N

N

Learning parameters of the Wedelin heuristic with
application to crew and bus driver scheduling
Sara Maqrot, Simon De Givry, Marc Tchamitchian, Gauthier Quesnel

» To cite this version:

Sara Maqrot, Simon De Givry, Marc Tchamitchian, Gauthier Quesnel. Learning parameters of the
Wedelin heuristic with application to crew and bus driver scheduling. 2021. hal-03170397

HAL Id: hal-03170397
https://hal.inrae.fr /hal-03170397

Preprint submitted on 16 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inrae.fr/hal-03170397
https://hal.archives-ouvertes.fr

Learning parameters of the Wedelin heuristic with application
to crew and bus driver scheduling™

Sara Magqrot?®, Simon de Givry®, Marc Tchamitchian®, Gauthier Quesnel®*

SUR 875 MIAT, Université de Toulouse, INRAE, Castanet-Tolosan, France
YUR 767 Ecodéveloppement, INRAE, Avignon, France

Abstract

Heuristics are important techniques designed to find quickly good feasible solutions for
hard integer programs. Most heuristics depend on a solution of the relaxed linear pro-
gram. Another approach based on Lagrangian relaxation offers a number of advantages
over linear programming, namely it is extremely fast for solving large problems. Wedelin
heuristic is such a Lagrangian based heuristic, initially developed to solve airline crew
scheduling problems. The performance of this method depends crucially on the choice
of its numerous parameters. To adjust them and learn which ones have important influ-
ence on whether a solution is found and its quality, we propose to conduct a sensitivity
analysis followed by an automatic tuning of the most influential parameters.

We have implemented a C++ open-source solver called baryonyx which is a parallel
version of a (generalized) Wedelin heuristic. We used the Morris method to find useful
continuous parameters. Once found, we fixed other parameters and let a genetic op-
timization algorithm using derivatives adjust the useful ones in order to get the best
solutions for a given time limit and training instance set. Our experimental results done
mostly on crew and bus driver scheduling benchmarks tackled as set partitioning prob-
lems show the significant improvements obtained by tuning the parameters and the good
performances of our approach compared to state-of-the-art exact and inexact integer
programming solvers.

Keywords: integer programming, heuristics, Lagrangian relaxation, sensitivity
analysis, parameter tuning, crew and bus driver scheduling, set partitioning problem
2010 MSC: 90C10, 90C59

1. Introduction

Heuristics are important techniques designed to find quickly good feasible solutions
for hard integer programs. Most heuristics depend on a solution of the relaxed linear
program. Another approach based on Lagrangian relaxation offers a number of important

*QOpen-source solver baryonyx available at https://github.com/quesnel/baryonyx.
*Corresponding author
Email address: gauthier.quesnel@inrae.fr (Gauthier Quesnel)

Preprint submitted to Elsevier June 12, 2019

https://github.com/quesnel/baryonyx

advantages over linear programming [13], namely it is extremely fast for solving large
problems.

Wedelin heuristic [32] is such a Lagrangian based heuristic. Wedelin [33] described the
basic principle of the algorithm and its application in the Carmen system for scheduling
crew rotations for airlines. Alefragis et al. [2] presented a scalable parallelization of
the original algorithm used in the Carmen system. Grohe and Wedelin [I5] and [34]
introduced a similar algorithm for the max-sum problem. Ernst et al. [12] described a
variation of the Wedelin algorithm and applied it to the staff planning problem. Bastert
et al. [4] presented many extensions and generalizations of Wedelin algorithm with various
improvements. They evaluated the performance of their variant on a set of instances
from different sources, where the results were favorable compared to FICO Xpress, a
commercial optimization software. Starting from [4], we propose an extension performing
multiple runs in parallel.

A major difficulty in the use of optimization methods is the parameter setting. It is
important for each problem to find a set of parameter values that leads to optimal per-
formances. Choosing the best values manually requires a lot of experimentation. There
are several methods for automatic configuration of parameter values [10,[16]. Eiben et al.
[10] classify methods into two categories according to the manner of use, before running
the optimization algorithm (parameters tuning) and during its execution (parameter
control).

The control methods include self-adjust the parameter values for the resolution and
dynamically control these values to improve the solution search. These techniques
are widely applied to self-adjust the parameters of evolutionary algorithms [I6], such
as crossover rate [35], mutation rate [28] and population size [I1] for genetic algo-
rithms. These methods can be subdivided into two branches: deterministic and (self-
Jadaptive [I8]. Deterministic methods are based on deterministic rules, which do not
change during the execution of the algorithm. Their goal is to calculate approximate val-
ues of parameters and adjust them according to the problem [3]. Adaptive methods use
information on the current state of the search to change parameter values. Adaptation is
effected by changing the objective function, by increasing or decreasing the penalty coef-
ficients for violations of constraints, from one generation to another. This prevents poor
settings to conduct future generations [I7]. These control methods are developed in an
automated framework for setting the parameters of a specific problem (one instance). If
the goal is to solve different instances, these methods can be costly in terms of computing
time, given the number of parameters and instances.

The principle of parameter tuning methods is simpler. Parameters do not change
values during search. They are adjusted before the execution of the algorithm, and
remain unchanged after. The settings obtained by learning on a subset of instances is
used to solve all instances of a problem. Different parameter tuning strategies exist in the
literature and depend on the type of parameters: discrete, continuous or categorical. Two
famous examples are CALIBRA [I] and ParamILS [20] parameter tuning methods for
the discrete case. They explore the parameter configuration search space using (iterated)
local search. CALIBRA limits the number of parameter configuration evaluations using
partial statistical designs. ParamILS saves computation time by doing partial evaluations
of the training set.

A sensitivity analysis can facilitate parameter tuning by focusing on important pa-
rameters for a problem. The goal is to reduce the time and effort in resolving sensitive

2

parameters. In the literature, the work on the use of both techniques (sensitivity analysis
to reduce the parameter search space and automatically adjusting their values) is not
much discussed.

Kim et al. [23] perform a sensitivity analysis on the dynamic parameters of sea ice
model, using automatic differentiation. Information on the gradient provided by the
latter are used in a parameter optimization algorithm based on quasi-Newton method[37].
Teodoro et al. [30] combine sensitivity analysis and automatic parameter tuning for an
image segmentation problem. This approach permits to identify the least influential
parameters and reduce the parameter configuration search space (100 points instead of
trillion points).

In these previous works, parameter tuning is performed for a single instance. In this
paper we propose a protocol to generate a universal set of parameter values from a subset
of instances of a given problem to be solved by our multi-run Wedelin algorithm. The
basic idea is to i) select a subset of instances, ii) investigate the sensitivity of parameters
for fixing the values of the non-sensitive parameters to their default values, iii) automat-
ically adjust the values of the significant parameters by black-box optimization, and iv)
apply the learned parameter setting on all instances of the problem.

In Section [2| we describe the Wedelin heuristic and our multi-run extension for par-
allelism. In Section [3] we present our protocol for parameter tuning. In Section [4] we
give experimental results and conclude.

2. A Parallel Version of Wedelin Heuristic

We are interested in minimizing 0/1 linear programs of the following form:

min cr
s.t. Ax =b
z € {0,1}"

where ¢ € R” is a vector of n costs, b € N a column vector of constant terms, and
A € {0,1}™*™ a coeflicient matrix for the constraints. In the following, constraint index ¢
refers to the ith row in equation Ax = b, and index j to the jth column in A associated to
variable ;. Let J = {1,...,n} be the set of column indices, and J(i) = {j : a;; =1} C J
the subset of column indices occurring in constraint ¢. Similarly, let I = {1,...,m} be
the set of row indices, and I(j) = {¢ : a;; = 1} C I the subset of constraint indices
involving x;.

In this paper we adopt an approximate method, called Wedelin algorithm or In-
the-middle algorithm. This method is designed for solving linear problems on Boolean
variables [32] and uses the Lagrangian relaxation.

2.1. The Lagrangian relazation
The Lagrangian relaxation consists in moving into the objective function all the con-
straints. These constraints are built into the objective function as linear combinations
where the coefficients are Lagrangian multipliers. They penalize the objective function
if one of the integrated constraint is violated. This relaxation has the advantage over
linear relaxation to directly provide integer solutions and to tackle large size problems.
3

2.2. The Wedelin Heuristic

In this paper, we are particularly interested in a specific heuristic based on the La-
grangian relaxation known as Wedelin heuristic. This method solves linear programming
problems with Boolean variables with a specific mathematical form such as the set par-
titioning problem. This heuristic tries to directly solve the linear problem:

min cx — 7w(Az — b) (1)
s.c. xe{0,1}"

Where 7 = {7y, 72, ..., T} € R™ represent the Lagrangian multipliers or dual vari-
ables. The resolution is trivial when m; elements in 7 are fixed to 7:

b+ min (¢ —7A)x (2)
s.c. xe€{0,1}"

The solution &; is constructed with the reduced cost sign with (¢; — 7a;) and a; the
associated column in the coefficient matrix A.

1 if (Cj — ﬁaj) < 0,
:ffj = 0/1 if (Cj - fraj) = 0, (3)
0 if (Cj — ﬁaj) > 0.

If the reduced cost ¢ = (¢ — #A) is non-zero, the solution is unique. However, if one
or a few elements of ¢ are zero, it will be difficult to find a feasible solution for the not
relaxed problem. The goal of this algorithm is to find a 7« where all elements are non-zero
and where the single solution of the relaxed problem is realizable for the primal problem.

We note that the change of the value of a single component 7; modifies the values
(and signs) of the reduced costs ¢, and therefore affects the & solution.

The main idea of the Wedelin algorithm (see Algorithm [1]) is to consider iteratively a
single constraint ¢, updating the element 7; such that the & vector satisfies the ¢ constraint
of the primal problem. There is always a selection range of 7;. The algorithm chooses
the value of 7; in the middle of this interval. This corresponds to the dual search for
descent by coordinates.

Algorithm [1] represents the core of the solver. It takes as input a definition of the
problem: the matrix A and the vectors b and c. It expects an output vector of Boolean,
#, a solution of the problem. The algorithm starts at line [I] with the construction of
an initial & vector which permits to build the list of violated constraints R. It uses
the Bastert et al. [4] proposal to penalize variables with positive costs. The main loop
begins at line [2 and run until the loop limit p and/or the k. is reached. For each
violated constraints (line [3]), it (i) decreases the preferences p, (ii) produces the reduced
cost vector r and sort it according to the reduced costs, (iii) updates the Lagrangian
multipliers at lined] (iv) affects the & vector and the preference matrix p. Finally, at line
[l we update the list of violating constraints and exit with the solution found or adjust
the xk adjustment and the iteration I.

=

w N

Input : A€ {0,1}™*" be N" ceR"
Output: & € {0,1}" with A% = b and ¢Z small or message no solution

for j € {1,...,n} do // Build an initial variable assignment

ifcj§0then§cj<—1
else £; - 0
end
Let teR™, 7+ 0,p e R™*™ p+ 0,1+ 1, K Emin,

R+ {i: 2?21 a;j&; #b;} // List of violated constraints
while | < p and k < Kpayr do
for i € R do // Update every violated constraint
for j € J(’L) = {j Qi #* 0} do Dij 0 x Dij // History exp. decay
for j € J(i) do // Build reduced costs
| TG = Dier() % — Dier() Pis
end
To[1] < Te] < o < Tu[lJ@G)] // Sort variables by increasing red. costs
T — T+ %(Tw[bﬁ_l] + Tw[bi]) // Update Lagrangian multipliers
if | <w then A+ 0 // Do not perturb reduced costs during warmup
else A + ﬁ(?ﬁp[bi+1] — Ttp[bi]) +90
for je{l,...,b;} do // Update variables and preferences positively
| Diglj) < Piglj) + A5 Ty ¢ 1
end
for je{b;+1,...,]J(i)|} do // or negatively
| Digls) < Piglj) — A5 Lypj) < 0
end
end
R+ {i: Z?:l ai;&; # b} // Update the list of violated constraints
if R =(then return % // If empty, exit with solution found
K<+ K+ Kstep(‘,mﬂ)a // Adaptive adjustment of step size
l—1+1 // Next iteration
end

return no solution found
Algorithm 1: Wedelin algorithm with local preferences and adaptive step size.

2.3. The Parallel Solver Baryonyx

In this paper, we introduce a new integer and Boolean linear programming solver
called baryonyx. This solver is largely based on the algorithms provided in Bastert et al.
[4]. We have introduced several modifications to the proposed algorithms to (i) allow the
reuse of previous solutions found, (ii) diversify the search, and also (iii) exploit todays
symmetric multiprocessor CPUs.

Baryonyx accepts two modes: solver and optimizer. In the solver mode, it runs once
trying to satisfy all the constraints (the exact implementation of Algorithm . In the
optimizer mode, it runs in parallel according to the number of processors, and tries to
satisfy all the constraints and to optimize the solution at each run, reporting the best
solution found for all runs when it reaches its time limit.

The Wedelin heuristic depends only on the § parameter (line |5|in Algorithm [1]) to
diversify the search. To improve diversification, we develop several random processes (see
the technical documentation of baryonyx). The most important process of diversification
is the initialization mechanism of . Indeed, Z is used to determine violated constraints
before any computation. Default, a deterministic initialization is proposed by Bastert
et al. [4] where Z; equals 1 if ¢; < 0 otherwise 0. We propose to extend this part by
combining a random process and several different algorithms. We use the Bernoulli’s law
and its parameter p € [0, 1] to provide random Boolean.

random Each z; are initialized with the Bernoulli law.

bastert For each &;, either the variable is initialized by the cost variable ¢; (See section
in Algorithm (1)) or by a random Boolean.

best For each Z;, either the variable is initialized by the best solution found previously
Z; or by random Boolean.

Since Wedelin’s algorithm runs several times in baryonyx, we changed the initialization
of & for each iteration. The default baryonyx choice is the best-cycle policy. It starts with
the bastert policy. If is fails to find a solution, it restarts with the random policy, else it
uses the best solution found as initial solution and it tries to improve this solution with
the best policy three times. If it fails it switches to the first step of the algorithm (bastert
policy) otherwise it keeps the best policy. Figure [1] shows the diagram of the best-cycle
policy.

To further increase the diversification, we exploit the symmetric multiprocessor CPUs.
Each core shares matrices A, vectors b and c¢. The vector Z is local for each process. Each
core have its own pseudo-random number generator initialized with different random seed.

3. Learning Continuous Parameter Values

In this section, we present our protocol for tuning continuous parameters of Wedelin
heuristic automatically.

Algorithm [I| has eleven numerical parameters as described in Table Parameters
7,1, p,w are integers whereas the others are continuous. We assume a fixed time limit 7
and a fixed number of cores I', and treat the other integer parameters as continuous values

6

no
—_— random

solution

solution
found

start

no

=)

best o

—

solution
found

best

solution
found

Figure 1: The best-cycle algorithm is designed to both improve diversification and to look for a better
solution when a solution is found. Each box represents a run of the complete Wedelin algorithm. The
solver stops when time limit is reached.

Table 1: baryonyx numerical parameters with their typical domain ranges and descriptions.

Parameter Range Description

T [1,4+o00] CPU time limit (in seconds)

r [1, 4+00] Number of parallel runs

p [102,109] Number of iterations inside a run

w [0, 100] Number of warmup iterations before using x

Komin [0,0.5] Minimum value for x approximation

Kstep [107%,1072] Step value for x approximation

Emaz [0.6,1] Maximum value for s approximation

! [0,2] Adaptive adjustment of k based on the number
of violated constraints [4]

4] [1073,1071] Random perturbation on reduced costs

0 [0,1] Strength of history of local preferences p [4]

D [10%,1 —107%] Bernoulli distribution with success probability p

using a rounding function. So, we have nine continuous parameters to tune. The Wedelin
heuristic is viewed as a complex function with K = 9 input parameters (z1,...,2x) or
factors and a single output value y(z1,...,2x) which corresponds to the quality of the
parameter configuration over a set of training instances. For each benchmark category,
we select an evenly distributed subset (20%) of instances to be part of the training set.

3.1. Quality of a parameter configuration

The quality of a parameter configuration (z1, ...,z k) is computed as follow. First, we
execute our parallel baryonyx solver on every training instance using a modified Wedelin-
Good conﬁguratiorﬂ Each execution uses I coreﬂ in parallel during 27 time limit. We
collect the best [and worst u** solution objective values returned by Algorithm
for each instance e. If no solution is found we remove this instance from the training
set. During the training phase, the normalized quality of a parameter configuration is
obtained from the mean over N valid training instances of the relative distance gap to
the best initial solutions:

1 N le _ linit
y(ml, axK) N ez:;]_Ouzenzt _ lé’nlt

If no solution is found for a particular instance and parameter configuration then we
assume [, = 10u"". By multiplying " by 10, we assume not finding a solution is at
least ten times worse than finding a good solution close to the best initial solution. When
y > 1, we have found a better configuration than the modified WedelinGood configuration.

3.2. Selection of important parameters by sensitivity analysis

We used the Morris method [26], 27] to determine which inputs have important effects
on the output. The goal is to discover which parameters are important and cannot be ig-
nored. These parameters will be fine tuned later on (see Section . For that a factorial
sampling plan is built from individually randomized one-factor-at-a-time designs. The
Morris method randomly selects L initial configurations within a regular K-dimensional
d-level grid. Each parameter is discretized into d levels including its bounds (given in
Table . Starting from each initial configuration, a configuration trace is constructed
by changing the value of one parameter at a time until all the parameters have been
modified. The step value is usually chosen as A = (d — 1)/2. See an example in Fig-
ure left). Each trace corresponds to K +1 configuration evaluations, resulting in a total
of L x (K +1) evaluations.The Morris method performs a limited amount of configuration
evaluations which is a linear function of the number of parameters K.

The Morris method provides qualitative sensitivity measures allowing to rank the
input factors in order of importance, but not to quantify by how much one given factor
is more important than another [27]. In Figure right) we show estimated means (uf =

IWe set oo = 1, p = 0.5 with the best-cycle strategy, and a randomized order of violated constraints
at each iteration.

2In our experiments, we used a smaller number of cores IV = 3 during the training phase than during
the test phase (I' = 30) in order to save computation time.

8

T
1K,
(Kstep)

00 02 04 06 08 10 Wi,

71 S - 5 e

Figure 2: (Left) Example of L = 6 traces in the Morris design for K = 2 parameters discretized into
d = 8 levels. The step value here is A = 1. (Right) Sensitivity measures of the elementary effects for
the CSPLib022 benchmark.

ZzL:1 |6yL|/L) and standard deviations (o} = \/Zle(éyé — i)/ L, p = Zle Syt /L)
of the distribution of (absolute values of) elementary effects dyt found by the Morris
method for some benchmark category with:

oy, e, e A g, TK) — (T, Ty, TE)

When pj is large but not oy, parameter x; has an important overall influence on the
output. If both measures are large, it corresponds to a non-linear effect on the output or
an input involved in interaction with other factors [27]. This is the case for parameter
Kstep in Figure right). We use pf to rank the input factors.

In our experiments, we have K = 9, L = 50,d = 10. We selected the four most
important factors, Kmin, Kstep, 0,8, which was the same set of parameters found by the
Morris method in all our benchmark categories.

3.3. Optimization of Selected Parameter Values

genoud (GENetic Optimization Using Derivatives) [25] is a black-box optimization
method for solving nonlinear, nonsmooth, and even discontinuous functions. It com-
bines a genetic algorithm with a quasi-Newton method. The quasi-Newton method is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [I4] using a built-in numerical
derivative. It helps to quickly find a local optimum when the current parameter con-
figuration is “in a smooth neighborhood of the local optimum point” [25]. It may also
prevent to find the global optimum if used too early or too aggressively. In practice, a
number of initial warmup generations are explored before BFGS is applied on the best
individual in the current population.

genoud starts with a random population including the modified WedelinGood configu-
ration. Then, next generations are built from 8 genetic algorithm operators (used in equal
proportion) dedicated to continuous parameters: Cloning, Uniform Mutation, Boundary
Mutation, Non-Uniform Mutation, Polytope Crossover, Simple Crossover, Whole Non-
Uniform Mutation, and Heuristic Crossover [25]. For instance, the Polytope Crossover

9

computes a new parameter configuration that is a convex combination of as many indi-
viduals as there are parameters to tune.

In our experiments, a (hard) maximum number of 10 generations is performed with
a population size of 100. BFGS is applied on the best individual at each generation after
the eighth generation. We observed between 803 to 1157 evaluations of the output value
y. It can be more than 10 x 100 due to BFGS evaluations and less because genoud will
not evaluate the same configuration twice.

4. Experimental Results

Baryonyx is a free software (MIT license) in C++17 for solving Boolean and integer
linear programming problems. It is provided as a command line program, as a shared
library, and has an encapsulation to the R software. Following results were achieved
using the version 0.4 of baryonyx built with gcc-7.2.

The baryonyx wrapper for R is called Rbaryonyx. It relies on the rcpp package to
facilitate exchanges between the two libraries. Rbaryonyx can read Ip files, solves the
problem and returns a list of solution(s) and solving information data to easily link with
other packages such as R sensitivity [22] for the Morris method and rgenoud [25].

All computations were performed on a cluster of 32-physical-core Intel Xeon CPU
E5-2683 v4 at 2.1 GHz and 4 GB of RAM per core. In order to speed up the parameter
tuning process, we parallelize the evaluation of the training instances, by taking care that
the actual number of executions of baryonyx multiplied by I is less than the available
number of cores. Depending on the size of the training set, each parameter configuration
evaluation took between 1 to 1.5 minute. The Morris method took between 9 to 13 hours
per benchmark family. The genoud method took from 14 to 28 hours.

In the following, we compare baryonyx against IBM ILOG cplex version 12.8 and
LocalSolver] version 8.0. cplex is a state-of-the-art exact MIP solver. LocalSolver is
a mathematical programming local search solver using a simulated annealing based on
ejection chain moves specialized for maintaining the feasibility of Boolean constraints and
an efficient incremental evaluation using a directed acyclic graph [6]. Every solver ran in
parallel mode using 30 cores. The solving time limit is 60 seconds (except for VCS where it
is 1,800 sec.). cplex and LocalSolver use their default parameter conﬁgurationﬂ baryonyx
ran with three different static parameter configurations (Supplementary Table E[) plus
the one found by rgenoud (Supp. Table where the corresponding generation of the
best configuration found is also mentioned).

When available, we also report results from other publications [7, @, 4 [31], but we
must treat these results with care as they do not correspond to the same computer, nor
time limit, and were obtained on a sequential machine.

All the instances have been preprocessed by cplex. A direct translation of 0/1 linear
programming Ip file format into LocalSolver Isp format has been done.

Shttps://www.localsolver.com
4For cplex, we set EPAGAP = EPGAP = EPINT = 0 to avoid premature stop.

10

https://www.localsolver.com

4.1. SPP benchmark

This test set consists in 55 instances of airline crew scheduling problems expressed as
set partitioning problems. These problems are obtained from the OR-library [5]|ﬂ SPP
instances were provided by four different airline corporations where a subset of these
problems was initially solved in [19], and further experimented by other exact [7] and
local search methods [8], 31].

These instances are easily solved by cplex within the 60-second time limit. The same
optimum values were also reported in [7] and [31] (when available). LocalSolver could
not find a solution on four instances, whereas all baryonyx configurations always found
a solution. Using default or optimized by genoud configurations were the best options,
respectively at 0.06% and 0.01% to the optimum.

Table 2: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on SPP instances [5].

Local-
Instances BARYONYX CPLEX Solver | [31]
DEFAULT FAST GOOD GENOUD

aa 0.23 % 080 % 1.19% 0.08% 0.00% 23.02% 0.00% 1.64%
(6) (6) (6) (6) (6) (6) (3) (6) (6)
us 0.09 % 1.48% 2.60% 0.02% 0.00% 0.00% 0.00% 0.04%
(4) (4) (4) (4) (4) (4) 3) (4) (4)
nw 0.00% 2.64% 3.96% 0.00% 0.00% 8.53% 0.00%

(43) (43) (43) (43) (43) (43) (43) (43) N/A
kl 0.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(2) (2) (2) (2) (2) (2) (2) (2) N/A
Mean 0.06% 2.26% 3.41% 0.01% 0.00% 8.54% 0.00%

(55) (55) (55) (55) (55) (55) (51) (55) N/A

4.2. Telebus benchmark

Telebu:ﬁ [is a scheduling problem to program tour vehicles for disabled persons in
Berlin. The goal is to provide a one-off service with minimum costs, while respecting
a set of constraints, such as vehicle capacity and mandatory breaks. The problem was
modeled in two steps. The first step, “clustering”, identifies all possible bus circuits that
can carry several people at a time. The goal is to select a set of controls with a minimal
vehicle travel distance. In the second step, “chaining”, the selected commands are chained
to generate bus circuits that respect all the constraints. The objective is to minimize
the total distance traveled by the vehicles. These two steps represent 28 instances of
set partitioning problems divided into two equal-size subfamilies (14 v/clustering, 14
t/chaining) corresponding to different periods in the year 1996. t/chaining instances are
more difficult than v/clustering instances and their optimum is mostly unknown (except
for 0415, t0420, t0421).

cplex solved all v/clustering and t0415 instances within the time limit, doing slightly
better than the original branch-and-cut method of [7] and the 4-flip neighborhood local
search algorithm of [31]. baryonyx and LocalSolver were a few percent below.

Shttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/sppinfo.html
Shttp://www.zib.de/opt-long_projects/TrafficLogistics/Telebus/index.en.html

11

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/sppinfo.html
http://www.zib.de/opt-long_projects/TrafficLogistics/Telebus/index.en.html

baryonyx"9™ performed extremely well on t/chaining instances, obtaining the best
results among all tested methods except on three instances where cplex and 4-flip local
search found better solutions. In particular, for two open instances (t1717/t1722), it
improved MIPLIB 2017 best reported solutions (from 184271/114245 to 165881/167523).

Looking at our training set, we observed it does not include any v-instances because
the initial modified WedelinGood evaluation (see Section failed to produce any solu-
tions.

Table 3: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on telebus instances [7].

Local-
Instances BARYONYX CPLEX Solver @ [31]
DEFAULT FAST GOOD GENOUD

v0415-0421 0.14% 0.12% 0.11% 0.30% 0.00% 0.04% 0.00% 0.00%
(7) (7) (7) (7) (7) (7) (7) (7) (7)
v1616-1622 0.43% 1.08% 1.45% 143% 0.00% 6.21% 0.01% 0.09%
(7) (7) (7) (7) (7) (7) (7) (7) (7)
t0415-0421 0.02% 0.01 % 0.03% 0.03% 0.61% 1.88% 0.95%
(7) (7) (7) (7) (7) (7) (0) (7) (6)
t1716-1722 16.05% 30.37% 9.29% 0.00% 11.19% 150.25% 9.70% 10.71%
(7) (7) (7) (7) (7) (7) 4) (7) (7)
Mean I16% 7.89% 2.72% 0.44% 2.95% 35.82% 2.90% 3.01%
(28) (28) (28) (28) (28) (28) (18) (28) (27)

We also compared our solver using WedelinFast and WedelinGood static configurations
with the original version developed by Bastert [4]. Our methods were able to find a
solution for all the instances whereas the original approach could not for at least six
instances. It demonstrates the robustness of doing multiple runs in parallel compared to
a single run (using a longer 600-second time limit) as done in [4].

4.8. CSPLib022 benchmark

CSPLibO22E| is a library of 12 bus driver scheduling problems reformulated as set
partitioning problems. The problems come from different bus companies: Reading (rl
to rba), Centre West Ealing area (cl, cla, ¢2), the former London Transport (t1 and
t2). These problems are relatively small and easy. cplex took less than 7.7 seconds to
solve its most difficult instance cla. baryonyx™" found all the optima in less than 2.2
seconds (solving time) for the largest instance r3. LocalSolver did not find the optimum
for this instance, neither found a solution for two other instances. The iterative repair
local search method GENET [9] got the worst results.

4.4. VCS benchmark

VCS instances are randomly generated bus and driver scheduling problems. VCS1200
is a medium-size instance (1,200 constraints, 130,000 variables), and VCS1600 is a large
problem (1,600 constraints, 500,000 variables) [36].

With a 1, 800-second time limit, cplex did not find any integral solution for the largest
instance whereas baryonyx with its default setting or the one found by genoud produced

"http://www.csplib.org/Problems/prob022
12

http://www.csplib.org/Problems/prob022

Table 4: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on CSPLib022 instances [29].

Instances baryonyx cplex LocalSolver)
DEFAULT FAST GOOD GENOUD
CSPLib022 6.87% 0.00% 0.00% 0.00% 0.00% 1.54% 26.24%
(12) (12) (12) (12) (12) (12) (10) 8

relatively good solutions (5.3% to the optimum for VCS1600). A first solution at 5.7% to
the optimum for VCS1600 was found by default baryonyx in 280 seconds (solving time).

Table 5: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on VCS instances [36].

Instances baryonyx CPLEX
DEFAULT FAST GOOD GENOUD
VCS 9.25% 7.32% 12.68%
(2) (2) © (0 (2) (1)

In order to find the optimum values, we also ran cplex without any time limit. It
took 1 hour for VCS1200 and 4.3 hours for VCS1600 to be solved to optimality by cplex
version 12.7.1 on a 4-core Intel CPU i7-4600U at 2.1 GHz.

4.5. Nqueens benchmark

Nqueenfﬂ instances represent the weighted n-queen problem where the goal is to
place n queens on a chessboard n x n so that none of them attack each other (exactly
one queen in each row and each column, at most one queen in each ascending diagonal
and each descending diagonal). There are n? 0/1 variables x;,;. The objective function
is to minimize Zi’j ¢i jxi; with ¢; ; a random value uniformly sampled from [1,n]. The
largest instance among 8 has 1 million variables.

This problem combines set partitioning linear constraints (for rows and columns) and
set packing linear constraints (for diagonals). It shows the ability of baryonyx to tackle
efficiently a larger class of integer linear programs, with better results than cplex and
LocalSolver thanks to parameter tuning by genoud.

Table 6: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on nqueens instances.

Instances baryonyx CPLEX LOCALSOLVER
DEFAULT FAST GOOD GENOUD
nqueens 4.33% 8.11% 5.44% 0.61% 453.26% 36.31%
(8) (6) (7) (8) (8) (8) (8)

8https://forgemia.inra.fr/thomas.schiex/cost-function-library/tree/master/random/
wqueens

13

https://forgemia.inra.fr/thomas.schiex/cost-function-library/tree/master/random/wqueens
https://forgemia.inra.fr/thomas.schiex/cost-function-library/tree/master/random/wqueens

5. Conclusion

baryonyx is a parallel multi-start meta-heuristic which offers good results on large
crew and bus driver scheduling problems expressed as set partitioning problems in a
relatively short amount of time. It can be used just after preprocessing to provide a
good initial upper bound for a complete branch-and-bound solver. Depending on the
usage context and time available, when off-line tuning of the parameters is allowed, we
show a methodological process to select the important factors and optimize them. Even
using a small training set, we could significantly improve the results. This methodology
is readily available as supplementary R scripts next to baryonyx source code. Concerning
the comparison with the other solvers, it is important to note that we did not try to tune
their parameters and better results could be obtained as reported in [21]. Concerning the
set partitioning problems (all our benchmarks except nqueens), more preprocessing rules
could be applied. We made some preliminary experiments with set covering problems but
the results were not as good as with set partitioning or set packing problems. It remains
as future work to evaluate our solver on a larger set of benchmarks.

We plan to exploit the Lagrangian multipliers to give dual bound information which
could make our solver exact in some cases, a feature already available in LocalSolver
using linear relaxation. Dealing with a quadratic objective function as done in [I5] is
also an important topic we would like to work on and apply to planning problems in
agronomy [24].

Acknowledgments. We are grateful to the GenoToul (Toulouse) Bioinformatic plat-
form for providing us computational support for this work.

References

[1] Belarmino Adenso-Diaz and Manuel Laguna. Fine-tuning of algorithms using fractional experimen-
tal designs and local search. Operations research, 54(1):99-114, 2006.

[2] Panayiotis Alefragis, Peter Sanders, Tuomo Takkula, and Dag Wedelin. Parallel integer optimization
for crew scheduling. Annals of Operations Research, 99(1-4):141-166, 2000.

[3] Laura Barbulescu, Jean-Paul Watson, and L. Darrell Whitley. Dynamic representations and es-
caping local optima: Improving genetic algorithms and local search. AAAI/IAAI 2000:879-884,
2000.

[4] Olivier Bastert, Benjamin Hummel, and Sven de Vries. A generalized Wedelin heuristic for integer
programming. INFORMS Journal on Computing, 22(1):93-107, 2010.

[5] J. E. Beasley. Or-library: distributing test problems by electronic mail. The Journal of the Opera-
tional Research Society, 41:1069-1072, 1990.

[6] Thierry Benoist, Bertrand Estellon, Frédéric Gardi, Romain Megel, and Karim Nouioua. Localsolver
1. x: a black-box local-search solver for 0-1 programming. JOR: A Quarterly Journal of Operations
Research, 9(3):299-316, 2011.

[7] Ralf Borndorfer. Aspects of set packing, partitioning, and covering. PhD thesis, Berlin, Techn.
Univ., 1998.

[8] P. C. Chu and J. E. Beasley. A genetic algorithm for the set partitioning problem. Imperial College,
London, 1995.

[9] Suniel D Curtis, Barbara M Smith, and Anthony Wren. Constructing driver schedules using iter-
ative repair, 2000. Presented at The Practical Application of Constraint Technologies and Logic
Programming Conference (PACLP’2000).

[10] Agoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary
algorithms. IEEFE Transactions on evolutionary computation, 3(2):124-141, 1999.

[11] Agoston Endre Eiben, Elena Marchiori, and V. A. Valko. Evolutionary algorithms with on-the-fly
population size adjustment. In International Conference on Parallel Problem Solving from Nature,
pages 41-50. Springer, 2004.

14

(12]
(13]
[14]
(15]
[16]

(17]

(18]

(19]
20]

(21]

(22]
(23]

[24]

25]
[26]
(27]
(28]
[29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]

(37]

Andreas Ernst, Houyuan Jiang, and Mohan Krishnamoorthy. A new Lagrangian heuristic for the
task allocation problem. In Industrial Mathematics, pages 137-158. Oxford, 2006.

Marshall L. Fisher. The Lagrangian relaxation method for solving integer programming problems.
Management science, 50(12supp.):1861-1871, 2004.

PE Gill, W Murray, and MH Wright. Practical Optimization. Academic Press, San Diego, 1981.
Birgit Grohe and Dag Wedelin. Cost Propagation-Numerical Propagation for Optimization Prob-
lems. In International Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming, pages 97-111. Springer, 2008.

Youssef Hamadi. Autonomous search. In Combinatorial Search: From Algorithms to Systems,
pages 99-122. Springer, 2013.

Georges R. Harik and Fernando G. Lobo. A parameter-less genetic algorithm. In Proceedings of
the 1st Annual Conference on Genetic and Evolutionary Computation- Volume 1, pages 258-265.
Morgan Kaufmann Publishers Inc., 1999.

Robert Hinterding, Zbigniew Michalewicz, and Agoston E. Eiben. Adaptation in evolutionary
computation: A survey. In Evolutionary Computation, 1997., IEEE International Conference on,
pages 65—69. IEEE, 1997.

Karla L. Hoffman and Manfred Padberg. Solving airline crew scheduling problems by branch-and-
cut. Management science, 39(6):657—-682, 1993.

Frank Hutter, Holger H. Hoos, and Thomas Stiitzle. Automatic algorithm configuration based on
local search. In AAAI volume 7, pages 1152-1157, Vancouver, Canada, 2007.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of mixed integer
programming solvers. In International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming, pages 186-202. Springer, 2010.
Bertrand Iooss and Paul Lemaitre. A review on global sensitivity analysis methods. In Uncertainty
Management in Sitmulation-Optimization of Complex Systems, pages 101-122. Springer, 2015.
Jong G. Kim, Elizabeth C. Hunke, and William H. Lipscomb. Sensitivity analysis and parameter
tuning scheme for global sea-ice modeling. Ocean Modelling, 14(1):61-80, 2006.

Sara Magrot, Simon de Givry, Gauthier Quesnel, and Marc Tchamitchian. A Mixed Integer Pro-
gramming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem. In Advances in
Artificial Intelligence: From Theory to Practice, Lecture Notes in Computer Science, pages 237—
250. Springer, Cham, June 2017.

Walter R. Mebane and Jasjeet Singh Sekhon. R version of genetic optimization using derivatives,
version 5.8-2.0, 2012.

Max D. Morris. Factorial sampling plans for preliminary computational experiments. Technomet-
rics, 33(2):161-174, 1991.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A Guide
to Assessing Scientific Models. John Wiley and Sons, 2004.

Jim Smith and Terence C. Fogarty. Self adaptation of mutation rates in a steady state genetic
algorithm. In Ewvolutionary Computation, 1996., Proceedings of IEEE International Conference
on, pages 318-323. IEEE, 1996.

Curtis Suniel. CSPLib problem 022: Bus driver scheduling, 1999.

George Teodoro, Tahsin M. Kurg, Luis FR Taveira, Alba CMA Melo, Yi Gao, Jun Kong, and
Joel H. Saltz. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation
pipelines. Bioinformatics, 33(7):1064-1072, 2016.

Shunji Umetani. Exploiting variable associations to configure efficient local search algorithms in
large-scale binary integer programs. FEuropean Journal of Operational Research, 263:72—-81, 2017.
Dag Wedelin. An algorithm for large scale 0/1 integer programming with application to airline crew
scheduling. Annals of operations research, 57(1):283-301, 1995.

Dag Wedelin. The design of a 0/1 integer optimizer and its application in the Carmen system.
European Journal of Operational Research, 87(3):722-730, 1995.

Dag Wedelin. Revisiting the in-the-middle algorithm and heuristic for integer programming and
the max-sum problem. preprint, 2013.

Shengxiang Yang and Bedau Abbass. Adaptive crossover in genetic algorithms using statistics
mechanism. Artificial Life, 8:182-185, 2003.

A. Zaghrouti, F. Soumis, and I. El Hallaoui. Integral simplex using decomposition for the set
partitioning problem. Operations Research, 62:435-449, 2014.

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software (TOMS), 23(4):550-560, 1997.

15

Table .7: Static parameter configurations for baryonyx.

Parameters Configurations
WedelinFast WedelinGood baryonyx default
T 60 seconds (1800 for VCS)
r 30 parallel runs (only 3 for training)
p 10° iterations
w 20 warmup iterations
Rmin 0
Kstep 1073 2x 1074 1073
Kmagz 0.6
« 0 1
5 0.01 (1—)"z e
0 0.4 0.6 0.5
p 0 0.5
Violated constraint order none random
Initialization policy bastert best-cycle

Table .8: Learnt parameter configurations for baryonyx"9". Remaining parameters use baryonyx default
configuration. After every benchmark name, we put between square brackets the generation number
where this configuration has been found by rgenoud.

baryonyx"9"
Rmin Rstep d 0
SPP (VCS) [10] 0.00 1.88x107% 319x1073 285 x 107!
telebus [1] 1.05x 1071 410x107* 1.13x 1072 3.54 x 107!
CSPLib022 [0] 0.00 2.00 x 107 1.00 x 1072 6.00 x 101
nqueens [1] 3.37x 1072 745x107% 9.04 x 1073 7.89 x 107!

16

v98LT v98LT Y98LT Y98LT TI98LT Y98LT v98LT 984T 86 (44474 vosndds

8€€g 8€€g 8€€g 8€€g 8geg PPaes jagtd 8€€g 09 L0T€T gosndds
9969 9969 9969 9969 9969 91€9 ST09 LL6G i £ev8 zosndds
9€00T 9€00T - 9€00T 8€00T TOTOT 9L10T TS00T 98 8TOTGE 1osndds
V/N 612 612 612 612 612 612 j344 69 Tve9t zoridds
V/N 980T 980T 980T 980T 980T 980T 160T Ly LG6G Toridds
V/N 7068 7068 7068 7068 Z106 T106 7068 L1 286 gpmudds
V/N 9992 9992 9992 999.L ¥R9L ¥89L 9992 [44 €68 gpmudds
V/N LOETT LOETT LOETT LOETT 99LTT LOETT LOETT L1 LL1T Tpmudds
V/N 6080T 6080T 6080T 6080T 9680T 8T80T 6080T 61 9ge opmudds
V/N 0800T 0800T 0800T 0800T 8GL0T 0800T 0800T ST 599 6emudds
V/N 8999 8999 8999 8999 T69S 889¢ 8999 1z 806 gemudds
V/N 8900T 8900T 8900T 8900T 8900T €€TOT 8900T 61 6£9 Legmudds
V/N jas:” jas:”) vIEL jas: TLT8 vT8L vIgL 0T 80%1T ggmudds
V/N 91TL 91TL 91TL 91TL 91TL 9TEL 91ZL €T €OV ggmudds
V/N 8870T 88%0T 88701 88V0T 10L0T 8870T 88%0T 0z 9€L pemudds
V/N 8199 8199 8299 8L99 ¥TLY vTL9 8199 €T (2844 ggmudds
V/N L2871 LL8VT LLSVT LL8VT 0ZIST LLSVT LLSVT ST 22T zgmudds
V/N 8€08 8€08 8€08 8€08 9018 78¥8 8€08 9z £€T81 1gmudds
V/N zv6e Zv6¢e Zv6e Zvee 62V oSty zZv6e 9z ¥881 ogmudds
V/N vLTY vLTY vLTY vLTY 999% z6EY vLTy 81 $£0T 6gmudds
V/N 8628 8628 8628 8628 8628 8628 8628 81 669 ggmudds
V/N £€66 £€66 £€66 £€66 T60TT £€66 £€66 TT L18 Lgmudds
V/N 969 969 969 9649 969 969 969 €T 91¢ ggmudds
V/N 0969 0969 0969 0969 9829 0969 0969 0z P¥8 ggmudds
V/N vIE9 vIE9 vIE9 vIE9 8999 8999 jas:1] 6T 926 pgmudds
V/N v€92T ¥ESTT v€92T €8T v€92T €921 €921 81 €LY ggmudds
V/N ¥869 ¥869 ¥869 7869 vveL PrIL 7869 €c j4 ggmudds
V/N 80%L 8072 80V L 807 L 9EVL 80V L 80%L <14 9z¥ Tgmudds
V/N ZI89T ZI89T ZI89T ZI89T 98GLT 99GLT Z189T [44 9€g ozgmudds
V/N 8680T 8680T 8680T 8680T 888TT 8881 T 8680T 45 ye1e 6rmudds
V/N 09107E 09107E 09107E 09T0VE 8€9EVE 8TSIVE z910%¢€ 80T 8€¥8 gTmudds
V/N QITTT 9VGLT QITTT QITTT €80€T 869€T STITTT 44 €LTI8L LTmudds
V/N 069T8TT 069T8TT 069T8TT 06GTISTT 069TSTT 8E9T8TT 069T8TT SeT LP68ET 9Tmudds
V/N €VLLY €VLLY €VLLY EVLLY 9VLLY 9V LLY €VLLY 6T 1847 grmudds
V/N TV8I9 8GT99 TY8TI9 08819 [4sig 4] 97029 97819 0L TLTG6 prsmudds
V/N 9% 109 9V T0S 9%10g 9% 10g FE6TS 8GT0S 9%10g 0g £060T grmudds
V/N STTIPT STIVT STIVT STIVT 06T%1 YCIVT STIPT <14 5% gimudds
V/N 992Z9TT 992911 992Z9TT 69T9TT TGOLTT 9989TT 992Z9T1T e Z8%9 T1mudds
V/N 1289 1289 1289 1289 98289 98289 12289 12 559 otmudds
V/N 09229 0929 0929 0929 zZ0v89 09229 0929 8¢ 10€T 60mudds
V/N v68g€ v689€ v68g€ 7689€ v68g€ v689€ v689€ 12 zge gomudds
V/N 9L%S 9L%S 9LYS 9LYS 0029 0029 9L%S ve so1€ Lomudds
V/N 018 018 018 018 T6€6 z698 018 8¢ 996G gomudds
V/N 8L8TET OTIZVT 8.8TET 0T6TET 9LEEET 08TEET 096ZET z9 £6520T gomudds
V/N z989T 0T9.LT z989T Z989T 7008T 9€06T Z989T g€ 6819% pomudds
V/N (41444 zov9¢e (41444 (43444 €9€.LT L1992 zZ6V¥T €9 9¢68¢ gomudds
V/N vYvSoT 986202 YPYS0T YPHS0T FE6LOT $8950T YPHS0T SPT 86748 zomudds
V/N Zg8PIT Zg98YIT Zg98YTIT Z98VIT 9£8STT Zg8VIT TI8VTIT get 69008 1omudds
0v0LzZ 0v0LzT ov0LzT ov0LzZ 0v0LzT 9L1LT 690LT £60LT 019 €965 goeedds
6€8€9 6€8€9 - 6€8€9 6€8€9 L0€VS 89€7S (414 9€g 6929 goeedds
v,€92C v,€92C 169¥Y v2L€92T S9879C 200LT 9£99¢2 8199C £ve 6€19 poeedds
67967 67967 - 67967 67967 €1208 9L86% S6967 199 9LL9 goeedds
vevoe v6v0€e v6v0€ v6v0€e v670€ v6v0¢e v670¢€ v6v0¢ z9€g GL8€ zoeedds
LE€T99 LET9G - LE€T99 8L19G 96€LS 6EVLS jefetdele 19 ¥9GL Toeedds
. xAuokie AOODHNITAAH LSV ANITAAS XAuoKkie
[[oiuwesown [glhoiseoq sonjogieson wod> uhs n N oo M e smoy summpop seouessu

(punoj uorinjos ou : -, ‘SUCIINIOS 1S9 pue 19s SuUIUTRI) :P[O] UI) sedUR)SUT JJS UO (dnfea dA1399[qo) synsal reuorpeindwo)) :6° d[qe],

@

17

Table .10: Computational results (objective value) on telebus instances (in bold: training set and best solutions, ”-”

: no solution found)

BARYONYX cplex LocalSolver Borndorfer Umetani Bastert

Instances Columns Rows baryonyx WedelinFast ~ WedelinGood ~ baryonyx” 97 i B WedelinFast s\mm::oo&
0415 3172 870 5346798 5389422 5349625 5346798 5339422 B 5590096 5572626 - 5593065
£0416 3152 974 6088264 6088264 6088264 6088264 6093843 B} 6130271 6088264) 6095736
£0417 3623 897 5952247 5955570 5952247 5952247 5955570 } 6043157 6024760 } 6034848
0418 3921 999 6442006 6442906 6442906 6447571 6442908 } 6550898 6446019) 6470351
0419 3168 204 5908538 5908538 5908538 5908538 5907874 } 5916956 5910913 5910913 5910013
£0420 1847 562 4153696 4153696 4153696 4153696 4276444 B 4276444 - - .
0421 1656 557 4290809 4290809 4290809 4290809 4340929 ; 4354411 4290809 , ;
©1716 11952 467 173161 220247 171481 146871 169429 330789 161636 165972 181488 306453
©1717 16428 551 192123 196599 178810 165881 190181 397845 184692 180757 199024 178948
©1718 16310 523 175772 206736 164318 153166 169806 B 162992 174338 197136 175517
t1719 15846 556 195103 223397 189027 167523 187717 474975 187677 184354 213104 200215
£1720 16195 538 183560 217548 176376 154881 175643 - 172752 181868 183673 188880
©1721 9043 357 135647 134842 128337 117602 123567 296830 127424 130047 154951 138819
©1722 6581 338 128574 136612 118822 113213 121025 B 122472 114508 132369 125586
V0415 4012 598 2431155 2432482 2432378 2436076 2429415 2429420 2429415 2420568 2434157 2450287
V0416 10723 812 2732616 2730395 2731091 2739534 2725602 2726930 2725602 2726156 2731356 2737662
V0417 55232 715 2619345 2613689 2615766 2624641 2611518 2617710 2611518 2611518 2614749 2623710
V0418 4411 742 2847522 2847305 2847075 2852267 2845425 2845790 2845425 2845425 2865326 2864652
v0419 7356 650 2595906 2596932 2591893 2598319 2590326 2590330 2590326 2590326 2597016 2602660
v0420 2350 417 1697940 1697803 1698449 1700336 1696889 1696890 1696889 1696889 1714155 1720504
V0421 823 286 1853951 1854920 1855285 1855170 1853951 1853950 1853951 1853951 1857033 -
V1616 52775 1230 1009279 1016815 1021077 1019797 1006460 1066280 1006460 1007402 1022969 1029986
V1617 85300 1409 1108113 1119114 1121974 1126315 1102586 1216370 1102586 1103651 1129989 ,
V1618 20805 1396 1159231 1170565 1175678 1173355 1153871 1237340 1154458 1155986 1179617 ;
V1619 85565 1424 1162669 1169928 1176576 1178951 1156338 1248790 1156338 1157537 1184010 1189709
v1620 89367 1365 1145978 1154107 1159002 1158319 1140604 1233050 1140604 1141976 1159246 .
v1621 16606 807 830329 820829 832269 830175 825563 838979 825563 825605 835860 844014
V1622 10990 736 794530 799151 801465 799438 793445 811134 793445 793708 801475 -

18

V/N 6T 6T 6T 6T 6T 0z [fa S10€ 4

P P P P P L P Ve LL T3
V/N - 62 62 62 62 oe (444 c0ce G
V/N 82 82 8T 82 8T 1€ cve VoLVT egI

1€ kt4 oz QT kt4 ST LT €02 v8vc i

0c - 9T 9T 9T 9T 9T 09T 16061 e

LT i48 4 43 I 4 4 ve T00€ Tx

91 T T T T T [€9 €LTY B'Il

ST T T T T T T €9 €09¢T T
V/N 62T 62T 62T 62T 62T €€ S0T TLLVT (4

€€ 92 92 9z 92 9z 6T 98T 628¢ o

ve o€ 92 9z 92 9z 6T 98T eveL 1D

a ﬁmLx\Eobmn AOOHNITIAT A) LSVNITIAT A\ xAuokieq smox sumnon sooueysuy
6] s13anp 13A]0G|e207] xa|d> XANOAUVE

‘(punoj uorInjos ou : -, ‘SUOIIN|OS 1S9 PuR 49s JUIUIRI) P[0 UT) SIOURISUI ZOqITJSD U0 (onfea aa1309(qo) synsa1 reuorpendwoy) 11" 9[qr],

19

Table .12: Computational results (objective value) on VCS instances (using SPP parameter configuration for baryonyx™9™).

BARYONYX (1800s) cplex (1800s) cplex (36000s)
baryonyx WEDELINFAST WEDELINGOOD baryonyx” 9™

VCS1200 127014 1180 849 - - 819 844 749
VCS1600 537412 1576 1449 - - 1451 - 1378

Instances Columns Rows

7.

no solution found.

20

ZEST6T OPIPSE 29921 £1002 - - 7665 000000T su2enbOOOT
6087C 69896 voss 9989 €78 - ¥662 000082 suoonb0g
ove 9LT 08T ¥61 06T L6T v6c 00sc susonbog
¥8¢2 ot GSeT vo1 191 S9T vec 0091 susanboy
ja 4" TO0T €0T €01 €0T 80T VLT 006 susanbog
€9 €9 €9 €9 €9 €9 PIiT oov susanbog
kt4 kt4 kt4 gz kt4 QT va 00T susanbQ1
8T 8T 8T 8T 8T 8T (44 79 susenbg
6. ¥Auokieq AOOHNITHAT A LSVNITAAE xAuokieq smoy summpon soouwysug
Janj0G|ed07] xa|d> XANOAUYH
‘(punoj uornjos ou :

-, ‘SuoIMIos 1s9q pue 19s Jurulel) :p[oq Ul) sedoueIsul susanbu uo (enfea 2a1199(qo) simsal [guoieindwoy) ¢ d[qr],

21

	Introduction
	A Parallel Version of Wedelin Heuristic
	The Lagrangian relaxation
	The Wedelin Heuristic
	The Parallel Solver Baryonyx

	Learning Continuous Parameter Values
	Quality of a parameter configuration
	Selection of important parameters by sensitivity analysis
	Optimization of Selected Parameter Values

	Experimental Results
	SPP benchmark
	Telebus benchmark
	CSPLib022 benchmark
	VCS benchmark
	Nqueens benchmark

	Conclusion

