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Breakage of flawed particles by peridynamic simulations

Nicolas Blanc1 · Xavier Frank1 · Farhang Radjai2 · Claire Mayer-Laigle1 · Jean-Yves Delenne1

Abstract
In this paper, we use a 2D bond-based peridynamic model to investigate the strength of disk-shaped particles including
pre-cracks. We use a diametral (or Brazilian) test to break the particles. For the flawless particles, we find that the stress
distribution compares well with an analytical model accounting for the size of the contact zone, and the particle stiffness tends
linearly to a well-defined value for increasingly resolved meshing. We then introduce cracks, which are numerically defined
by reducing the Young modulus of the bonds crossing linear segments. We consider in detail the effect of a single vertical
crack on the yield stress as a function of its position. We also consider a randomly distributed population of cracks with sizes
generated from a Gaussian size distribution. For a parametric study with a hundred particles, we found a probability of failure
that is well fit by a Weibull law. Finally, using an image analysis algorithm, we investigate the statistics of cracks and the
resulting fragments.

Keywords Particle breakage · Flaws · Peridynamics · Crack patterns

1 Introduction

In chemical engineering, the powder particles can be the
result of various down-sizing or up-sizing processes such
as grinding, micronization, erosion, agglomeration, atomiza-
tion, andRESS (RapidExpansionof Supercritical Solutions).
These particles may present a wide range of bulk or interface
properties, and they are most often broadly distributed with
various shapes.

An important issue is to evaluate the strength of these
particles depending on the material and mechanical loading.
This strength plays a key role in many practical problems
such as the minimization of energy to achieve a given size
reduction or the reduction in fine particles resulting from
powder processing. In the same vein, it is well known that
the strength highly depends on the internal microstructure of
the particles. For example, the strength of compacted pow-
ders depends on the porosity [1,2] or in cohesive granular
aggregates it also depends on the amount of gluing matrix
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[3]. Although homogenization methods have been used to
account for the effect of heterogeneities [4], they usually fail
in predicting the influence of singularities such as cracks or
bare contacts on the onset and propagation of cracks.

For practical reasons, the diametral compression, which
consists in crushing a grain in compression between two
plates, is frequently used for the evaluation of the strength
of particles [5,6]. This test gives an indirect but easy-to-
handle measurement of the tensile strength. Both disk (or
cylindrical)- [7] and sphere-shaped [8] particles were tested
but also non-spherical grains [9]. This test has been success-
fully employed in many practical issues in civil engineering,
pharmaceutical tableting, strength of ore granules, as well
as in more fundamental studies of the influence of the
microstructure on fracture and fragmentation [10,11].

Numerical simulations based on the Discrete Element
Method (DEM) have been used for the investigation of par-
ticle crushing by modeling each grain as a cohesive agglom-
erate of smaller (primary) particles [12–15]. Although these
approaches fundamentally consider the material as a discrete
medium with potential pre-existing fragments, the evolu-
tion of cracks and complex geometries of fragments in 2D
[16–18] and 3D are reproduced with rather good accuracy
[19–22].

However, in DEM-type approaches, such as cohesive
DEM [16] or bonded-cell [17,23] methods, the crack path
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is strongly guided by the characteristic size of the DEM ele-
ments or by an underlying tessellation of the particles at the
microscale. Due to the non-local character of peridynamics
the crack propagation is less affected by the local ordering
induced by the angular distribution of the bond orientations
[24–26]. In this paper, we use such a method applied to par-
ticles that can break into fragments of arbitrary sizes and
shapes (up to the discretization limit) in the presence of
microcracks. Peridynamics has been successfully used for
modeling the fracture of materials such as concrete [27],
nickel nanowires [28], and wood [29]. It was introduced by
Silling [30] as an alternativemethod to continuummechanics
based on integro-differential equations instead of differential
equations. This framework allows one to include discontinu-
ities such as pores, cracks or stiffness, and damage gradients
without involving anyparticular case-sensitive processing for
each problem [30]. Although it can be CPU time consuming,
peridynamics exhibits a weaker dependence with respect to
the discretization grid contrary to other lattice methods that
consider only the nearest neighbors such as the Fuse Models
[24], the Lattice ElementMethod (LEM) [25], or peridynam-
ics approaches computed for h = 1δx [26].

In this paper, we use a bond-based implementation of peri-
dynamics to investigate the crack patterns of 2D disk-shaped
particles embedding flaws. The population of flaws is ran-
domly distributed with a controlled density. The particles are
loaded in compression between two horizontal plates.We are
interested in the probability distribution of yield stresses and
fragments for a large number of particles.

2 Bond-based peridynamics

In ourmodel,we consider that the domain is discretized using
material points located on a Nx × Ny grid with a spatial
resolution δx (Fig. 1). In the following, we assume Ny = Nx .
A volume Vi and a massmi = ρVi (where ρ is the density of
the material) are associated with each point i of position xxxi .
The point i interacts with its surrounding nodes j of position
xxx j within a distance called the horizon h. Hence, this horizon
contains all nodes j belonging to the set

Hi = { j, ||xxx j − xxxi || < h} (1)

The vector ξξξ i j = xxx j −xxxi is the relative position between the
two nodes defined at the initial state, and we denote by ηηηi j
their relative displacement after deformation.

In bond-based peridynamics, the 1D elements called
“bonds” connecting the material points only transmit inde-
pendent pair-wise forces. We assume in this paper a linear
relationship

fff = csnnn (2)

where s = (‖ξξξ + ηηη‖ − ‖ξξξ‖) /‖ξξξ‖ is the bond elongation,
nnn = (ξξξ + ηηη) /‖ξξξ + ηηη‖ an orientated unitary vector and c
the so-called micromodulus. For elastic materials described
in plane stress, c = 6E/(πh3(1 − ν)) [31], where E is the
Young modulus and ν is the Poisson coefficient. Note, how-
ever, that for theoretical reasons [30,32] and similar to other
lattice approaches [25,33] ν is fixed in the bond-based model
(value is 1/3 in 2D and 1/4 in 3D). A more in-deep discus-
sion on the way Poisson’s ratio is related to the connectivity
of the lattice bonds can be found in [34]. It is also possible
to overcome this limitation using enriched models [35,36].
However, as 1/3 is a reasonable value formanymaterials such
as many polymers (PPMS 0.34, polystyrene 0.35, PMMA
0.36…) [37], metals (copper 0.33, aluminum 0.32…) [38],
or geopolymers [39], in this study, we focus on the effect of
inhomogeneities which play a dominant role on the failure
mechanisms.

The material can be viewed as a mass–spring system
where material points interact through harmonic bonds. The
time evolution of such systems can be computed using the
velocity-Verlet algorithm [40] with a time step δt . To dissi-
pate the elastic waves, a damping force FFFd

i = ηẋ̇ẋx i is applied
on each node, where ẋ̇ẋx i is the velocity of the material point
i and η a viscosity coefficient. This latter should be chosen
below theminimal critical damping valueηc. In the samevein
as other dynamic models based on mass-spring systems, the
critical damping ηc is the value of the viscosity above which
the bond between two neighbors is overdamped. The value
of the damping was chosen to damp the elastic waves during
the quasi-static loading phase without influencing the crack
propagation at breakage. Note, however, that the yield stress,
investigated in details in this study, is almost not influenced
by the damping which was fixed to η = ηc/10 for all simu-
lations.

The occurrence of fracture in the material can be taken
into account by introducing a critical elongation s0 above
which the bonds fail. For plain stress [31]

s0 = √
4πG/(9Eh) (3)

where G is the macroscopic fracture energy of the material.
Due to the non-local description of peridynamics, it is usually
convenient to consider a damage parameter. Assuming that
the cell volumes do not vary significantly, this damage can
be evaluated at each node as the ratio between the number of
broken bonds and the initial number of bonds connected to
the node.

A horizon h = 3δx is used in the following, correspond-
ing to 28 connections for bulk nodes (which are at a distance
greater than 3δx from the boundaries). According to sev-
eral authors who investigated the sensitivity of macroscopic
elastic properties to the horizon size in discrete peridynam-
ics approaches [41,42], this value is a good compromise



Fig. 1 A disk particle
discretized by a rectilinear grid
of nodes (512 nodes per
diameter) with two successive
zoom-ins on the boundary of the
disk and a node with all its
bonds within a peridynamic
horizon h = 3δx

between the accuracy of the solution (in the sense of con-
tinuum mechanics prediction and real experimental values),
which increases with the size of the horizon, and the compu-
tational efficiency, which declines as the size of the horizon
increases. Thematerial parameters E andG are kept constant
for all simulations mentioned in our study.

3 Diametral compression test

The diametral compression test is frequently used for the
experimental evaluation of the strength of particles. For
different practical problems, it has been simulated using
many numerical approaches, for example, the Finite Element
Method [43], the Discrete Element Method [44,45], Con-
tact Dynamics [46], peridynamics [47,48], Material Point
Method [49], Phase Field simulations [50]…

In this study, we performed diametral compression tests
of disk-shaped particles of diameter D = 2R between two
plates. These particles are discretized on a rectilinear grid
of 512×512 nodes using a simple cutoff procedure. They
are then subjected to a diametral compression between two
plates (Fig. 2). The plates, initially separated by a distance
�0 = D, are moved inward. The macroscopic vertical strain
is defined by

ε = −� − �0

�0
(4)

where � is the distance between the two plates. The top
plateau is connected via bonds of a given stiffness kw (wall
stiffness), which is 100 times that of particle bonds, to the
nodes belonging to the periphery of the particle. The plateau
is moved downward at constant speed. With a linear elastic
behavior, a normal force kw(δ − δ0) is added to each node at
a distance δ from the wall, where δ0 is the reference length of
the bond. For each wall, the total resulting vertical force F
exerted on the particle is equal to the total force acting on the
wall, obtained by summing all the contributions of the bound-
ary nodes. For the particle–plate friction, we considered a
regularized Coulomb friction law [51] with a coefficient of
friction μ = 0.5.

x

y

0

Fig. 2 Diametral compression test on a particle between two rigid
plates. Schematic representation of the contact area

3.1 Stress–strain curve

The applied strain rate should be a compromise between the
simulation time and the propagation time of the elastic waves
in the lattice mass–spring system. In the following, it is fixed
to a value equal to 0.07% of the lattice speed to reduce the
inertial effects. Figure3 shows a typical stress-strain curve
where the average stress σ = F/D is normalized by the
theoretical stress at failure

σ Y
t = FY

πR
(5)

for a rupture force equal to FY [52]. The curve is nonlin-
ear, the change in slope being due to the rasterization of the
particle. This effect tends to vanish at increasingly higher
resolution. We see that rupture occurs for σ Y � 1.4σ Y

t .
This is because we have set here σ = F/(2R), and fail-
ure occurs for F = FY . Hence, according to Eq. (5), we
have σ Y /σ Y

t = π/2 at failure. After breakage, the plates
are stopped to avoid additional breakage of fragments. We
define the damage rate λ(ε) as the ratio of the number of
broken bonds for a deformation of 1% to the initial number
of bonds. An example of cumulative damage 100

∫
λ(ε)dε is

shown in Fig. 3 as a function of cumulative deformation. The
damage rate begins to increase rapidly at ε � 1.9% as the
stress is approaching its peak value. Then, it vanishes rapidly
with stress drop. To allow a full crack pattern development,
the simulation was allowed to run until the damage rate is
below λ = 0.002.



Fig. 3 Vertical stress (purple curve, solid line) and cumulative damage
(green curve, dashed line) as a function of cumulative vertical strain
for a particle meshed with Nx = 512. The stress is normalized by the
theoretical failure stress σ Y

t

Fig. 4 Damage zone (in light blue) showing the onset of fracture

Interestingly, as observed in Fig. 4, the onset of frac-
ture is not located at the maximum tensile stress but at
y/D = ± 0.375 corresponding to points where the Tresca
equivalent stress max(σI−σII), where σI and σII are the prin-
cipal stresses, is maximum. The slip plane is nearly at 45◦ to
the compression axis, as expected for an amorphousmaterial.
This indicates that the particle does not break in pure tension
but in shear, as it was also observed in FEM tests [53]. The
damaged zone is symmetrical, which is consistent with the
fact that no defects are present in the particle. We note also a

bifurcation of the crack path showing a dynamic propagation
after the onset of failure. Indeed, prior to fracture the stress
concentration zone is large and the elastic energy stored is
suddenly released leading to branching cracks.

3.2 Stress transmission

The stress tensor at each node i can be computed by summing
all contributions of connected bonds j using [54]

σi = 1

2Vi

∑

j∈Hi

ξξξ i j ⊗ FFFi j (6)

where FFFi j is the force exerted on node i by node j . Figure5
shows the horizontal σxx and vertical σyy components of the
stress fields. The maximum absolute values of these fields
are located on the vertical symmetry axis of the particle.
In compression, this maximum occurs in the vicinity of the
contacts with the plates and in tension at the center of the
particle.

Figure6 shows peridynamics computed values, repre-
sented by circles together with two theoretical models. The
horizontal and vertical stresses are normalized by the theo-
retical tensile stress at the center of the particle σt = 1

π
F
R as

a function of y/R (for x = 0). σyy is always in compression
(negative values) and is maximal at the contact with the plate
and minimal at the center. The horizontal stress σxx can be
either negative or positive and reaches its maximum in trac-
tion close to the center. The first theoretical model assumes
that the contact forces are applied on two points at the bottom
and top of the particle [55]. Figure 6 shows this model where

σxx = σt = 1

π

F

R
(7)

and

σyy = − 1

π

F

R

(
4

1 − (y/R)2
− 1

)
(8)

plotted as dotted lines for all points (x = 0, y) on the vertical
axis. In the center of the particle, we note a rather good agree-
mentwith peridynamicswhile the discrepancy increaseswith
distance to the center of the particle. The secondmodel, intro-
duced by Hondros [56], takes into account the extension of
the contact zone (solid lines in Fig. 6). For each contact, the
force is assumed to be uniformly distributed on an arc of size
2α on both sides of the contact. This model valid for small
values of α leads to

σxx = 1

π

F

R
(u − v)

/
α (9)



Fig. 5 Components a σxx and b σyy of the stress field for a particle
submitted to diametral compression between two plates. The color gra-
dient ranges from blue for maximal compression to red for maximal
tensile stress and the mesh resolution is Nx = 512

and

σyy = − 1

π

F

R
(u + v)

/
α (10)

where

u = 1 − (y/R)2

1 − 2(y/R)2 cos 2α + (y/R)4
sin 2α (11)

(a)

(b)

Fig. 6 Stress components σxx (red circles) (a) and σyy (blue circles) (b)
normalized by σt as a function vertical position along the vertical axis
y/R. The solid lines and dotted lines correspond to distributed-loading
model with an adjusted value of the angle α � 8◦ [see Eqs. (9), (10)]
and point loading model (Eqs. 7, 8), respectively

and

v = tan−1
(
1 + (y/R)2

1 − (y/R)2
tan α

)
(12)

.
We get a nice fit of the stress profiles σxx and σyy as

shown in Fig. 6 by adjusting the value of α. We also evalu-
ated its value directly from the simulations for a particle with
Nx = 256 by considering the nodes in contact with the top
plateau. The value that we get in this way is by 13%below the
adjusted value. This can be explained by the fact that, despite
the difference between the model and simulations in the way
the wall force is applied, in both cases we have a diametral
compression with free boundaries and strong stress concen-



tration along the central axis. For this reason, the stress fields
are similar up to a small adjustment of the model parameter
α.

3.3 Discretization effects on Young’s modulus

In the literature, the sensitivity of macroscopic behavior to
spatial discretization has been studied for various numeri-
cal methods and mesh conditions. For example, it has been
shown that the elastic modulus converges toward a theoreti-
cal value when the spatial resolution tends to zero in the case
of foam using Finite Elements Method [57], of the com-
paction of deformable particles usingMaterial Point Method
[58] or for pores and particle-embedded composites using
Lattice Elements Method [3]. For peridynamics, this issue
was addressed as a function of h and δx for homogeneous
materials [41] and for a single-notched sample [59].

Eight diametral compression tests were performed for the
same size of the particle D = 2R with resolutions ranged
from Nx = 256 to Nx = 704 nodes. In all simulations,
the horizon was h = 3 δx and the stiffness K was derived
from the stress–strain curves σ = K ε by considering the
maximum slope before failure. Figure7 shows K normalized
by the Young modulus E as a function of 1/Nx . For elastic
particles, the Hertz formula gives the relationship between
the applied force F and the elastic deflection δ at contact.
For a 2D disk in contact with a rigid plate, F = π

4 Eδ. As we
consider, a grain compressed between two plates, δ = Δ�/2
for each contact, where Δ� is the cumulated macroscopic
displacement. Thus, dividing Hertz expression by D we get
σ = K thε where K th

E = π
8 � 0.393. Interestingly, in Fig. 7,

when 1/NX tends to zero, K/E can be linearly extrapolated
to � 0.388 independently of mesh size. This value which
can be extrapolated with reasonable accuracy from a limited
number of tests is slightly lower than K th/E .

4 Fracture of particles embedding defects

In this section, we consider a particle in which 1D cracks are
introduced by modifying the elastic properties of the bonds
crossing a predefined flaw. The cracks act as inclusions with
a lower stiffness than the original material. An interesting
feature is the possibility to vary this stiffness from 0 to that
of the matrix, where 0 corresponds to a perfect crack, and
a value between 0 and the stiffness of the matrix to a par-
tially detached crack. Figure 8 shows in gray level the density
of bonds affected by this procedure. The ratio between the
Young modulus of bonds crossing the defects and that of the
matrix is set to 0.2. We keep the same value of the critical
elongation s0 for all cracks independently of their positions
although it has recently been suggested that its value may be

Fig. 7 Evolution of K/E as a function of 1/Nx

Fig. 8 Magnification of a defect in red. The material points are repre-
sented in gray levels, showing the total number of bonds per node which
cross the defect. The scale ranges from white to black

different at the edges [60]. In a similar vein, as a first-order
approximation, the micromodulus c was kept constant over
the whole domain. Corrections regarding surface effects on
both elasticity and fracture properties may be found in [61].
In our case, the cracks are essentially initiated in the bulk
where the flaws are distributed.

4.1 Breakage of particles including a single vertical
defect

The presence of a defect and its position play an important
role in the breakage of particles. Figure 9 shows an example
of stress fields σxx and σyy in a particle with a vertical defect
of length 0.1D located at its center. We observe strong stress
concentrations in compression in the vicinity of contacts and
in tension at the tips of the flaw. We also see that the stresses
spread over a large zone between the two tips.

In order to quantify the influence of the position of this
defect on the yield stress of the particle, we performed a
parametric study with more than 100 compression tests until
rupture for a resolution Nx = 256. The weakening effect of



Fig. 9 Componentsa σxx andbσyy of the stress field for a particle under
diametral compression embodying a single vertical defect at its center.
The color scale ranges from blue (compression) to red (in tension)

defects on the particle is quantified using the parameter

ζ = σ Y

σ Y
0

, (13)

where σ Y
0 is the failure stress for a material without defect

(with the samemeshing conditions). We have ζ ∈ [0, 1]with
ζ = 1 if the defect has no influence on the failure stress of
the particle.

Fig. 10 Map of the influence of the position of a vertical defect on the
yield stress of particles. The dots show the locations of the centers of the
defects. The weakening effect of the defect is represented in red levels
from black for no effect to red for maximum effect (ζ = 0.55)

Figure 10 shows a map of ζ values for various locations of
defects in the particle. Due to axial symmetry, only a quarter
of particle is considered. This map reveals two interesting
features: (1) The critical zone is neither at the center of the
particle nor on the vertical axis, and the maximal influence
of the defect is around (x/D = 0.075,y/D = 0.35); (2) For
a distance on the x-axis above x/D � 0.2, the defect has a
negligible impact on σ Y (ζ = 1). This means that the flaws
and surface irregularities occurring at such distances from
the vertical axis are not relevant to the fracture behavior of
particles, whereas the same flaws along the axis are critical
for the strength of the particle.

4.2 Rupture of particles embedding a population of
defects

In this section, we consider particles of diameter D = 1
embedding a population of defects of number density n̄ =
100π/4with random orientation and length. The coordinates
of the crack centers are randomly drawn in [−D/2, D/2]
following a multivariate uniform distribution. The length
of defects follows a well-peaked normal distribution d ∼
N (μd/D = 0.035, ςd/D = 0.005), where μd is the mean
defect size and ςd is its standard deviation. By well peaked,
we mean a small ratio ςd/μd � 0.14. Figure 11a shows
an example of these particles and Fig. 11b its horizontal
stress component σxx before failure for a particle subjected to
compression between two plates. Compared to the horizontal
stress field plotted in Fig. 5a, the population of defects gen-
erates fluctuations which may either concentrate or decrease
the magnitude of the stress in the vicinity of defects. Note



Fig. 11 Particle embedding a defect population. a Position of defects
in the particle and b horizontal stress σxx

that crack propagation strongly depends on spatial stress res-
olution around the cracks, and therefore, the thickness and
lengths of the cracks should be larger than the value of hori-
zon used in the simulations. This is the case in our simulations
and, as shown in Fig. 11b, the stress field is rather smooth
even in the vicinity of the cracks.

When rupture occurs, these fluctuations are at the origin
of an asymmetrical crack propagation (Fig. 12) whichmainly
split particles in two parts. We note also in this image that
some cracks are at the origin of secondary fractures which
do not fully propagate.

Fig. 12 Damage field after breakage (from blue for 0 damage to white
for 100%). In red, the initial position of defects is shown

Fig. 13 Survival probability of particles as a function of the applied
stress. The solid line represents Weibull fits to the data

In order to study the dispersion of the values of the yield
stress, we consider the probability for a particle to survive
to a specific loading stress. For N particles, the probabil-
ity PS(i) = 1 − i

N is assigned to the i th smallest yield
stress value. Figure 13 shows this distribution and a fit by
the Weibull law

PS = e−(
σY /σw

)m
(14)

In this expression,σw corresponds to the stress forwhich 63%
of particles are broken and m is the Weibull modulus char-
acterizing the width of the distribution. Using Least Square



Fig. 14 a Binarized thresholded image based on the damage level
(Fig. 12). Floodfill identification (colors indicates independent regions)
of the fragments (b) and of cracks (c)

Fig. 15 Two nodes at a distance equal to the horizon h and their
respective horizons. The nodes linked to the two nodes belong to the
intersection area

Fig. 16 Number of fragments as a function of damage threshold. Three
examples of the fragment maps are displayed for three different values
of damage threshold

Method, m was found to be equal to 18.5 which is in the
range of ceramics materials [62].

4.3 Statistical analysis of fragments and cracks

A “floodfill” algorithm [63,64] is used to create maps of
fragments where each fragment is labeled by a unique color
number (Fig. 14b). From a computational point of view, this
color map is a 2D table map[x][y] initialized with a
binarized image (Fig. 14a) obtained from the damage levels
(Fig. 12).



Fig. 17 Colored fragments of
all tested particles. Colors are
chosen randomly

In our simulations, we attributed the black color for all
material points with a damage below a threshold of 30% cor-
responding to fragments and white otherwise, corresponding
to crack pattern. This choice is based on the fact that the
interactions between nodes and thus the threshold for break-
age should be consistent with the length scale of mechanical
interactions, which in Peridynamics is governed by the hori-
zon h. Two nodes separated by a distance h interact through
a direct link but also through all others nodes that are linked
to the two nodes. As illustrated in Fig. 15, these mediating
nodes belong to the intersection area of the horizons of the
two nodes, and thus, they represent a fraction

Pd = 2

3
−

√
3

2π
� 0.39 (15)

of the total area of all bonds inside the horizon of a bond.
This implies that for two nodes separated at a distance h, at
least 39% of bonds should be removed in order to avoid the
transmission of information between the two nodes through
a neighboring node. In practice, we used the slightly lower
value of 30% for the analysis of the fragments. With this

choice, the sizes of the fragments are expected to be larger
than h. The crack patterns are practically similar for the
fractions of 30% and 39%. Figure 16 shows an example of
the number of fragments as a function of the threshold. We
see that, as because of an increasingly finer resolution, the
number of fragments slightly increases as the threshold is
increased from zero, but beyond 39% the number of frag-
ments declines rapidly with threshold since there are less
cracks.

In the floodfill algorithm, the connected nodes are iden-
tified as fragments. Hence, each fragment is surrounded by
cracks, and two different fragments have no common node.
The method consists in flooding the connected black regions
with a new color “color” according to the following rou-
tine:

floodfill(x,y,color)
if map[x][y] == BLACK do

map[x][y] = color
floodfill(x+1,y,color)
floodfill(x-1,y,color)
floodfill(x,y+1,color)
floodfill(x,y-1,color)



(a)

(b)

Fig. 18 a Cumulative distribution function of fragment sizes. b Cumu-
lative distribution function of crack sizes in red and of the cracks at the
origin of fragments in blue. (Color figure online)

end if
end floodfill

In this procedure, all (x, y) are called with a new color id
color. Note that the order the pixels are called does not
change the result. The same procedure is used to identify the
cracks (Fig. 14c). Figure 17 shows the fragment identifica-
tion performed on 100 flawed particles the same statistical
distribution of the pre-cracks.

The cumulative distribution function (CDF) of the vol-
umes V of the fragments, normalized by the initial volume
of the particle V0, is plotted in Fig. 18a. We see two differ-
ent populations of fragments: a broad distribution of smallest
pieces, representing nearly 7% of the initial particle volume
and a narrowly distributed zone centered on 40%. This dis-
tribution includes fragments of all sizes and a few very large
fragments.

Figure18b (blue curve) displays the CDF of crack vol-
umes. We distinguish two types of cracks: (a) cracks that are
located inside a fragment and (b) cracks that are at the inter-
face between fragments. The latter are the cracks that created
the fragments by their propagation.We see that the fragments
are mostly related to the main crack splitting the particle into
two parts. In most cases, the smallest fragments are located
in this central zone as observed in Fig. 17. The cracks of the
first kind can be found also near the central crack, but also
far from it. They represent the cracks that did not propagate
long enough to create fragments. They are often quite small
with an average volume of 0.03% of the particle volume. We
clearly see the difference between the cumulative volumes
of the two kinds of cracks in Fig. 18b.

These results show that, despite the presence of defects,
a particle breaks mainly due to the propagation of a crack
along the central axis, as expected from a classical analysis.
However, we also see that defects and disorder lead to dif-
fuse crack patterns that can create many more fragments of
different sizes.

5 Conclusions

In this paper, we used a 2D bond-based peridynamicsmethod
to investigate the breakage of particles containing defects. In
the case of particles without defects, we showed that, even
if the rectilinear meshing of the particle may lead to a poor
description of the curvature at the contact scale, the horizon-
tal and vertical stress fields are well predicted. Furthermore,
for an increasingly resolved meshing, the particle stiffness
converges linearly to a well-defined value close to the the-
oretical value obtained using Hertz equation for the contact
between a disk and a plate in plan strain. A model of defect
was introduced, based on a weakening of the elastic modulus
of elements crossing a 1D linear notch. More than 100 com-
pression tests were performed to investigate the influence of
the location of a vertical defect in the upper right quadrant of
a disk-particle. Interestingly, we show that the lowest yield
stress does not occur for a position of the defect at the center
of the particle.

We also characterized the evolution of yield stress for
100 particles with the same statistical population of defects
and different random draws. We found that the yield stress
follows a Weibull distribution whose exponent m � 18 is
consistent with that of ceramic’s materials. A floodfill proce-
dure was then employed to determine the volumes occupied
by fragment and cracks and aggregated data allowedus to plot
the corresponding probability distributions for the whole set
of particles.

In future work, we would like to analyze more deeply the
link between the parameters controlling the population of
defects at local scale and the global probability of survivals



of particles. A key feature of the peridynamics method is its
ability to simulate highly dynamical problems as breakage
under impact. Another perspective is the effect of the defor-
mation rate on the fragmentation of particles.
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