are applied. Another way to improve hydrological forecasting skill
is to improve hydrological modelling (e.g., using better historical forcing datasets), which Imhoff et
a.l [25] investigated for the Rhine River as part of IMPREX. Finally, statistical post-processing methods,
which mainly aim to increase reliability of probabilistic predictions (e.g., Bayesian Model Averaging,
BMA; Ensemble Model Output Statistics, EMOS), have also been applied to hydrological ensemble
forecasts to reduce biases in the output [3,26] prior to IMPREX. It is only when a well-calibrated
predictive uncertainty is provided to the end-user that rational decision-making based on a cost-benefit
analysis is possible. For instance, when an IMPREX-led study used seasonal hydrological forecasts
from the pan-European forecasting system E-HYPE for hydropower reservoir management in Spain,
we found that raw forecasts could not be directly applied to the optimization models defined for the
Jucar river system due to their strong biases. We observed that the complex hydrological behaviour of
the river basin was not adequately reproduced by the pan-European model. A post-processing method
was developed and applied to correct for the biases and bridge the gap between the local and the
pan-European scales. The post-processing method relied on first comparing the E-HYPE pan-European
discharges without accounting for human influence, obtained with historical meteorological forcing,
to the impaired (human-influenced) discharges of the Jucar river basin using fuzzy logic. Once fuzzy
logic systems were trained and validated for all subbasins, they were then applied (via a fuzzy

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview
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inference) to the pan-European seasonal forecasts of the Jucar River Basin in order to obtain bias
corrected discharge forecasts that could be applied to local models of reservoir optimization [27].
In another IMPREX study, we highlighted how the differences and the specificities of local and
continental models raise the question of how useful large-scale models can be for local decision-making
and how to optimally use the information from these different sources [14].

Third, in an attempt to assess seasonal forecasting skill, different hydrological model configurations
in terms of se-up and model structure, complexity and spatial resolutions (lumped, semi-distributed
and distributed) were further combined. Different post-processing methods (i.e., BMA, EMOS,
equal weighting) have been applied to weight the individual model outputs, finally resulting in a
multimodel average output of superior skill (particularly, for extreme flow forecasting) than each
individual hydrological chain. In the case of the post-processing of continentally and regionally
calibrated models, no model shows superior performance. An IMPREX study [28] developed a
sensitivity analysis to isolate the relative contributions of errors in the initial hydrological conditions
and the seasonal meteorological forcing to errors in the seasonal streamflow forecasts. This cost-effective
method can easily be applied to any seasonal hydrological forecasting system to guide future system
developments for tangible forecast improvements. The study also highlighted that further investigations
are needed on how the interplay between uncertainties in the hydrological model (structural and
parameter), land surface initial conditions (which affect system memory and predictability) and NWP
forcing affect hydrological forecasting skill. Challenges remain on how to assess drivers of skill and
predictability to enhance the quality of hydrological forecasting systems and foster their application to
local water-related problems.

2.3. Origin of Seasonal Hydrological Forecast Skill across Europe

The seasonal forecasting skill for two pan-European hydrological systems (i.e., from the EFAS and
the SMHI services) was evaluated during IMPREX [4,29]. Results showed these forecasts can have
skillful seasonal predictions of anomalously high or low river flows (i.e., flows above or below average)
in winter in Europe. However, a comparison with traditional seasonal river flow forecasting methods
(i.e., methods based on historical observations of local meteorological conditions) showed that the use
of NWP-based seasonal meteorological forecasts was only able to outperform these traditional methods
in the first forecast month. This result reflects the limited skill of seasonal meteorological forecasts
over Europe and suggests that knowledge of the initial hydrological conditions of the river basins (i.e.,
snowpack, soil moisture, streamflow and reservoir levels) and the more predictable, shorter forecast
horizon in the atmosphere are important sources of predictability for seasonal streamflow forecasting
over Europe. The evaluation also highlighted that improving seasonal meteorological forecasts would
yield a larger improvement of the seasonal streamflow forecasts (compared to improving the initial
hydrological conditions) beyond the first forecast lead month.

The IMPREX findings contributed to better understanding of the sources of skill in seasonal
predictions, in turn identifying potential obstacles to improved seasonal hydrological predictions.
Regions in Europe where users could benefit from improved seasonal meteorological forecast systems for
hydrological forecasting were generally found in a wet hydroclimate, such as western Norway, Ireland,
United Kingdom, northern Spain, the Alps, Italy, and the eastern shore of the Black Sea. Interestingly,
research found that the areas with skillful seasonal streamflow forecasts were not necessarily collocated
with regions of the highest forecast skill of seasonal precipitation and temperature. This can occur
in catchments when the dominant source of predictability is from the initial hydrological conditions
rather than the meteorological component of the forecasting system, highlighting the importance of
using improved hydrological models and their initial conditions in the hydrometeorological seasonal
forecasting chain.
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2.4. User Requirements for Hydrometeorological Forecasts at Seasonal Time Scales

A mismatch between the low skill currently available in (calibrated) seasonal meteorological
forecasts and the high expectation from the user community for hydrometeorological forecasts at
such lead times has become clear throughout the IMPREX project. The communication of forecast
uncertainty proved to be an essential step and remains a challenging one. Decision-making in many
water-related sectors is not fully developed to consider probabilistic (or ensemble) scenarios, and it
is only when water managers and stakeholders have confidence in forecast quality and uncertainty
that they will use them in their decision-making [30]. The interactions between forecast providers and
users during sectoral applications of hydrometeorological forecasts provide a good basis for evidence
on the usefulness of these forecasts. With the growing number of climate services issuing forecasts
and outlooks on future climate and water resources, a new challenge for producers and users is the
joint evaluation of the strengths and weaknesses of the different hydrometeorological forecasts issued
by various systems and sources. Such evaluation comprises skill (quality) and value (economical or
societal) of forecasts when these are effectively used to make decisions that might impact activities at
short- or long-term horizons. We undertook these types of evaluation in IMPREX sectorial case studies
and they are reported in the portfolio of factsheets provided by the project. The types of evaluation
are referred to as: (i) Innovative Approaches for Flood Risk Assessment, (ii) Hydrometeorological
Forecasting, (iii) Hydrometeorological predictions for the hydropower sector, (iv) Urban Water Supply
Systems, (v) Drought Preparedness, Mitigation and Management and (vi) Improved Forecasting and
Risk Management for the Water Transport Sector [31]. There is a challenge in assessing which forecast
system best aligns with a user’s requirement for informed decision-making on future hazardous
conditions. It is important to recognise that forecast skill is dependent on the user group and a forecast
which may be judged as unskillful for a certain user may have utility (or value) to another. For instance,
in IMPREX, we saw that the accuracy of river flow forecasts was crucial to model the complex water
system of hydropower reservoirs in the Jucar River Basin in Spain. In the waterway transportation
sectoral survey, accurate water levels were considered necessary for lead times shorter than 10–15 days,
while weekly means of flows at 3-4 weeks ahead and mean flow tendencies for three months ahead were
seen as useful information for planning by the navigation-related users in the Rhine River in Germany.

3. Vision for the Future

3.1. Numerical Model Advancements

An open question remains on the strength of coupling required between the atmosphere, land and
ocean components in a forecast system. Bauer et al. [1] hypothesised that the coupling of more
physical processes in NWP could lengthen the skilful forecast horizon and ultimately contribute to
hydrometeorological prediction developments and improved forecast skill of high-impact extreme
events. For example, this could be achieved through an efficient earth system data assimilation
approach, a more adequate representation of physical processes, NWP and hydrological models with
higher resolution and increasing computing power. Furthermore, we argue that data assimilation
and modelling improvements would advance the concept of ‘seamless prediction’, providing more
coherent forecasts across different temporal and spatial scales. All these efforts could improve
hydrometeorological models, which would lead to advances in closing the water balance and better
simulations of the whole spectrum of hydrological events (floods and droughts).

3.2. Improved Earth Monitoring and Human-Water Modelling

A fundamental requirement for the development of forecasting systems is the broadening of the
global observing system through European and international collaboration. Increasing the number of
observations is essential for all parts of earth system modelling, from initialising NWP and hydrological
models to calibrating forecast outputs for user applications and evaluating forecasts. For example,
satellite observations tailored toward low-altitude moisture and winds could yield improvements in
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forecasting the atmospheric branch of the global hydrological cycle, which would potentially lead to
more skilful precipitation forecasts. The development of remote sensing methods for the subsurface
compartment of the terrestrial branch of the hydrological cycle would be particularly valuable for
understanding and modelling hydrological processes at the global scale for local applications. Also,
the availability of satellite-derived observations of river discharge, for example, the Surface Water
and Ocean Topography satellite mission due to launch in 2021 [32], could broaden the river gauging
network. Furthermore, more precipitation and river discharge gauges and snow water observations
are needed, based on both traditional in-situ monitoring and innovative sensor networks (e.g.,
crowdsourced hydrologic data, mobile sensors), to enhance our capacity for better characterizing
local hydrological behaviour. Note that wider access to existing observations, that is, those data that
are present but not currently shared in real-time, may also improve hydrometeorological forecast
skill [15]. The World Meteorological Organisation (WMO) Hydrological Observing System (WHOS)
for hydrological observations could potentially be the dissemination platform for this effort.

Information on anthropogenic influences, such as dams (e.g., volume and operating rules),
is essential to represent large and potentially predictable impacts on hydrological discharge and
associated extremes. Water reservoirs can store river flows and change the space and time dynamics
of floods and droughts. Coupling hydrological models with reservoir management information can
contribute to improving simulations and scenario-based risk assessments, which may include data
on regulated dam releases during drought periods, maximum storage capacity for flood retention or
objective filling curves for seasonal reservoir operations [33]. The challenges of modelling human
regulated systems are numerous and include not only the representation of management activities,
but also land-use interactions with climate and integration of impacts of human behaviour [34].
The current knowledge gaps hinder the evaluation of global hydrological forecast systems and prevent
local applications from fully benefitting from the spatially and temporally coherent predictions that
these systems can provide to inform decision-making. In regional water resources and risk management,
the large-scale perspective given by global systems, when tailored to interact with local applications
and concerns, could be a facilitator in the (sometimes conflictual) management of water resources and
water-related risks across sectors, as well as in the understanding of the numerous interdependencies
of the climate-water-energy and food nexus under global changing conditions.

3.3. Interaction between Forecasters and Users to Improve Forecasts

The approach needed for improved forecast skill requires information exchange and engagement
between forecast providers and users. Improved forecasts will be used more often by stakeholders
if there is regular interaction with modellers (e.g., on forecast developments/improvements),
with increased feedback to modelling systems to complete the loop in the ‘system-user’ interface.
Users in the water sector have different needs and expectations toward NWP-based hydrological
forecasts. In many situations in Europe, these forecasts do not yet have the skill necessary for their
immediate and routine use by water managers and stakeholders, especially at seasonal scales. Seasonal
forecasts are often available from large datasets, which first require the adequate infrastructure and
technology to transfer them to local applications. These forecasts often need to be post-processed,
downscaled and bias-adjusted to the local climate and hydrological characteristics. Some sectors have
in-house human and financial resources to conduct experiments with seasonal forecasts in real (or close
to real) operational settings, but others need additional guidance, training and tools—all of which have
a financial cost—from forecast and service providers. Despite the variety of situations, it is, however,
largely recognized that forecast skill can be potentially improved and usefulness enhanced. We suggest
that supporting the dialogue between service providers and users is a step forward to adding value to
large-scale predictions and contributing to informed local decision-making.
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3.4. From Early Warning to Early Action

Extending forecast lead time is an overall goal to gain preparedness for extreme hydrological
situations. Given the limited skill of seasonal predictions in Europe beyond lead times of two months,
we strongly encourage that forecast providers and users explore the use of subseasonal forecasts
together [35]. These forecasts are targeted at lead times of 2–6 weeks, and have shown some skill
over Europe, originating from large-scale atmospheric teleconnections [36]. The use of subseasonal
forecasts can be fostered by supporting showcase applications, where forecast providers and users
interact through an operational platform and in person-to-person settings to build multimodelling
approaches, visualise outlooks and impacts at different scales and coevaluate the performance of
sub-seasonal forecast systems in a dynamical and cooperative way. This provides the opportunity
for collaborative projects in which knowledge is exchanged between model developers and users.
Opportunities will emerge to extract useful information at subseasonal scales, which will eventually
be useful for improving the skill of seasonal forecast systems. Cooperation is essential to build
confidence, promote sharing data and resources and foster transparency, comparison and openness in
forecast-targeted experiments. Further benefits would include the provision of better understanding
of hydrometeorological forecast skill limitations, users’ familiarisation with forecast quality and the
capability of users to make decisions conditional on the level of forecast accuracy. This may then lead
to improvements in all parts of the earth system modelling chain and empower human response to
predictions and management of extreme hydrometeorological events.

4. Conclusions

IMPREX was a four-year European Union Horizon 2020 project with the aim of improving society’s
ability to anticipate and responding to future extreme hydrological events in Europe across many
sectors (flood forecasting, drought risk assessment, agriculture, navigation, hydropower, water supply
utilities [37]). The research and surveys undertaken have (1) highlighted gaps in the global observing
system of the hydrological cycle, (2) assessed forecast quality from large-scale to local applications and
investigated ways to improve the usefulness of hydrometeorological forecasting systems, (3) uncovered
the origin of seasonal hydrological forecast skill in Europe and (4) identified user requirements
of forecast adaptation to better fit their decision-making models and practices. IMPREX research
allowed us to identify ways to improve hydrological prediction in the future by including modelling
advancements, wider earth system monitoring, and further interaction between forecasters and users
to correct biases and tailor services to local needs. If these recommendations can be implemented in
the coming years, we hypothesise that earth system and hydrological modelling will become more
skillful, thus leading to socioeconomic benefits for the citizens of Europe and beyond.
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