Sara Maqrot

Simon De Givry

Marc Tchamitchian

Gauthier Quesnel
email: gauthier.quesnel@inrae.fr

Learning parameters of the Wedelin heuristic with application to crew and bus driver scheduling $

Keywords: integer programming, heuristics, Lagrangian relaxation, sensitivity analysis, parameter tuning, crew and bus driver scheduling, set partitioning problem 2010 MSC: 90C10, 90C59

Heuristics are important techniques designed to find quickly good feasible solutions for hard integer programs. Most heuristics depend on a solution of the relaxed linear program. Another approach based on Lagrangian relaxation offers a number of advantages over linear programming, namely it is extremely fast for solving large problems. Wedelin heuristic is such a Lagrangian based heuristic, initially developed to solve airline crew scheduling problems. The performance of this method depends crucially on the choice of its numerous parameters. To adjust them and learn which ones have important influence on whether a solution is found and its quality, we propose to conduct a sensitivity analysis followed by an automatic tuning of the most influential parameters.

We have implemented a C++ open-source solver called baryonyx which is a parallel version of a (generalized) Wedelin heuristic. We used the Morris method to find useful continuous parameters. Once found, we fixed other parameters and let a genetic optimization algorithm using derivatives adjust the useful ones in order to get the best solutions for a given time limit and training instance set. Our experimental results done mostly on crew and bus driver scheduling benchmarks tackled as set partitioning problems show the significant improvements obtained by tuning the parameters and the good performances of our approach compared to state-of-the-art exact and inexact integer programming solvers.

Introduction

Heuristics are important techniques designed to find quickly good feasible solutions for hard integer programs. Most heuristics depend on a solution of the relaxed linear program. Another approach based on Lagrangian relaxation offers a number of important advantages over linear programming [START_REF] Marshall | The Lagrangian relaxation method for solving integer programming problems[END_REF], namely it is extremely fast for solving large problems.

Wedelin heuristic [START_REF] Wedelin | An algorithm for large scale 0/1 integer programming with application to airline crew scheduling[END_REF] is such a Lagrangian based heuristic. Wedelin [START_REF] Wedelin | The design of a 0/1 integer optimizer and its application in the Carmen system[END_REF] described the basic principle of the algorithm and its application in the Carmen system for scheduling crew rotations for airlines. Alefragis et al. [START_REF] Alefragis | Parallel integer optimization for crew scheduling[END_REF] presented a scalable parallelization of the original algorithm used in the Carmen system. Grohe and Wedelin [START_REF] Grohe | Cost Propagation-Numerical Propagation for Optimization Problems[END_REF] and [START_REF] Wedelin | Revisiting the in-the-middle algorithm and heuristic for integer programming and the max-sum problem[END_REF] introduced a similar algorithm for the max-sum problem. Ernst et al. [START_REF] Ernst | A new Lagrangian heuristic for the task allocation problem[END_REF] described a variation of the Wedelin algorithm and applied it to the staff planning problem. Bastert et al. [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF] presented many extensions and generalizations of Wedelin algorithm with various improvements. They evaluated the performance of their variant on a set of instances from different sources, where the results were favorable compared to FICO Xpress, a commercial optimization software. Starting from [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF], we propose an extension performing multiple runs in parallel.

A major difficulty in the use of optimization methods is the parameter setting. It is important for each problem to find a set of parameter values that leads to optimal performances. Choosing the best values manually requires a lot of experimentation. There are several methods for automatic configuration of parameter values [START_REF] Ágoston | Parameter control in evolutionary algorithms[END_REF][START_REF] Hamadi | Autonomous search[END_REF]. Eiben et al. [START_REF] Ágoston | Parameter control in evolutionary algorithms[END_REF] classify methods into two categories according to the manner of use, before running the optimization algorithm (parameters tuning) and during its execution (parameter control).

The control methods include self-adjust the parameter values for the resolution and dynamically control these values to improve the solution search. These techniques are widely applied to self-adjust the parameters of evolutionary algorithms [START_REF] Hamadi | Autonomous search[END_REF], such as crossover rate [START_REF] Yang | Adaptive crossover in genetic algorithms using statistics mechanism[END_REF], mutation rate [START_REF] Smith | Self adaptation of mutation rates in a steady state genetic algorithm[END_REF] and population size [START_REF] Endre Eiben | Evolutionary algorithms with on-the-fly population size adjustment[END_REF] for genetic algorithms. These methods can be subdivided into two branches: deterministic and (self-)adaptive [START_REF] Hinterding | Adaptation in evolutionary computation: A survey[END_REF]. Deterministic methods are based on deterministic rules, which do not change during the execution of the algorithm. Their goal is to calculate approximate values of parameters and adjust them according to the problem [START_REF] Barbulescu | Dynamic representations and escaping local optima: Improving genetic algorithms and local search[END_REF]. Adaptive methods use information on the current state of the search to change parameter values. Adaptation is effected by changing the objective function, by increasing or decreasing the penalty coefficients for violations of constraints, from one generation to another. This prevents poor settings to conduct future generations [START_REF] Harik | A parameter-less genetic algorithm[END_REF]. These control methods are developed in an automated framework for setting the parameters of a specific problem (one instance). If the goal is to solve different instances, these methods can be costly in terms of computing time, given the number of parameters and instances.

The principle of parameter tuning methods is simpler. Parameters do not change values during search. They are adjusted before the execution of the algorithm, and remain unchanged after. The settings obtained by learning on a subset of instances is used to solve all instances of a problem. Different parameter tuning strategies exist in the literature and depend on the type of parameters: discrete, continuous or categorical. Two famous examples are CALIBRA [START_REF] Adenso | Fine-tuning of algorithms using fractional experimental designs and local search[END_REF] and ParamILS [START_REF] Hutter | Automatic algorithm configuration based on local search[END_REF] parameter tuning methods for the discrete case. They explore the parameter configuration search space using (iterated) local search. CALIBRA limits the number of parameter configuration evaluations using partial statistical designs. ParamILS saves computation time by doing partial evaluations of the training set.

A sensitivity analysis can facilitate parameter tuning by focusing on important parameters for a problem. The goal is to reduce the time and effort in resolving sensitive parameters. In the literature, the work on the use of both techniques (sensitivity analysis to reduce the parameter search space and automatically adjusting their values) is not much discussed.

Kim et al. [START_REF] Kim | Sensitivity analysis and parameter tuning scheme for global sea-ice modeling[END_REF] perform a sensitivity analysis on the dynamic parameters of sea ice model, using automatic differentiation. Information on the gradient provided by the latter are used in a parameter optimization algorithm based on quasi-Newton method [START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[END_REF]. Teodoro et al. [START_REF] Teodoro | Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines[END_REF] combine sensitivity analysis and automatic parameter tuning for an image segmentation problem. This approach permits to identify the least influential parameters and reduce the parameter configuration search space (100 points instead of trillion points).

In these previous works, parameter tuning is performed for a single instance. In this paper we propose a protocol to generate a universal set of parameter values from a subset of instances of a given problem to be solved by our multi-run Wedelin algorithm. The basic idea is to i) select a subset of instances, ii) investigate the sensitivity of parameters for fixing the values of the non-sensitive parameters to their default values, iii) automatically adjust the values of the significant parameters by black-box optimization, and iv) apply the learned parameter setting on all instances of the problem.

In Section 2, we describe the Wedelin heuristic and our multi-run extension for parallelism. In Section 3, we present our protocol for parameter tuning. In Section 4, we give experimental results and conclude.

A Parallel Version of Wedelin Heuristic

We are interested in minimizing 0/1 linear programs of the following form:

min cx s.t. Ax = b x ∈ {0, 1} n
where c ∈ R n is a vector of n costs, b ∈ N m a column vector of constant terms, and A ∈ {0, 1} m×n a coefficient matrix for the constraints. In the following, constraint index i refers to the ith row in equation Ax = b, and index j to the jth column in A associated to variable x j . Let J = {1, . . . , n} be the set of column indices, and J(i) = {j : a ij = 1} ⊆ J the subset of column indices occurring in constraint i. Similarly, let I = {1, . . . , m} be the set of row indices, and I(j) = {i : a ij = 1} ⊆ I the subset of constraint indices involving x j .

In this paper we adopt an approximate method, called Wedelin algorithm or Inthe-middle algorithm. This method is designed for solving linear problems on Boolean variables [START_REF] Wedelin | An algorithm for large scale 0/1 integer programming with application to airline crew scheduling[END_REF] and uses the Lagrangian relaxation.

The Lagrangian relaxation

The Lagrangian relaxation consists in moving into the objective function all the constraints. These constraints are built into the objective function as linear combinations where the coefficients are Lagrangian multipliers. They penalize the objective function if one of the integrated constraint is violated. This relaxation has the advantage over linear relaxation to directly provide integer solutions and to tackle large size problems.

The Wedelin Heuristic

In this paper, we are particularly interested in a specific heuristic based on the Lagrangian relaxation known as Wedelin heuristic. This method solves linear programming problems with Boolean variables with a specific mathematical form such as the set partitioning problem. This heuristic tries to directly solve the linear problem:

min x cx -π(Ax -b) (1)
s.c.

x ∈ {0, 1} n

Where π = {π 1 , π 2 , ..., π m } ∈ R m represent the Lagrangian multipliers or dual variables. The resolution is trivial when π i elements in π are fixed to π:

πb+ min x (c -πA)x (2) s.c. x ∈ {0, 1} n
The solution xj is constructed with the reduced cost sign with (c j -πa j) and a j the associated column in the coefficient matrix A.

xj =    1 if (c j -πa j) < 0, 0/1 if (c j -πa j) = 0, 0 if (c j -πa j) > 0. (3)
If the reduced cost c = (c -πA) is non-zero, the solution is unique. However, if one or a few elements of c are zero, it will be difficult to find a feasible solution for the not relaxed problem. The goal of this algorithm is to find a π where all elements are non-zero and where the single solution of the relaxed problem is realizable for the primal problem.

We note that the change of the value of a single component πi modifies the values (and signs) of the reduced costs c, and therefore affects the x solution.

The main idea of the Wedelin algorithm (see Algorithm 1) is to consider iteratively a single constraint i, updating the element πi such that the x vector satisfies the i constraint of the primal problem. There is always a selection range of πi . The algorithm chooses the value of πi in the middle of this interval. This corresponds to the dual search for descent by coordinates.

Algorithm 1 represents the core of the solver. It takes as input a definition of the problem: the matrix A and the vectors b and c. It expects an output vector of Boolean, x, a solution of the problem. The algorithm starts at line 1 with the construction of an initial x vector which permits to build the list of violated constraints R. It uses the Bastert et al. [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF] proposal to penalize variables with positive costs. The main loop begins at line 2 and run until the loop limit p and/or the κ max is reached. For each violated constraints (line 3), it (i) decreases the preferences p, (ii) produces the reduced cost vector r and sort it according to the reduced costs, (iii) updates the Lagrangian multipliers at line 4, (iv) affects the x vector and the preference matrix p. Finally, at line 6, we update the list of violating constraints and exit with the solution found or adjust the κ adjustment and the iteration l.

Input : A ∈ {0, 1} m×n , b ∈ N m , c ∈ R n Output:
x ∈ {0, 1} n with Ax = b and cx small or message no solution for j ∈ {1, . . . , n} do // Build an initial variable assignment

if c j ≤ 0 then xj ← 1 else xj ← 0 end Let π ∈ R m , π ← 0, p ∈ R m×n , p ← 0, l ← 1, κ ← κ min , R ← {i : n j=1 a ij xj = b i } // List of violated constraints while l ≤ ρ and κ ≤ κ max do for i ∈ R do // Update every violated constraint for j ∈ J(i) = {j : a ij = 0} do pij ← θ × pij // History exp. decay for j ∈ J(i) do // Build reduced costs r j ← c j -i∈I(j) a ij πi -i∈I(j) pij end r ϕ[1] < r ϕ[2] < ... < r ϕ[|J(i)|]
// Sort variables by increasing red. costs

πi ← πi + 1 2 (r ϕ[bi+1] + r ϕ[bi]) // Update Lagrangian multipliers if l ≤ ω then ∆ ← 0 // Do not perturb reduced costs during warmup else ∆ ← κ 1-κ (r ϕ[bi+1] -r ϕ[bi]) + δ for j ∈ {1, . . . , b i } do // Update variables and preferences positively piϕ[j] ← piϕ[j] + ∆ ; xϕ[j] ← 1 end for j ∈ {b i + 1, . . . , |J(i)|} do // or negatively piϕ[j] ← piϕ[j] -∆ ; xϕ[j] ← 0 end end R ← {i : n j=1 a ij xj = b i } // Update the list of violated constraints if R = ∅ then return x // If empty, exit with solution found κ ← κ + κ step (|R| m) α // Adaptive adjustment of step size l ← l + 1 // Next iteration
end return no solution found Algorithm 1: Wedelin algorithm with local preferences and adaptive step size.

The Parallel Solver Baryonyx

In this paper, we introduce a new integer and Boolean linear programming solver called baryonyx. This solver is largely based on the algorithms provided in Bastert et al. [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF]. We have introduced several modifications to the proposed algorithms to (i) allow the reuse of previous solutions found, (ii) diversify the search, and also (iii) exploit todays symmetric multiprocessor CPUs.

Baryonyx accepts two modes: solver and optimizer. In the solver mode, it runs once trying to satisfy all the constraints (the exact implementation of Algorithm 1). In the optimizer mode, it runs in parallel according to the number of processors, and tries to satisfy all the constraints and to optimize the solution at each run, reporting the best solution found for all runs when it reaches its time limit.

The Wedelin heuristic depends only on the δ parameter (line 5 in Algorithm 1) to diversify the search. To improve diversification, we develop several random processes (see the technical documentation of baryonyx). The most important process of diversification is the initialization mechanism of x. Indeed, x is used to determine violated constraints before any computation. Default, a deterministic initialization is proposed by Bastert et al. [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF] where xj equals 1 if c j ≤ 0 otherwise 0. We propose to extend this part by combining a random process and several different algorithms. We use the Bernoulli's law and its parameter p ∈ [0, 1] to provide random Boolean.

random Each xi are initialized with the Bernoulli law.

bastert For each xi , either the variable is initialized by the cost variable c i (See section 1 in Algorithm 1) or by a random Boolean.

best For each xi , either the variable is initialized by the best solution found previously xi or by random Boolean.

Since Wedelin's algorithm runs several times in baryonyx, we changed the initialization of x for each iteration. The default baryonyx choice is the best-cycle policy. It starts with the bastert policy. If is fails to find a solution, it restarts with the random policy, else it uses the best solution found as initial solution and it tries to improve this solution with the best policy three times. If it fails it switches to the first step of the algorithm (bastert policy) otherwise it keeps the best policy. Figure 1 shows the diagram of the best-cycle policy.

To further increase the diversification, we exploit the symmetric multiprocessor CPUs. Each core shares matrices A, vectors b and c. The vector x is local for each process. Each core have its own pseudo-random number generator initialized with different random seed.

Learning Continuous Parameter Values

In this section, we present our protocol for tuning continuous parameters of Wedelin heuristic automatically. Algorithm 1 has eleven numerical parameters as described in Table 1. Parameters τ, Γ, ρ, ω are integers whereas the others are continuous. We assume a fixed time limit τ and a fixed number of cores Γ, and treat the other integer parameters as continuous values] Bernoulli distribution with success probability p using a rounding function. So, we have nine continuous parameters to tune. The Wedelin heuristic is viewed as a complex function with K = 9 input parameters (x 1 , . . . , x K) or factors and a single output value y(x 1 , . . . , x K) which corresponds to the quality of the parameter configuration over a set of training instances. For each benchmark category, we select an evenly distributed subset (20%) of instances to be part of the training set.

Quality of a parameter configuration

The quality of a parameter configuration (x 1 , . . . , x K) is computed as follow. First, we execute our parallel baryonyx solver on every training instance using a modified Wedelin-Good configuration1 . Each execution uses Γ cores2 in parallel during 2τ time limit. We collect the best l init

y(x 1 , . . . , x K) = 1 - 1 N N e=1 l e -l init e 10u init e -l init e
If no solution is found for a particular instance and parameter configuration then we assume l e = 10u init e . By multiplying u init e by 10, we assume not finding a solution is at least ten times worse than finding a good solution close to the best initial solution. When y > 1, we have found a better configuration than the modified WedelinGood configuration.

Selection of important parameters by sensitivity analysis

We used the Morris method [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF][START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF] to determine which inputs have important effects on the output. The goal is to discover which parameters are important and cannot be ignored. These parameters will be fine tuned later on (see Section 3.3). For that a factorial sampling plan is built from individually randomized one-factor-at-a-time designs. The Morris method randomly selects L initial configurations within a regular K-dimensional d-level grid. Each parameter is discretized into d levels including its bounds (given in Table 1). Starting from each initial configuration, a configuration trace is constructed by changing the value of one parameter at a time until all the parameters have been modified. The step value is usually chosen as ∆ = (d -1)/2. See an example in Figure 2(left). Each trace corresponds to K +1 configuration evaluations, resulting in a total of L×(K +1) evaluations.The Morris method performs a limited amount of configuration evaluations which is a linear function of the number of parameters K.

The Morris method provides qualitative sensitivity measures allowing to rank the input factors in order of importance, but not to quantify by how much one given factor is more important than another [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF]. In Figure 2

δy l k = y(x 1 , . . . , x k-1 , x k + ∆, x k+1 , . . . , x K) -y(x 1 , . . . , x k , . . . , x K) ∆
When µ * k is large but not σ k , parameter x k has an important overall influence on the output. If both measures are large, it corresponds to a non-linear effect on the output or an input involved in interaction with other factors [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF]. This is the case for parameter κ step in Figure 2(right). We use µ * k to rank the input factors. In our experiments, we have K = 9, L = 50, d = 10. We selected the four most important factors, κ min , κ step , δ, θ, which was the same set of parameters found by the Morris method in all our benchmark categories.

Optimization of Selected Parameter Values

genoud (GENetic Optimization Using Derivatives) [START_REF] Mebane | R version of genetic optimization using derivatives[END_REF] is a black-box optimization method for solving nonlinear, nonsmooth, and even discontinuous functions. It combines a genetic algorithm with a quasi-Newton method. The quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [START_REF] Gill | Practical Optimization[END_REF] using a built-in numerical derivative. It helps to quickly find a local optimum when the current parameter configuration is "in a smooth neighborhood of the local optimum point" [START_REF] Mebane | R version of genetic optimization using derivatives[END_REF]. It may also prevent to find the global optimum if used too early or too aggressively. In practice, a number of initial warmup generations are explored before BFGS is applied on the best individual in the current population.

genoud starts with a random population including the modified WedelinGood configuration. Then, next generations are built from 8 genetic algorithm operators (used in equal proportion) dedicated to continuous parameters: Cloning, Uniform Mutation, Boundary Mutation, Non-Uniform Mutation, Polytope Crossover, Simple Crossover, Whole Non-Uniform Mutation, and Heuristic Crossover [START_REF] Mebane | R version of genetic optimization using derivatives[END_REF]. For instance, the Polytope Crossover computes a new parameter configuration that is a convex combination of as many individuals as there are parameters to tune.

In our experiments, a (hard) maximum number of 10 generations is performed with a population size of 100. BFGS is applied on the best individual at each generation after the eighth generation. We observed between 803 to 1157 evaluations of the output value y. It can be more than 10 × 100 due to BFGS evaluations and less because genoud will not evaluate the same configuration twice.

Experimental Results

Baryonyx is a free software (MIT license) in C++17 for solving Boolean and integer linear programming problems. It is provided as a command line program, as a shared library, and has an encapsulation to the R software. Following results were achieved using the version 0.4 of baryonyx built with gcc-7.2.

The baryonyx wrapper for R is called Rbaryonyx. It relies on the rcpp package to facilitate exchanges between the two libraries. Rbaryonyx can read lp files, solves the problem and returns a list of solution(s) and solving information data to easily link with other packages such as R sensitivity [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF] for the Morris method and rgenoud [START_REF] Mebane | R version of genetic optimization using derivatives[END_REF].

All computations were performed on a cluster of 32-physical-core Intel Xeon CPU E5-2683 v4 at 2.1 GHz and 4 GB of RAM per core. In order to speed up the parameter tuning process, we parallelize the evaluation of the training instances, by taking care that the actual number of executions of baryonyx multiplied by Γ is less than the available number of cores. Depending on the size of the training set, each parameter configuration evaluation took between 1 to 1.5 minute. The Morris method took between 9 to 13 hours per benchmark family. The genoud method took from 14 to 28 hours.

In the following, we compare baryonyx against IBM ILOG cplex version 12.8 and LocalSolver3 version 8.0. cplex is a state-of-the-art exact MIP solver. LocalSolver is a mathematical programming local search solver using a simulated annealing based on ejection chain moves specialized for maintaining the feasibility of Boolean constraints and an efficient incremental evaluation using a directed acyclic graph [START_REF] Benoist | Localsolver 1. x: a black-box local-search solver for 0-1 programming. 4OR[END_REF]. Every solver ran in parallel mode using 30 cores. The solving time limit is 60 seconds (except for VCS where it is 1, 800 sec.). cplex and LocalSolver use their default parameter configurations 4 . baryonyx ran with three different static parameter configurations (Supplementary Table .7) plus the one found by rgenoud (Supp. Table .8, where the corresponding generation of the best configuration found is also mentioned).

When available, we also report results from other publications [START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF][START_REF] Suniel D Curtis | Constructing driver schedules using iterative repair[END_REF][START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF][START_REF] Umetani | Exploiting variable associations to configure efficient local search algorithms in large-scale binary integer programs[END_REF], but we must treat these results with care as they do not correspond to the same computer, nor time limit, and were obtained on a sequential machine.

All the instances have been preprocessed by cplex. A direct translation of 0/1 linear programming lp file format into LocalSolver lsp format has been done.

SPP benchmark

This test set consists in 55 instances of airline crew scheduling problems expressed as set partitioning problems. These problems are obtained from the OR-library [5]5 . SPP instances were provided by four different airline corporations where a subset of these problems was initially solved in [START_REF] Hoffman | Solving airline crew scheduling problems by branch-andcut[END_REF], and further experimented by other exact [START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF] and local search methods [START_REF] Chu | A genetic algorithm for the set partitioning problem[END_REF][START_REF] Umetani | Exploiting variable associations to configure efficient local search algorithms in large-scale binary integer programs[END_REF].

These instances are easily solved by cplex within the 60-second time limit. The same optimum values were also reported in [START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF] and [START_REF] Umetani | Exploiting variable associations to configure efficient local search algorithms in large-scale binary integer programs[END_REF] (when available). LocalSolver could not find a solution on four instances, whereas all baryonyx configurations always found a solution. Using default or optimized by genoud configurations were the best options, respectively at 0.06% and 0.01% to the optimum.

Telebus benchmark

Telebus6 [START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF] is a scheduling problem to program tour vehicles for disabled persons in Berlin. The goal is to provide a one-off service with minimum costs, while respecting a set of constraints, such as vehicle capacity and mandatory breaks. The problem was modeled in two steps. The first step, "clustering", identifies all possible bus circuits that can carry several people at a time. The goal is to select a set of controls with a minimal vehicle travel distance. In the second step, "chaining", the selected commands are chained to generate bus circuits that respect all the constraints. The objective is to minimize the total distance traveled by the vehicles. These two steps represent 28 instances of set partitioning problems divided into two equal-size subfamilies (14 v/clustering, 14 t/chaining) corresponding to different periods in the year 1996. t/chaining instances are more difficult than v/clustering instances and their optimum is mostly unknown (except for t0415, t0420, t0421).

cplex solved all v/clustering and t0415 instances within the time limit, doing slightly better than the original branch-and-cut method of [START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF] and the 4-flip neighborhood local search algorithm of [START_REF] Umetani | Exploiting variable associations to configure efficient local search algorithms in large-scale binary integer programs[END_REF]. baryonyx and LocalSolver were a few percent below.

baryonyx rgn performed extremely well on t/chaining instances, obtaining the best results among all tested methods except on three instances where cplex and 4-flip local search found better solutions. In particular, for two open instances (t1717/t1722), it improved MIPLIB 2017 best reported solutions (from 184271/114245 to 165881/167523).

Looking at our training set, we observed it does not include any v-instances because the initial modified WedelinGood evaluation (see Section 3.1) failed to produce any solutions.

0.61%

1.88%

0.95%

2.72% (28)

0.44% (28) 2.95% (28) 35.82% (18) 2.90% (28) 3.01% (27)
We also compared our solver using WedelinFast and WedelinGood static configurations with the original version developed by Bastert [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF]. Our methods were able to find a solution for all the instances whereas the original approach could not for at least six instances. It demonstrates the robustness of doing multiple runs in parallel compared to a single run (using a longer 600-second time limit) as done in [START_REF] Bastert | A generalized Wedelin heuristic for integer programming[END_REF].

CSPLib022 benchmark

CSPLib0227 is a library of 12 bus driver scheduling problems reformulated as set partitioning problems. The problems come from different bus companies: Reading (r1 to r5a), Centre West Ealing area (c1, c1a, c2), the former London Transport (t1 and t2). These problems are relatively small and easy. cplex took less than 7.7 seconds to solve its most difficult instance c1a. baryonyx rgn found all the optima in less than 2.2 seconds (solving time) for the largest instance r3. LocalSolver did not find the optimum for this instance, neither found a solution for two other instances. The iterative repair local search method GENET [START_REF] Suniel D Curtis | Constructing driver schedules using iterative repair[END_REF] got the worst results.

VCS benchmark

VCS instances are randomly generated bus and driver scheduling problems. VCS1200 is a medium-size instance (1, 200 constraints, 130, 000 variables), and VCS1600 is a large problem (1, 600 constraints, 500, 000 variables) [START_REF] Zaghrouti | Integral simplex using decomposition for the set partitioning problem[END_REF].

With a 1, 800-second time limit, cplex did not find any integral solution for the largest instance whereas baryonyx with its default setting or the one found by genoud produced

0.00%

0.00%

0.00%

0.00%

1.54%

relatively good solutions (5.3% to the optimum for VCS1600). A first solution at 5.7% to the optimum for VCS1600 was found by default baryonyx in 280 seconds (solving time).

Table 5: Computational results (relative distance to best-known solutions for solved instances and in parentheses number of solved instances) on VCS instances [START_REF] Zaghrouti | Integral simplex using decomposition for the set partitioning problem[END_REF].

Instances baryonyx cplex default fast good genoud VCS (2) 9.25% (2) (0) (0) 7.32% (2)
12.68%

In order to find the optimum values, we also ran cplex without any time limit. It took 1 hour for VCS1200 and 4.3 hours for VCS1600 to be solved to optimality by cplex version 12.7.1 on a 4-core Intel CPU i7-4600U at 2.1 GHz.

Nqueens benchmark

Nqueens8 instances represent the weighted n-queen problem where the goal is to place n queens on a chessboard n × n so that none of them attack each other (exactly one queen in each row and each column, at most one queen in each ascending diagonal and each descending diagonal). There are n 2 0/1 variables x i,j . The objective function is to minimize i,j c i,j x i,j with c i,j a random value uniformly sampled from [1, n]. The largest instance among 8 has 1 million variables.

This problem combines set partitioning linear constraints (for rows and columns) and set packing linear constraints (for diagonals). It shows the ability of baryonyx to tackle efficiently a larger class of integer linear programs, with better results than cplex and LocalSolver thanks to parameter tuning by genoud.

Conclusion

baryonyx is a parallel multi-start meta-heuristic which offers good results on large crew and bus driver scheduling problems expressed as set partitioning problems in a relatively short amount of time. It can be used just after preprocessing to provide a good initial upper bound for a complete branch-and-bound solver. Depending on the usage context and time available, when off-line tuning of the parameters is allowed, we show a methodological process to select the important factors and optimize them. Even using a small training set, we could significantly improve the results. This methodology is readily available as supplementary R scripts next to baryonyx source code. Concerning the comparison with the other solvers, it is important to note that we did not try to tune their parameters and better results could be obtained as reported in [START_REF] Hutter | Automated configuration of mixed integer programming solvers[END_REF]. Concerning the set partitioning problems (all our benchmarks except nqueens), more preprocessing rules could be applied.We made some preliminary experiments with set covering problems but the results were not as good as with set partitioning or set packing problems. It remains as future work to evaluate our solver on a larger set of benchmarks.

We plan to exploit the Lagrangian multipliers to give dual bound information which could make our solver exact in some cases, a feature already available in LocalSolver using linear relaxation. Dealing with a quadratic objective function as done in [START_REF] Grohe | Cost Propagation-Numerical Propagation for Optimization Problems[END_REF] is also an important topic we would like to work on and apply to planning problems in agronomy [START_REF] Maqrot | A Mixed Integer Programming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem[END_REF]. baryonyx rgn κ min κ step δ θ SPP (VCS) [START_REF] Ágoston | Parameter control in evolutionary algorithms[END_REF] 0.00 1.88 × 10 -4 3.19 × 10 -3 2.85 × 10 -1 telebus [START_REF] Adenso | Fine-tuning of algorithms using fractional experimental designs and local search[END_REF] 1.05 × 10 -1 4.10 × 10 -4 1.13 × 10 -2 3.54 × 10 -1 CSPLib022 [0] 0.00 2.00 × 10 -4 1.00 × 10 -2 6.00 × 10 -1 nqueens [START_REF] Adenso | Fine-tuning of algorithms using fractional experimental designs and local search[END_REF] 3.37 × 10 -2 7.45 × 10 -3 9.04 × 10 -3 7.89 × 10 -1 Umetani [START_REF] Umetani | Exploiting variable associations to configure efficient local search algorithms in large-scale binary integer programs[END_REF] baryonyx Table .12: Computational results (objective value) on VCS instances (using SPP parameter configuration for baryonyx rgn). "-": no solution found.

Figure 1 :

 1 Figure1: The best-cycle algorithm is designed to both improve diversification and to look for a better solution when a solution is found. Each box represents a run of the complete Wedelin algorithm. The solver stops when time limit is reached.

e

 and worst u init e solution objective values returned by Algorithm 1 for each instance e. If no solution is found we remove this instance from the training set. During the training phase, the normalized quality of a parameter configuration is obtained from the mean over N valid training instances of the relative distance gap to the best initial solutions:

Figure 2 :

 2 Figure 2: (Left) Example of L = 6 traces in the Morris design for K = 2 parameters discretized into d = 8 levels. The step value here is ∆ = 1. (Right) Sensitivity measures of the elementary effects for the CSPLib022 benchmark.

Table . 10 :

 10 Computational results (objective value) on telebus instances (in bold: training set and best solutions, "-": no solution found)

20 Table . 13 :

 2013 Computational results (objective value) on nqueens instances (in bold: training set and best solutions, "-": no solution found).

Table 1 :

 1 baryonyx numerical parameters with their typical domain ranges and descriptions.

	Parameter Range	Description
	τ	[1, +∞[CPU time limit (in seconds)
	Γ	[1, +∞[Number of parallel runs
	ρ	[10 2 , 10 5]	Number of iterations inside a run
	ω	[0, 100]	Number of warmup iterations before using κ
	κ min	[0, 0.5]	Minimum value for κ approximation
	κ step	[10 -4 , 10 -2]	Step value for κ approximation
	κ max	[0.6, 1]	Maximum value for κ approximation
	α	[0, 2]	Adaptive adjustment of κ based on the number
			of violated constraints [4]
	δ	[10 -3 , 10 -1]	Random perturbation on reduced costs
	θ	[0, 1]	Strength of history of local preferences p [4]
	p	[10 -4 , 1 -10 -4	

Table 2 :

 2 Computational results (relative distance to best-known solutions for solved instances and in parentheses number of solved instances) on SPP instances[START_REF] Beasley | Or-library: distributing test problems by electronic mail[END_REF].

							Local-		
	Instances		baryonyx		cplex	Solver	[7]	[31]
		default	fast	good	genoud				
	aa	0.23 %	0.80 %	1.19%	0.08%	0.00%	23.02%	0.00%	1.64%
	(6)	(6)	(6)	(6)	(6)	(6)	(3)	(6)	(6)
	us	0.09 %	1.48%	2.60%	0.02%	0.00%	0.00%	0.00%	0.04%
	(4)	(4)	(4)	(4)	(4)	(4)	(3)	(4)	(4)
	nw	0.00%	2.64%	3.96%	0.00%	0.00%	8.53%	0.00%	
	(43)	(43)	(43)	(43)	(43)	(43)	(43)	(43)	N/A
	kl	0.69%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	N/A
	Mean	0.06%	2.26%	3.41%	0.01%	0.00%	8.54%	0.00%	
	(55)	(55)	(55)	(55)	(55)	(55)	(51)	(55)	N/A

Table 3 :

 3 Computational results (relative distance to best-known solutions for solved instances and in parentheses number of solved instances) on telebus instances[START_REF] Borndörfer | Aspects of set packing, partitioning, and covering[END_REF].

							Local-		
	Instances		baryonyx		cplex	Solver	[7]	[31]
		default	fast	good	genoud				
	v0415-0421	0.14%	0.12%	0.11%	0.30%	0.00%	0.04%	0.00%	0.00%
	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)
	v1616-1622	0.43%	1.08%	1.45%	1.43%	0.00%	6.21%	0.01%	0.09%
	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)
	t0415-0421	0.02 %	0.01 %	0.03%	0.03%				
	(7)	(7)	(7)	(7)					

Table 4 :

 4 Computational results (relative distance to best-known solutions for solved instances and in parentheses number of solved instances) on CSPLib022 instances[START_REF] Suniel | CSPLib problem 022: Bus driver scheduling[END_REF].

	Instances		baryonyx	cplex	LocalSolver	[9]
		default	fast	good	genoud
	CSPLib022	6.87%			
	(12)				

Table 6 :

 6 Computational results (relative distance to best-known solutions for solved instances and in parentheses number of solved instances) on nqueens instances.

	Instances		baryonyx		cplex	LocalSolver
		default	fast	good genoud		
	nqueens	4.33%	8.11%	5.44%	0.61%	453.26%	36.34%
	(8)	(6)	(7)	(8)	(8)	(8)	(8)

Table . 7

 . : Static parameter configurations for baryonyx.

	Parameters	Configurations WedelinFast WedelinGood baryonyx default
	τ	60 seconds (1800 for VCS)
	Γ	30 parallel runs (only 3 for training)
	ρ		10 5 iterations	
	ω	20 warmup iterations
	κ min		0	
	κ step	10 -3	2 × 10 -4		10 -3
	κ max		0.6	
	α δ	0 0.01	(1 -θ)	1 min n j=1 |cj |,cj =0 max n j=1 |cj |
	θ	0.4	0.6		0.5
	p	0			0.5
	Violated constraint order	none		random
	Initialization policy	bastert	best-cycle

Table . 8

 . : Learnt parameter configurations for baryonyx rgn . Remaining parameters use baryonyx default configuration. After every benchmark name, we put between square brackets the generation number where this configuration has been found by rgenoud.

Table . 9

 . : Computational results (objective value) on SPP instances (in bold: training set and best solutions, "-": no solution found)

	Beasley[5]
	LocalSolver
	cplex
	baryonyx
	Rows
	Columns
	Instances

We set α = 1, p = 0.5 with the best-cycle strategy, and a randomized order of violated constraints at each iteration.

In our experiments, we used a smaller number of cores Γ =

during the training phase than during the test phase (Γ = 30) in order to save computation time.

https://www.localsolver.com

For cplex, we set EP AGAP = EP GAP = EP IN T = 0 to avoid premature stop.

http://people.brunel.ac.uk/ ~mastjjb/jeb/orlib/sppinfo.html

http://www.zib.de/opt-long_projects/TrafficLogistics/Telebus/index.en.html

http://www.csplib.org/Problems/prob022

https://forgemia.inra.fr/thomas.schiex/cost-function-library/tree/master/random/ wqueens

Acknowledgments. We are grateful to the GenoToul (Toulouse) Bioinformatic platform for providing us computational support for this work.