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Abstract: The regulation of skeletal muscle mass and organelle homeostasis is dependent on the
capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the
mechanisms involved in skeletal muscle mass regulation—especially those associated with pro-
teosynthesis and with the production of new organelles—are presented. Thus, the critical roles of
mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are
reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonu-
clear accretion, and some major epigenetic modifications related to protein synthesis are discussed.
Furthermore, several studies conducted on the topic of exercise training have recognized the central
role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the
capacity of cells to build efficient organelles. The molecular mechanisms underlying these adapta-
tions to exercise training are presented throughout this review and practical recommendations for
exercise prescription are provided. A better understanding of the aforementioned cellular pathways
is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle
function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature
and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional
investigations on this topic.

Keywords: mTOR; eIF3f; protein turnover; ribosome biogenesis; resistance training; endurance
training; hypoxia; satellite cells; DNA methylation; epigenetic modifications

1. Introduction

Skeletal muscles are essential for the maintenance of body’s integrity and health.
Failure in muscle homeostasis leads to physiological integrity impairment, which con-
tributes to chronic pathologies such as cachexia, metabolic and respiratory diseases, chronic
inflammation, liver cirrhosis, and sarcopenia [1–6]. Muscle deficiency involves detrimen-
tal changes including deteriorations of cell metabolism and loss of muscle volume and
strength, resulting in poor physical performance and quality of life [7–10]. Alteration of
skeletal muscle mass and strength is in part attributable to dysregulation of the balance
between synthesis and breakdown of proteins and other cellular components, such as
organelles [11–14]. Several signal transduction pathways promote muscle atrophy and
hypertrophy. Atrophy is the result of increased degradation of cellular proteins and some-
times decreased protein synthesis flux. This state of muscle weakness can be observed in
the terminal phase of diseases, such as AIDS, cancer, renal insufficiency, nerve degeneration
or metabolic diseases (e.g., diabetes), and even during muscle trauma, immobilization,
and aging. Conversely, skeletal muscle hypertrophy is related to enhanced protein syn-
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thesis leading to enlargement of pre-existing fibers without variation of myofiber number
(i.e., hyperplasia) in humans [11–14].

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was iden-
tified as a major regulator of skeletal muscle hypertrophy in response to an increased
workload, such as resistance exercise [15–22]. In past decades, mTORC1 was found to regu-
late a myriad of fundamental muscle physiological processes, including autophagy [23–28],
cell growth and survival [29–31], satellite cells activation associated with muscle regen-
eration [32–34], and ribosome biogenesis [35,36]. Moreover, the mTOR pathway appears
important for survival of telomerase-deficient mice displaying short telomeres in the liver,
heart, and skeletal muscle [37]. Emerging evidence also suggests that mTORC1 plays a
dual role in the development of cancer cachexia [38]. On one hand, reduction of anabolic
mTORC1 signaling contributes to loss of muscle mass during cachexia. On the other hand,
its inhibition upregulates the autophagy pathway and prevents the production of pro-
cachectic factors, protecting from tumor cachexia [38]. Recently, the role of the eukaryotic
initiation factor 3f (eIF3f) in mTORC1 activity was highlighted in skeletal muscle [39,40], as
well as other regulators, such as diacylglycerol (DAG) and DAG kinases (DGKs) during
mechanical stimulation [16,41–47].

Importantly, the involvement of satellite cells in skeletal muscle mass regulation
has been recently questioned but new data highlighted their importance in myonuclear
accretion and muscle remodeling during exercise training [48–50]. Finally, recent data
underlined the importance of an epigenetic regulation (e.g., DNA and histone modifications,
expression of specific microRNAs) of skeletal muscle mass, especially during resistance
exercise [51,52]. Physical exercise is a common strategy to improve muscle function by
enhancing cell size and metabolism [14,53]. Through its remarkable effects on various
organs, exercise training has a direct impact on the whole organism by improving global
homeostasis (e.g., glucose homeostasis) with a major impact on morbidity [54–56]. Chronic
exercise affects muscle mass and metabolism through the modulation of fiber composition
and size, the improvement of organelle functioning and cell components recycling [14].
Among the multiple mechanisms involved in adaptations to training, increase of muscle
mass and strength is associated with enhancement of myofiber cross-sectional area, as well
as myofibrillar adjustments, such as transition of myosin heavy chains (MHC) to MHC2A
and MHC2X. An improved myosin ATPase activity has also been reported in rats after
resistance training [14,28,57]. Importantly, muscle cells translational capacity is critical for
muscle mass maintenance and is strongly dependent on ribosome biogenesis [58–62].

This investigation details the mechanisms underlying proteins and organelles biosyn-
thesis in skeletal muscle, especially the mTORC1 pathway, the involvement of eIF3f,
ribosome biogenesis, satellite cells, myonuclear accretion, and some major epigenetic mod-
ifications. The importance of newly identified regulators of these pathways is discussed,
as well as the impact of exercise training and further perspectives to encourage other
investigations on this topic. Indeed, numerous studies have recognized the importance
of exercise training to improve cell capacity to build proteins and efficient organelles. A
deepened knowledge of these mechanisms is critical to provide efficient exercise strategies
and to preserve muscle health.

2. mTORC1 Signaling, Its Regulators, and Ribosome Biogenesis

The mammalian/mechanistic target of rapamycin (mTOR) is a 289 kDa serine/threonine
kinase [63]. mTOR forms two different multiprotein complexes: mTORC1 and mTORC2 [64].
mTORC1 is sensitive to rapamycin and consists of mTOR, regulatory associated protein of
mTOR (RAPTOR) [65,66], mTOR-associated protein LST8 homolog (mLST8/GβL) [67], DEP
domain containing mTOR-interacting protein (DEPTOR) [68], and proline rich Akt substrate
of 40 kDa (PRAS40) [69,70]. mTORC1 was found early in the century to be involved in the
regulation of skeletal muscle size and to oppose atrophy [71,72]. On the other side, mTORC2,
which is not sensitive to short-duration rapamycin treatment, is composed of mTOR,
rapamycin-insensitive companion of mTOR (RICTOR) [73,74], mLST8/GβL [74], DEP-
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TOR [68], and mammalian stress-activated protein kinase interacting protein 1 (mSIN1) [75].
Of note, chronic rapamycin treatment inhibits mTORC2 signaling pathway and promotes
insulin resistance via the inhibition of this pathway [76,77]. mTORC2 has been identified
as a critical regulator of muscle glucose uptake in response to insulin stimulation and
exercise [78]. Importantly, several contractile proteins, actin cytoskeleton regulators, ion-
channels, and transcriptional regulators, were suggested as potential substrates of mTORC2
during exercise [78]. mTORC2 is predominantly located at the sarcolemma without modifi-
cation of this localization in response to feeding and exercise [79].

mTORC1 pathway has been extensively studied in the past few years in skeletal
muscle, and particularly during muscle development and growth. In rodent, genetic
ablation of mTORC1 components, especially RAPTOR, or pharmacological inhibition of
mTORC1, decreases mRNA translation, results in serious muscle dystrophy and prevents
overload-induced hypertrophy [71,80–84]. Inhibition of mTORC1 in developing muscle
causes perinatal death and negatively affects proliferation and fusion of muscle progenitors
during regeneration [85]. Nevertheless, a recent study also highlighted that mTORC1
signaling was not essential for the maintenance of adult muscle size and function five
months after complete inhibition of this pathway in sedentary rodents [86]. The authors
also found that the expression of critical components of the translation machinery and
translation rates were decreased despite stable muscle size and function [86]. Other studies
previously showed that effective inhibition of mTORC1 with short-term (one or two weeks)
and long-term (four to six months) daily treatments or diet based ingestion of rapamycin
does not affect fiber size nor muscle mass [16,87–92]. These data suggest that mTORC1
does not play an exclusive role in the maintenance of basal adult skeletal muscle mass but
remains important for embryonic and adult myogenesis.

However, mTORC1 plays a critical role in skeletal muscle hypertrophy induced by
mechanical stimuli. The study from Baar et Esser in 1999 was the first to suggest a role
of mTORC1 pathway in hypertrophy during high-resistance lengthening (or eccentric)
contractions [93]. The authors showed for the first time that eccentric actions induced
the phosphorylation of the mTOR target p70S6K (70 kDa ribosomal S6 kinase) six hours
after exercise, which correlated with the changes of muscle mass observed after six weeks
of training [93]. Conversely, submaximal eccentric and maximal concentric contractions
do not necessarily impact S6K1 phosphorylation [94]. Then, several studies recognized
the role of mTORC1 in exercise-mediated protein turnover and hypertrophy [14]. In
addition to these roles, mTORC1 has been recently shown as an essential regulator of the
autophagy pathway by inhibiting autophagosome formation through Unc-51-like kinase
(ULK1) phosphorylation [23,25–27,95]. Interestingly, under mTOR inhibition or amino
acid withdrawal, ULK1 phosphorylates Beclin-1 enhancing the activity of the ATG14L-
containing Vps34 (vacuolar protein sorting 34) complexe for full autophagy induction [96].
Importantly, sustained activation of mTORC1 in tuberous sclerosis complex 1 (TSC1)-
deficient mice blocks autophagy and promotes a late onset myopathy, opening new insides
on autophagy-related muscle diseases [97].

mTORC1 activity is regulated by the phosphoinositide 3-kinase (PI3K)/Akt (or “pro-
tein kinase B”, PKB) axis in response to nutrients and growth factors [98–100] (Figure 1).
Insulin-like growth factor 1 (IGF-1) receptor is phosphorylated under mitogenic stimuli
and recruits the insulin receptor substrate 1 (IRS1), leading to the activation of the phospho-
inositide 3-kinase (PI3K). PI3K phosphorylates phosphatidylinositol diphosphate (PIP2)
and, thus, generates phosphatidylinositol triphosphate (PIP3), which in turn activates
several effectors, including the kinase phosphoinositide-dependent kinase-1 (PDK1). PDK1
phosphorylates and activates Akt, which promotes the inactivation of tuberous sclerosis
complex 1/2 (TSC1/2) and the subsequent activation of mTOR through the Ras homolog
enriched in brain (RHEB) GTPase [101–111]. Of note, mTORC2 phosphorylates Akt on
Ser-473 facilitating Thr-308 phosphorylation by PDK1 [112]. However, muscles expressing
a dominant-negative IGF-I receptor show hypertrophy associated with S6K1 phosphory-
lation in response to mechanical load, suggesting that IGF-1 receptor is not essential for
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muscle growth [113]. Recently, it was also found that IGF-1/Akt1 regulation is dispensable
for activation of mTORC1 signaling and satellite cells following mechanical overload [114].
Furthermore, it was found that mechanical overload induces mTORC1 activation at the
early phase thanks to the mitogen-activated protein kinase (MEK)/extracellular signal-
regulated kinase (MEK/ERK) pathway through phosphorylation of TSC2 instead of the
PI3K/Akt signaling [115]. ERK1/2 pathway is also involved in muscle growth through the
regulation of nuclear transcriptional factors (i.e., Elk-1, c-Myc, c-Jun and c-Fos) [116].

Insulin, IGF-I axis 

Cytosol 

Ribosome biogenesis 

mRNA translation 
Autophagy 

Lipid synthesis 

Figure 1. mTORC1 regulates skeletal muscle protein synthesis. Upon IGF-1 (insulin-like growth factor 1) axis activation, IRS1
(insulin receptor substrate 1) activates the lipid kinase PI3K (phosphoinositide 3-kinase). PI3K phosphorylates the membrane-
bound phospholipid PIP2 (phosphatidylinositol diphosphate) and generates PIP3 (phosphatidylinositol triphosphate),
which recruits Akt/PKB (protein kinase B) and PDK1 (phosphoinositide-dependent kinase-1). PDK1 phosphorylates and
activates Akt, which then phosphorylates and inactivates TSC1/TSC2 (tuberous sclerosis complex 1/2), a RHEB (Ras
homolog enriched in brain) inhibitor. RHEB then activates mTOR (mechanistic/mammalian target of rapamycin). In
response to mechanical stimuli, mTOR is also activated by branched-chain amino acids, Vps34 (vacuolar protein sorting 34),
DGKη (diacylglycerol kinase eta) and by PA (phosphatidic acid). PA is synthesized by PLD (phospholipase D) and DGKζ

(diacylglycerol kinase zeta) and targets mTOR on its FRB (FKBP-rapamycin-binding) domain to induce its activation. Amino
acids promote the recruitment of mTOR to the lysosomal surface, where mTOR is activated by RHEB. ERK1/2 (extracellular
signal-regulated kinase 1/2) inhibits TSC1/TSC2 and promotes the transcription of genes involved in muscle growth
through Elk1 (ETS-like protein-1), c-Fos, c-Jun and c-Myc. mTOR in association with RICTOR (rapamycin-insensitive
companion of mTOR) forms mTORC2 (mechanistic/mammalian target of rapamycin complex 2) and fully activates Akt.
mTORC1 (mechanistic/mammalian target of rapamycin complex 1) plays critical roles in mRNA translation, ribosome
biogenesis, autophagy inhibition, and perhaps in lipid synthesis in muscle cells.

Recently, mechanical stimuli were found to activate phospholipase D (PLD) and the
lipid second messenger phosphatidic acid (PA) [41]. PA competes with the mTORC1
inhibitor FKBP38 (FK506 binding protein 38), promoting mTOR binding to FKBP12-
rapamycin binding (FRB) domain leading to mTORC1 activation [44]. However, none of
the IGF-1 and ERK1/2 pathways nor PLD activity modulation appear to be required for
mTORC1 activation and skeletal muscle hypertrophy [42,82,114,117]. Nonetheless, recent
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studies showed that diacylglycerol (DAG) and DAG kinases (DGKs) play an important
role in PA accumulation during mechanical stress, especially the zeta isoform of DGK
(DGKζ) [45]. In this model, DGKζ stimulates PA biosynthesis through DAG phosphoryla-
tion and mTOR activation. PA also binds to the FKBP12-rapamycin binding (FRB) domain
of mTOR, promoting the activation of its kinase domain. Moreover, DGKζ represses FOXO3
(forkhead box O3) activity promoting a subsequent inhibition of muscle atrophy F-box
(MAFbx)/atrogin-1 and muscle ring-finger protein-1 (MuRF1) expressions [46]. Consistent
with these data, DGKζ KO (knock-out) muscles show higher levels of MAFbx/atrogin-1
and MuRF1 after exercise [46]. Finally, it was found that DGKζ is predominantly increased
among DGK isoforms during mechanical overload and that DGKζ is essential for muscle
growth [46]. Of note, a recent study highlighted that the eta isozyme of DGK (DGKη)
promotes myoblast proliferation through the mTORC1/fatty acid synthase (FASN) path-
way [47]. The authors also suggest that mTOR and DGKη are mutually regulated since
mTOR knockdown reduces DGKη but also FASN expressions [47].

Muscle growth and hypertrophy are not only reliant on the availability of amino-acids
and mRNAs, but are also dependent of the translational activity of ribosomes [118]. Ribo-
somes regulate cellular protein content by assembling amino acids in a sequence indicated
by the mRNA to create polypeptide chains. Ribosome biogenesis starts with ribosomal
RNA (rRNA) transcription by RNA polymerase I (Pol I) as a 47S pre-rRNA. This long
transcript is then cleaved into 28S, 18S, 5.8S and assembled with ribonuclear proteins [119].
Pol I acts like a primary regulator of ribogenesis, forming a pre-initiation complex (PIC)
thanks to the transcription initiation factor IA (TIF-1A), the transcription initiation factor IB
(TIF-1B), and the upstream binding factor (UBF) [120–122]. Of note, transcriptional activity
of TIF-1A and UBF mainly depends on cyclins, cyclin-dependent kinases (CDKs), ERK,
adenosine monophosphate-activated protein kinase (AMPK), mTORC1, and S6K1 related
signaling pathways [120,123–127].

Importantly, mTORC1 signaling pathway regulates ribosome biogenesis at several
levels (Figure 2). mTORC1 activates TIF-1A for pre-ribosomal RNA synthesis through Pol
I [124]. Moreover, mTOR phosphorylates the human phosphoprotein MAF1 inhibiting
RNA polymerase III (Pol III) repression function and leading to subsequent transfer RNA
(tRNA) synthesis [128,129]. mTOR also interacts with the RNA binding protein La-related
protein 1 (LARP1) involved with terminal oligopyrimidine (TOP) mRNA translation and
subsequently regulates the production of ribosomal proteins, as well as initiation and
elongation factors [130–132]. Finally, mTORC1 regulates the ubiquitous transcription factor
c-Myc during chronic resistance training [117]. c-Myc oncoprotein is implicated in the
transcription of numerous genes and in the coordination of protein synthesis by upregulat-
ing the expression and processing of rRNA and riboproteins components. Transcriptional
control of genes required for the initiation of mRNA translation and nuclear export of
ribosomal subunits are also modulated by c-Myc [133]. c-Myc is considered as an essential
driver of ribosome biogenesis as it regulates the transcription of UBF, TIF-1A, TIF-1B, Pol
I, Pol II, and Pol III [133–138]. Muscle loading, contractile activity, as well as nutrients
availability, hormones, and other growth stimuli may impact ribosome biogenesis through
the regulation of the aforementioned pathways [124,139,140].

During hypertrophy, protein synthesis rate increases, muscle protein pool grows but
cell translational capacity (ribosomal density) and efficiency (rate of mRNA translation)
could be limiting steps. An increase of total RNA and rRNA content was associated with
exercise-induced hypertrophy [58,141–143]. In accordance with these observations, the
precursor 45S and mature rRNA 18S, 28S and 5.8S transcripts levels were elevated during
a resistance training protocol in humans [142]. rRNA content and ribosomal biogenesis
are determinant for hypertrophy in human skeletal muscle after a resistance training
regimen, and blunted ribosomal production in vitro impedes myotubes hypertrophy [58].
The increase in total RNA and rRNA content seems to be correlated with the muscle
growth response [58], suggesting that ribosome biogenesis is a key factor for generating
higher hypertrophy in “super-responder” subjects. In mice, early increases in rRNA and
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45S-pre-rRNA content, as well as expression of c-Myc and its downstream Pol I regulon,
were found following functional hypertrophy [144]. Interestingly, chromatin remodeling at
the ribosomal DNA (rDNA) promoter was also observed in the same study [144], showing
that both transcriptional and epigenetic mechanisms are involved in ribosome biogenesis
at the onset of muscle hypertrophy. Finally, West and coworkers recently found that
both rapamycin-dependent and rapamycin-independent pathways (e.g., myostatin) are
involved in ribosome biogenesis in response to resistance training [145].

Figure 2. mTORC1 stimulates ribosome biogenesis. mTOR (mechanistic/mammalian target of rapamycin) modulates
the activity of TIF-1A(transcription initiation factor IA) involved in pre-ribosomal RNA synthesis and of the ubiquitous
transcription factor c-Myc that controls genes products involved in the transcription and processing of rRNA, in the
protein components synthesis, and in the nuclear export of ribosomal subunits. mTOR phosphorylates MAF1 leading to
inhibition of RNA Pol III (RNA polymerase III) repression function, allowing transfer RNA (tRNA) synthesis. mTORC1
(mechanistic/mammalian target of rapamycin complex 1) interacts with the RNA binding protein LARP1 (La-related protein
1), involved in TOP (terminal oligopyrimidine) mRNAs translation, and subsequently regulates the production of ribosomal
proteins and initiation and elongation factors. S6K1 (S6 kinase 1), a master substrate of mTORC1, stimulates RNA Pol I
(RNA polymerase I) through activation of UBF (upstream binding factor).

In summary, mTORC1 signaling pathway is essential for embryonic and adult myo-
genesis, but not for adult skeletal muscle mass maintenance under normal conditions.
mTORC1 stimulates ribosome biogenesis at numerous levels and is critical for hypertrophy
in response to mechanical stimuli, even if research on mTORC1-independent mechanisms
is still limited. Importantly, among DGK isoforms, DGKζ is now considered as a key
regulator of protein biosynthesis during overload. In addition to its role on mTORC1 regu-
lation, DGKζ also prevents protein breakdown by inhibiting FOXO3 pathway. Additional
studies are needed to better understand the precise role of DGKζ on catabolic systems
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(i.e., proteasomal and autophagy activities) and studies in humans could be desirable from
a translational perspective.

3. eIF3f and mTORC1 in Skeletal Muscle Function

The initiation of eukaryotic mRNA translation needs the cooperation of 12 eukaryotic
initiation factors called “eIFs” forming numerous complexes. These complexes promote
mRNA attachment to the ribosomal 40S subunit, mRNA scanning, start codon selection,
and accommodation of initiator tRNA at the P site of the 40S subunit [146]. The mRNA
eukaryotic translation initiation factor complex eIF3 is a large complex of about 800 kDa
composed of 13 subunits that is essential for protein synthesis [147,148]. eIF3 has a role at
different steps of mRNA translation, including (i) the assembly of the ternary complex eIF2-
GTP-Met-tRNAi and its recruitment to the 40S ribosomal subunit to form the preinitiation
complex 43S PIC and (ii) the mRNA recruitment to the 43S PIC and scanning for AUG codon
recognition [146,149,150]. In mammals, an important regulator of mTORC1 activity and
muscle hypertrophy is one of these subunits, the initiation factor eIF3f [40,151] (Figure 3).

eIF3f is a member of the Mov34 family with a conserved Mpr1/Pad1/N-terminal
(MPN) domain. eIF3f possesses a TOS (TOR signaling) motif (FETML, amino acids 323–327)
allowing eIF3f to serve as a scaffold protein to connect mTORC1 with its translational
target S6K1 [151,152]. Thus, upon mitogen/growth factor/amino acid stimulation, mTOR
phosphorylates its downstream effectors to initiate mRNA translation to proteins [153].
When activated, S6K1 releases from eIF3f and phosphorylates several substrates involved
in translation, such as the ribosomal protein S6, the eukaryotic elongation factor 2 (eEF2)
kinase (eEF2k), and the eukaryotic translation initiation factor 4B (eIF4B) [151,154,155].
Of note, PDK1 catalyzes S6K1 activity through phosphorylation on residue Thr-229 for
full activation [156]. In addition to its role in mRNA translation, S6K1 was also shown to
regulate the transcriptional program of ribosome biogenesis [157]. S6K1-dependent regula-
tion of this transcriptional program includes the control of nucleolar protein 56 (Nop56),
nucleolar protein 14 (Nop14), GAR1 ribonucleoprotein (“GAR” for glycine/arginine-rich),
rRNA processing 9 (Rrp9), rRNA processing 15 (Rrp15), rRNA processing 12 (Rrp12), and
periodic tryptophan protein 2 (Pwp2) nucleolar proteins [157]. S6K1 also controls Pol I
through the phosphorylation of UBF enhancing rRNA synthesis (Figure 2) [158]. Further-
more, mTOR-mediated phosphorylation of 4E-BP1 (eukaryotic translation initiation factor
4E-binding protein 1) promotes its dissociation from the eukaryotic translation initiation
factor 4E (eIF4E) favoring the assembly of the PIC and the recruitment of the eukaryotic
translation initiation factor 4G (eIF4G) at the 5’ end of mRNAs [159]. Thus, eIF3f acts as a
scaffold protein to support the initiation of cap-dependent translation in mammals.

However, eIF3f possesses an ambivalent function according to the cell type. In-
deed, eIF3f negatively regulates cell growth by inhibiting both cap-dependent and cap-
independent translation and by increasing rRNA degradation in cancer cells [160,161].
In this model, rRNA degradation is carried out by direct interaction between eIF3f and
heterogeneous nuclear ribonucleoprotein (hnRNP) K, a RNA-binding protein required for
maintaining rRNA stability [161]. eIF3f interaction with hnRNP promotes hnRNP disso-
ciation from rRNA leading to rRNA degradation [161]. eIF3f also reduces tumor growth
by interacting with the secretory heterodimeric glycoprotein clusterin and interrupting
its anti-apoptotic property [162]. Interestingly, eIF3f interacts with the N-terminal region
of the spike protein of severe acute respiratory syndrome coronavirus (SARS-CoV) and
avian coronavirus infectious bronchitis virus (IBV) [163], opening windows for possible
research on treatment of coronavirus-diseases (COVIDs). As cardiac abnormality and
musculoskeletal dysfunction have been reported in COVID-19 [164,165], this research area
is currently of interest.
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Figure 3. mTORC1 regulates eIF3f in skeletal muscle protein translation. RHEB (Ras homolog enriched in brain) activates
mTORC1 (mechanistic/mammalian target of rapamycin complex 1), which binds to the scaffold protein eIF3f (eukaryotic
initiation factor 3f ) through a TOS (TOR signaling) motif and modulates mRNA translation by phosphorylating eIF3f bound-
S6K1 (S6 kinase 1) and 4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1). S6K1-mediated regulation
of translation occurs, in part, through phosphorylation of rpS6 (ribosomal protein S6), eIF4B (eukaryotic translation
initiation factor 4B), and eEF2k (eukaryotic elongation factor-2 kinase). eEF2k inhibits eEF2 (eukaryotic elongation factor-2)
to promotes mRNA translation. Phosphorylation of 4E-BP1 by mTOR (mechanistic/mammalian target of rapamycin)
promotes its dissociation from eIF4E (eukaryotic initiation factor 4E) and allows for the assembly of the preinitiation
complex. During muscle wasting, eIF3f is targeted by MAFbx (muscle atrophy F-box) at Mov34 motif to promote eIF3f
proteasomal degradation. Resistance training and amino acids enable the migration of the mTORC1/eIF3f complex at the
lysosome surface and at the cell membrane near to peripheral nuclei and blood capillaries. Of note, PDK1 (phosphoinositide-
dependent kinase-1) phosphorylates S6K1 for full activation.

In recent years, the physiological role of eIF3f has been more extensively investigated
in skeletal muscle. It was found that the E3 ubiquitin ligase MAFbx/atrogin-1 targets the
Mov34 motif of eIF3f during atrophy for polyubiquitination and subsequent degradation by
the proteasome [40,166,167]. A series of studies highlighted that eIF3f expression is essen-
tial to maintain skeletal muscle mass and that expression of a mutant (eIF3f K5-10R, where
six lysine residues on the C-terminal have been mutated) insensitive to MAFbx/atrogin-1
targeting protects against starvation-induced muscle atrophy [39,40,151,167]. eIF3f K5-10R
overexpression also promotes enhanced protein synthesis and hypertrophy in normal con-
ditions compared to wild type protein, suggesting a role of eIF3f in muscle growth [40,151].
Of note, a subset of microRNAs (miRNAs) in the delta-like homolog 1 and the type III
iodothyronine deiodinase (Dlk1-Dio3) cluster showed an anti-atrophic effect, probably by
limiting the degradation of eIF3f by MAFbx/atrogin-1 [168].

Importantly, it was found that mice carrying a null mutation of the eIF3f gene failed to
develop and died at the early embryonic stage [39]. One candidate explaining the develop-
ment impairment could be the Notch pathway known to be positively regulated through
eIF3f deubiquitinase activity [169]. Because Notch is essential for post-implantation de-
velopment [170], a possible defect of this pathway in eIF3f null mice could contribute to
failed development. However, heterozygous mice (eIF3f+/- mice) live but show a lower
skeletal muscle mass associated with a lower mTORC1 pathway activation, polysome
content and protein synthesis flux [39]. Noteworthy, muscle atrophy (i.e., muscle mass
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and CSA) was found to be exacerbated in heterozygous mice compared to control during
immobilization [39]. Of note, no impact of partial deletion of eIF3f was found on both the
ubiquitination levels of muscle proteins and numerous markers of autophagy pathway,
including markers of mitophagy (i.e., the specific degradation of mitochondria through
autophagy) [39]. Thus, eIF3f plays a critical role in embryonic development and adult
skeletal muscle mass maintenance, with a role essentially focused on protein synthesis
pathways rather than proteolysis.

Furthermore, a role of eIF3f in adaptations to exercise was recently suggested. Me-
chanical overload enhances eIF3f expression and, interestingly, this effect is blunted in
DGKζ KO muscles [46]. Thus, inhibition of FOXO3 pathway by DGKζ could play a
role in MAFbx/atrogin-1-induced eIF3f degradation and mRNA translation. Importantly,
studies with immunofluorescence approaches found a new cellular trafficking involving
mTORC1/eIF3f during exercise [171]. In humans, mTOR was found to co-localize with the
lysosomal-associated membrane protein (LAMP2) at rest, suggesting that mTOR is located
close to the late-lysosome in skeletal muscle [172]. A single bout of resistance exercise
increased the translocation of mTOR/LAMP2 complex at the cell membrane near to the
blood capillaries [172]. However, it was previously indicated that mTORC1 recruitment
to the lysosome membranes is essential to rise mTOR kinase activity, especially because
the mTORC1 activator RHEB is contained in a membrane-bound compartment of the lyso-
some [16,173–175]. Importantly, the authors also found that the interaction between mTOR
and eIF3f increased at the cell membrane after exercise and this response was enhanced
in a fed state (20g protein/ 40 g carbohydrate/ 1 g fat) [172]. That probably explains
the increase of S6K1 kinase activity and protein synthesis enhancement observed after
exercise with amino acids ingestion [172,176,177]. Accordingly, mTORC1 translocation to
lysosomes is known to be mediated by Ragulator-Rag complex and plays a pivotal role in
amino acid signaling related to mTORC1 [174]. Of note, a reduction of TSC2 abundance at
the cell membrane was also observed after exercise with a dissociation from RHEB [172].
These results strongly suggest that this newly identified trafficking contributes to higher
activation of mTOR signaling.

Interestingly, recent data reinforced our knowledge on the influence of nutritional state
after exercise on mTOR/eIF3f trafficking and adaptations to resistance training. Indeed, it
was reported that the ingestion of whole eggs after resistance exercise promotes a higher
stimulation of protein synthesis compared to consumption of egg whites only [178]. A
more pronounced mTOR localization at the lysosome was observed after whole eggs con-
sumption [179]. Among the multiple candidates involved in mTOR trafficking after whole
egg ingestion, PA and low-density lipoprotein (LDL)-derived cholesterol have been sug-
gested [178]. The first one can be generated via de novo synthesis by phosphatidylcholine,
oleic acid, and diacylglycerol [180,181]. Egg yolks also contain LDL-derived cholesterol
known to have a role in mTORC1 recruitment to the lysosome through SLC38A9-Niemann-
Pick C1 signaling complex [182]. Altogether, these data suggest that whole egg ingestion
could promote a higher mRNA translation compared to egg white. However, even if
these acute outcomes may suggest that whole eggs consumption could maximize gains in
skeletal muscle mass, longitudinal data recently failed to support this assumption [183].

A recent study compared the effect of daily whole egg vs. egg white ingestion
during 12 weeks of resistance training in humans [183]. The authors found that, when
protein intake was equalized, the effects of whole egg and egg white on body weight,
fat mass, skeletal muscle mass, and strength, and the expression of fibroblast growth
factor 2, follistatin, transforming growth factor-beta1, activin 1, and myostatin were similar.
Thus, optimizing acute protein synthesis with nutritional strategies does not necessarily
support long-term adaptations in skeletal muscle. Finally, another recent study assessed
the effects of a habitual high-protein diet on response to an acute resistance exercise and
muscle protein synthesis [184]. The authors found that a four-week high-protein diet (crude
protein ≈ 52%) does not influence resting mTORC1 activity nor muscle protein synthesis,
as well as in response to a single bout of resistance exercise. However, higher muscle mass
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and lower fat mass were found with habitual high-protein diet compared to control, but
with a concomitant impairment in glucose metabolism-related proteins [184]. Consistent
with this result, long-term habitual high-protein intake may promote insulin resistance and
whole body glucose intolerance [185].

In summary, knowledge has been significantly improved on eIF3f/mTORC1 axis
and the biological significance of eIF3f in the past few years. Thus, eIF3f appears as a
critical regulator of mTORC1 axis and is essential for embryonic development and skeletal
muscle mass maintenance. In addition, the lysosome is suggested as a key regulatory
site of eIF3f/mTORC1 axis. Further investigations have to be encouraged on metabolism
and in the context of diseases, aging, and physical activity to better understand the po-
tential interest of this axis as a therapeutic target. Finally, caution may be warranted for
prediction of long-term outcomes and investigations have to be encouraged to examine
the effects of long-term nutritional strategies, including protein-diet approaches, on whole
body homeostasis.

4. Implication of Satellite Cells and Myonuclear Accretion

One remarkable property of muscle tissue is to continuously renew itself thanks to
the presence of muscle stem cells, also referred as satellite cells (SCs) discovered in 1961
by Alexander Mauro [186]. SCs are mononucleated cells located between the basal lamina
and the plasmalemma of myofibers. Upon stimulation, SCs have the ability to drive out
of their quiescent state to modulate their gene expression profile, and to start proliferat-
ing. These activated SCs termed myoblasts can stop their proliferation and differentiate
into muscle progenitors (myocytes), which fuse with existing myofibers. Fusion of my-
oblasts with preexistent myofibers can lead to enhance myonuclear number (referred to

“myonuclear accretion”) [187,188]. Adult SCs are in a quiescent state, expressing both paired
box protein 7 (Pax7) and cluster of differentiation 56 (CD56) myogenic factors, and get
activated under muscle stimulation or injury [189,190]. SCs myogenic lineage progression
requires myogenic regulatory factors (MRFs), such as myogenic factor 5 (Myf-5), myoblast
determination protein D (MyoD), myogenin, and myogenic regulatory factor 4 (MRF4).
Activation of quiescent SCs occurs with the simultaneous increased expression of Myf-5
and MyoD. A subset of activated SCs downregulates MyoD expression to self-renew the
quiescent SCs pool. Another subset undergoes myogenic commitment by subsequent
expression of MRF4 and myogenin whereas Pax7, CD56, and Myf5 factors are no longer
expressed. Differentiation then occurs and myoblasts fuse with preexisting myofibers while
MyoD expression decreases [191] (Figure 4). Whereas the role of SCs in fiber damage repair
and remodeling is well described, SCs implication in muscle growth and hypertrophy has
been debated for a long time in adult skeletal muscle.

The addition of new myonuclei takes place during myofiber hypertrophy thanks
to SCs, providing additional cytoplasmic volume in fiber syncytium [192–194]. On the
contrary, muscle inactivity decreases SCs proliferation [195] and muscle atrophy is associ-
ated with a loss of myonuclei [196,197]. Activation of SCs occurs within skeletal muscle
following a single bout of exercise [198] and, conversely, abrogation of muscle progenitors
seems to impede exercise-induced hypertrophy [199–201]. Exercise is known to be an
essential anabolic stimulus for muscle tissue, and it was shown that, according to the type
of intervention, exercise modulates SCs activation for fiber repair or hypertrophy. Studies
on endurance training reported conflicting results on the involvement of SCs, probably
due to differences in exercise intensity, volume and duration, as well as the muscle type
analyzed [191,202]. An increase in SCs activation was reported after exhaustive eccentric
endurance exercises in mice [203]. Accordingly, it was suggested that new myonuclear
accretion induced by continued muscle loading may be associated with fiber repair and
regeneration after exercise-induced injury [204]. In humans, SCs activation seems to be
more related to exercise intensity and eccentric actions rather than duration of endurance
exercises, these training modalities promoting higher mechanical strains and muscle dam-
ages [198,205–207]. Sustained and intense endurance exercise can induce the activation of
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SCs to ensure muscle damage repair and it remains difficult to attribute SCs activation to
the hypertrophic response rather than to a regeneration process [208,209].

Figure 4. Fusion-dependent and independent mechanisms of satellite cells during growth stimuli. Adult satellite cells
(SCs) are in a quiescent state, expressing Pax7 (paired box protein 7) and CD56 (cluster of differentiation 56). Activation of
SCs sets off the progression of myogenic lineage from quiescence to fusion. It requires MRF (myogenic regulatory factors)
such as Myf-5 (myogenic factor 5), MyoD (myoblast determination protein D), myogenin, and MRF4 (myogenic regulatory
factor 4). Whereas damaging exercises (high intensity endurance and eccentric contractions) promote SCs fusion in a
regeneration process, exercise-induced hypertrophy requires SCs fusion and myonuclear accretion to increase fiber size.
However, fusion-independent mechanisms may promote partial hypertrophy. The secretory functions of SCs seem to play a
role in these mechanisms and in ECM (extracellular matrix) remodeling through miRNA-containing exosomes release.

Long-term endurance or resistance training was found to increase the pool of SCs
in both rodents and humans, as well as combination of endurance and resistance train-
ing (i.e., “concurrent training”) [207,210,211]. Of note, resistance exercise is more prone
to induce muscle hypertrophy than endurance exercise, and results are less conflicting
concerning SCs response. Burd et al. reported an elevation of Pax7 expression follow-
ing a non-damaging low-intensity resistance exercise but expression of other markers
of SCs activation (MyoD and myogenin) was upregulated only when a higher volume
of the same exercise was achieved [212]. Studies using resistance exercises established
that one bout of moderate to high intensity upregulates SCs activation with an increase
in expression of myogenic factors, such as CD56, Pax7l, and MyoD [191]. The effect of
resistance exercise on SCs activation is supported by numerous evidences and converge
towards an increase in both SCs content and activation, as well as myonuclear accretion, a
few hours after and until 4 days post-intervention [191]. Supporting that SCs implication
is dependent on stimulus amplitude, exercise was recently found to induce SCs fusion
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in a load-dependent manner whatever muscle typology [213]. However, in response to
resistance training, the number of SCs increased mainly in type II myofibers whereas type
I myofibers were almost not affected [211,214,215]. This is consistent with the fact that type
II fibers have a greater contribution to hypertrophy and a better adaptive potential than
type I. Noteworthy, while resistance training increases SCs pool, myonuclear accretion
and muscle mass, endurance training does not necessarily promote myonuclear accretion
or increase of muscle mass [209,216,217]. Endurance training appears more effective to
increase satellite cell pool when exercise intensity is high, exercise duration being less
susceptible to influence satellite cell content [209].

Besides exercise, numerous experimental conditions, such as steroids administration,
nutritional interventions, or overloading models promote hypertrophy and conversely
may attenuate atrophy in a disease setting. A great accrual of myonuclei was previously
observed during a pronounced hypertrophic response following testosterone treatment in
mice [218]. However, when a moderate muscle hypertrophy was induced by the same treat-
ment, neither satellite cells number nor myonuclear accretion were found to enhance muscle
fiber size [219]. Here, again, intensity of the stimulus seems to influence SCs activation and
subsequent terminal differentiation and fusion with myofibers. Furthermore, hypertrophic
responses induced by various stimuli, from pharmacological to genetic interventions, were
not always associated with increased myonuclear number. This was the case when hy-
pertrophy was induced by genetic ablation of myostatin [220], treatment with the beta
2-adrenergic agonist clenbuterol [221] and overexpression of the serine/threonine kinase
Akt [222] (Figure 4). Of note, lysine supplementation, known to stimulate muscle growth,
is associated with mTORC1 pathway activation and SCs proliferation/differentiation
in piglets [223,224].

In the past decade, McCarthy’s group used Pax7-DTA-mediated ablation of SCs and
suggested that muscle hypertrophic response to overloading could be independent of
satellite cells intervention [225]. However, these results were recently debated by Egner
and coworkers who found a large overload-induced hypertrophy, which was prevented
in satellite cell-deficient mice under the same experimental conditions [201]. In accor-
dance with these findings, other methodological approaches based on SCs inhibition by
È-irradiation indicated that muscle hypertrophy was prevented when SCs recruitment was
blunted [199]. The conditional depletion of more than 90% of SCs of transgenic Pax7-DTA
mice yielded also blunted hypertrophic and myonuclear accretion responses [226]. By using
young mice genetically deleted of fusion-required serum response factor, Randrianarison-
Huetz confirmed the essential role of SCs for overload-induced hypertrophy [227]. In the
same way, CDK1 deletion impaired SCs proliferation and showed strong limitation of
overload-induced hypertrophy [228].

In a study from Goh et al., authors abrogated fusion of muscle progenitors by specifi-
cally deleting myomaker (i.e., a membrane protein involved in myoblast fusion). Results
revealed that myonuclear accrual and hypertrophic response were blunted following syn-
ergistic ablation [229]. Importantly, another study from Goh and coworkers addressed
the question if myonuclei accrual is required in a physiological setting that did not use
supra-physiological models. Authors submitted mice to high-intensity interval training
(HIIT) during eight weeks and demonstrated that abrogation of muscle progenitor cells
fusion at the onset of the protocol blocked myonuclear accretion and hypertrophic re-
sponse [187]. In addition, muscle fibrosis was observed, as well as exercise intolerance in
myomaker-deficient mice. To distinguish differential requirement of muscle progenitor
cells fusion between early and late stages, the authors also abrogated muscle progenitor
cells fusion after four weeks of training. Results showed attenuated hypertrophy although
mice no longer presented exercise intolerance or fibrosis. Authors suggested that my-
onuclear accretion promotes muscle repair in the early stage of the training protocol and
muscle growth during the last stage. Finally, maturational ages are of importance in the
involvement of SCs and myonuclear accretion during postnatal growth. Indeed, it was
suggested that in response to overload, muscle fiber hypertrophy was prevented in young
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SCs depleted mice, but not in adult mice (>four months old) [230]. It was also shown that
SCs deletion reduced myonuclear number, prepubertal myofiber hypertrophic growth, and
force generation [231]. According to these findings, there is evidence that SCs fusion plays
an active role in post-natal muscle hypertrophy that can be dependent on factors as age.

However, as hypertrophy was not totally blunted when SCs were impaired in some
studies [226,232], fusion-independent mechanisms may also have a role within the muscle
tissue to ensure partial hypertrophy. The canonical function of SCs during hypertrophic
response of adult myofibers is myonuclear accretion via cells fusion. Nevertheless, Murach
et al. underlined that SCs also display fusion-independent roles through their secretory
functions, showing that SCs communicate with muscle fibers without necessarily achieve
fusion [233]. They previously demonstrated that SCs communicated with fibrogenic
cells through exosomes to ensure correct regulation of the extracellular environment in
response to hypertrophic stimuli [234]. This fusion-independent mechanism probably
involves miRNAs that affect extracellular matrix [234]. Using a mice model of delayed SCs
fusion, authors provided evidence that SCs also released extracellular vesicles to muscle
fibers [233]. From their results, authors gave novel insights about SCs functions during
hypertrophy. Thus, they suggest that coordination of the early hypertrophic response to
overload may also be dependent of fusion-independent mechanisms (Figure 4).

During short-term anabolic steroid treatment, the extra-nuclei acquired were not lost
months after treatment arrest whereas muscle size had returned to its basal value [218].
From these results, emerged the “muscle memory” theory that differentiates at least two dif-
ferent hypertrophic responses: (i) when adult muscle has no hypertrophic response history,
recruitment of new myonuclei is required for de novo muscle hypertrophy, and (ii) when
mature muscle has already been submitted to an anabolic stimuli leading to hypertrophy
(e.g., resistance training) with a previous increase in the myonuclear number, the addition
of new myonuclei seems not needed during a second exposure inducing regrowth [201].
Several studies demonstrated that muscle growth was not necessarily accompanied by
an increase in myonuclear number, and, supporting the “muscle memory” theory, a pool
of extra nuclei was already contained in muscle fibers during regrowth of muscle tissue.
Studies giving evidence in favor of this hypothesis included various models of unloading
and reloading where myonuclear number remained unchanged [200,201,232,235].

So far, studies failed to provide conclusive results on human skeletal muscle tissue
(for review see [236]). Human training and detraining data indicate that myonuclear
accrual found during muscle hypertrophy is reverted during detraining with a loss of
myonuclei [237]. As suggested by authors [237], the muscle memory of hypertrophic re-
sponse may be independent of myonuclear number, and probably due to myonuclear DNA
methylation, histone modifications, miRNA expression, and other epigenetic mechanisms.
As underlined in the study of Murach et al. [48], miR-1 downregulation after a resistance
training program remains lower after six months of detraining and could contribute to
make a kind of memory induced by a first training adaptation to facilitate regrowth during
further exposure. Reinforcing the role of miRNAs in skeletal muscle mass maintenance,
it was suggested that miR-21 expression in SCs and muscle could inhibit myogenesis in
old mice and contribute to the decline in muscle regeneration during aging [238]. Other
miRNAs candidates, such as miR-23a, miR-27a, miR-29b, miR-29c, and others warrant
further attention since they are involved in skeletal muscle mass regulation [239–242].
Finally, chronic resistance exercise also showed modifications in methylation levels of
a myriad of genes. Filamin B (FLNB), myosin heavy chain 9 (MYH9), SLIT-ROBO Rho
GTPase activating protein 1 (SRGAP1), serglycin (SRGN), Zinc Finger MIZ-type containing
1 (ZMIZ1) genes were found to be hypomethylated after acute and chronic exercise, and
remained hypomethylated during detraining [52].

Taken together, results showed that SCs activation and myonuclear accretion have an
important role during uninjured adult muscle growing and contribute to muscle hypertro-
phy. Results obtained in mice indicate that factors, such as the type of growth stimulus, its
magnitude, and the age of animals directly influence SCs involvement. However, data are
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still lacking in humans. Concerning exercise modality, resistance training, or high-intensity
and damaging endurance exercise seems to be the most effective conditions to solicit SCs.
Finally, recent data indicate that epigenetic mechanisms could be involved to facilitate
future growth in response to resistance training after a period of detraining. Altogether,
these data suggest that the role of SCs, myonuclear accretion, and epigenetics modifica-
tions still represent an important challenge for further research in post-developmental
muscle growth.

5. Impact of Exercise Training and Practical Recommendations

Skeletal muscle mass trends to be attenuated during numerous states, such as dis-
use atrophy or during aging, and it is well recognized that exercise training minimizes
cellular disturbances during such states. Acute exercise decreases protein synthesis ac-
cording to exercise duration and intensity while mTORC1 pathway is reactivated during
recovery [21,243]. For example, 45 min of running with a progressive increase in veloc-
ity for the last 20 min has been shown to decrease puromycin incorporation in several
muscles [244], indicating a global decrease of protein synthesis flux during exercise. In-
terestingly, 10 sessions of resistance exercise interspaced by only 48 h of recovery blunts
ERK/MAPK signaling and mTORC1 activation over time [245]. This probably contributes
to the attenuation of protein synthesis during repeated bouts of resistance exercise with
short recovery [245,246]. Chronic exercise promotes cellular adaptations leading to im-
provement of mitochondrial function, reducing oxidative damage and attenuating the rate
of skeletal muscle mass decline. A recent study examined the effects of disuse muscle atro-
phy on mTORC1 activation and muscle protein synthesis during a single bout of resistance
training, and whether disuse muscle atrophy could interfere with muscle mass and strength
gains after a resistance training protocol [247]. In this work, a 14-day hindlimb suspension
decreased basal rRNA level, but not mTORC1 activity and muscle protein synthesis in rats.
Importantly, the response of muscle hypertrophy did not differ between the groups [247],
showing that disuse muscle atrophy does not alter muscle protein synthesis in response to
acute resistance exercise and muscle hypertrophy in response to chronic resistance training.
Consistent with these data, another study on disuse atrophy showed that intermittent
loading with protein ingestion prevents atrophy during hindlimb unloading probably
through mTORC1 signaling pathway [248].

Several factors may impact adaptations to training, such as training backgrounds, nu-
tritional strategies, recovery, exercise modality, exercise volume, and intensity, rest between
exercise bouts, genetic/epigenetic factors, age, and environmental conditions [14,59,61,243,249].
First of all, it is important to note that concurrent exercise (i.e., the incorporation of resis-
tance and endurance training into an exercise program) in untrained individuals promotes
generic molecular responses leading to whole muscle adaptations (i.e., increases of aero-
bic and strength aptitudes) and higher gains in muscle mass [250–252]. However, while
endurance-trained subjects present an activation of S6K1 in response to resistance exercise,
no effect can be detected in strength-trained individuals [253]. On the contrary, during
endurance training, the metabolic sensor AMPK, which is a major inhibitor of mTORC1
pathway [24], can be increased in strength-trained athletes [253]. An investigation in
mice showed that whereas a single bout of exercise substantially increases S6K1 and rpS6
phosphorylation, the chronicity of exercise results in a significant attenuation of this re-
sponse [254]. Interestingly, S6K1 and rpS6 phosphorylation levels were restored after a
short detraining period (i.e., 12 days) [254]. Thus, anabolic response seems less sensitive
to resistance exercise with chronic exercise and a detraining period may restore mTORC1
pathway response.

Another study investigated the involvement of epigenetics mechanisms in response to
acute resistance exercise in sedentary and trained men. The authors found that resistance-
trained subjects showed hypermethylation of the metabolic genes sterol regulatory element-
binding protein (SREBF2) and glycerol-3-phosphate acyltransferase, mitochondrial (GPMA).
A lower methylation level of SREBF2 was observed in sedentary subjects [255]. This re-
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sult supports that generic molecular responses and global muscle adaptations occur in
sedentary subjects. However, more specific adjustments take place when subjects become
adapted. In this study, it was also found that resistance training does not affect methy-
lation of mTOR and Akt [255], which is not surprising since training rather promotes
post-translational modifications (i.e., phosphorylation) on these proteins [14,40,243]. Alto-
gether, these results suggest that the training state is an important modulator of molecular
signaling pathways, including those involved in protein synthesis. Interestingly, it was
recently found that exercise modality during resistance training may finely influence the na-
ture of adaptations. For example, short-term high-volume resistance training increases fiber
cross sectional area but reduces fiber actin and myosin protein content in trained young
men [256]. A sarcoplasmic expansion can be observed concomitantly with an upregulation
of sarcoplasmic proteins involved in glycolysis and other metabolic processes linked to
ATP generation [256]. These effects seem to persist up to 8 days following training [256].
Thus, these data show that short-term high-volume training may induce gains in skeletal
muscle mass through a sarcoplasmic hypertrophy.

Furthermore, it is important to consider that there are individual variations in training
responses with athletes experiencing positive adaptations and some subjects exhibiting no
clear improvement of performance and even adverse responses [257]. It was suggested that
differences in individual responses may be due to technical measurement errors, limited
number of measured variables, differences in individual history and genotype, and other
factors (i.e., psycho-emotional states, sleep hygiene, nutritional intake, etc.) [257]. An
important factor implicated in the mitigated response to resistance training is ribosome
content [59,61,62,258]. For example, blunted ribosome biogenesis was observed in the
elderly with a lower hypertrophic response [59,259–261]. Recent studies have compared
the influence of low- and high- intensity resistance training during aging. No meaningful
differences were observed in hypertrophy, improvement of muscle strength, and quality of
life [262–264].

Of note, training intensity has to be manipulated with caution because frailty fre-
quently occurs in aged people that can be subjected to traumatic injuries. Importantly,
it was suggested that low-load high volume, but not high-intensity resistance training,
promotes gains in endurance during aging, even if both conditions have similar positive
effects on peak oxygen consumption [265]. Some negative mitochondrial adaptations have
also been reported with maximal strength training in old subjects [266]. However, while
exercise intensity does not appear to be a key factor in adaptations to resistance training
in the elderly, manipulating training volume appears most relevant. With a contralateral
protocol, a study highlighted a dose-dependent relationship between muscle adaptations
and training volume [62,258]. Moderate training volume induced more pronounced gains
in muscle strength and mass, as well as a greater ribosome biogenesis and type II fiber
transition compared to low training volume [62,258]. A previous study underlined that
resistance exercise conducted at low-load and high-volume was more effective than high-
load and low-volume to stimulate myofibrillar protein synthesis in young men [212]. In
addition, as mitochondrial dysfunctions also occur during muscle disuse or aging, resis-
tance training at low intensity but high-volume can be recommended as it may improve
physical functioning [267–274]. It was demonstrated that resistance training may promote
ameliorations in walking endurance, muscle oxidative capacity and strength [275–277]. In
aged people, the benefits of resistance exercise on muscle function were recently attributed
to improvement of mitochondrial function, muscle hypertrophy, modulation of myonuclear
domain, and newly formed myonuclei, increases of satellite cell-capillary interaction and
content [49,278,279]. Of note, it appears that Nordic walking also improves lower limb
strength, aerobic aptitude, body composition, life, and sleep quality in old people [280].

Finally, eccentric actions and hypoxic stress have emerged as promising strategies
over the last few years. Eccentric actions may promote more robust mTORC1 pathway
activation and increases of skeletal muscle mass and strength compared to concentric and
isometric contractions [281–283]. Of note, normalization of the force-signal integral to
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a same magnitude effect leads to similar acute molecular anabolic responses [284–287].
A recent study showed that combined maximal concentric and eccentric training does
not produce greater gains in muscular isometric strength and hypertrophy than maximal
concentric training alone in young males [288]. Low-intensity eccentric actions should be
used in frail people, such as aged subjects, to minimize the occurrence of muscle damage
and the risk of a traumatic injury. Furthermore, combination of resistance exercise with
hypoxic stress promotes several advantages. Indeed, in the last decade, investigations have
been conducted on supplementation of hypoxia during resistance training. Reduction of
intramuscular oxygen partial pressure promotes greater cellular stress in skeletal muscle
and may improve several aspects of performance, including aerobic capacity and sprint
ability in athletes [289–291].

However, in older adults, hypoxic resistance training does not induce greater mag-
nitude in gains of lean mass and muscle strength than normoxic resistance training [292].
Moreover, hypoxic training promotes similar changes in oxidative metabolism and insulin
sensitivity than exercise in normoxia in older individuals [293]. However, cognitive per-
formance may be improved with intermittent hypoxic training in aged people [294]. That
said, the combination of eccentric endurance exercises with low hypoxia may present some
advantages on muscle function during aging [295]. Importantly, among hypoxic methods,
blood flow restriction (BFR, also called “occlusion training”) is increasingly considered. BFR
consists in the generation of local hypoxia in skeletal muscles or restricted venous return
during exercise depending on the occlusive pressure level [296]. BFR promotes additional
effects on both aerobic and resistance training adaptations. During resistance training,
BFR can promote improvements in muscle size, strength, and athletic performance [296].
Resistance training with BFR also promotes proliferation of myogenic stem cells, myonu-
clei addition, as well as enhancement of angiogenic genes expression [297,298]. Recently,
it was found that BFR can limit skeletal muscle atrophy and MuRF1 expression during
cast immobilization and muscular weakness induced by chronic unloading [299,300]. In
addition, there are some data about BFR during muscle wasting or aging and a case report
has suggested that BFR should be considered to improve physical fitness, prevent muscle
loss, and improve arterial compliance in frail aged subjects [301,302]. In old women, re-
sistance training at low intensity combined with BFR at 110 mmHg appears effective to
induce hypertrophy and gains in muscle strength [303], and walking with BFR at higher
pressure improves limb venous compliance [304]. However, a study reported that a six-
week walking training with BFR did not improve peak oxygen uptake in old men and
women, even if functional ability, muscle size, and strength were improved [305]. Finally, in
postmenopausal women with osteopenia or osteoporosis, low intensity resistance training
with BFR may also be an effective method to induce bone formation markers [306].

Thus, resistance training promotes several advantages during muscle disease includ-
ing effects on skeletal muscle mass, strength, and metabolism. Among the factors involved
in training adaptations, training volume increase appears critical to benefit from resistance
training effects, especially in aged people. More recently highlighted, changes in ribosome
biogenesis are more pronounced with multiple set training than with single-set regimen.
Chronic resistance exercise has the potential to stimulate both protein translation and
ribosomal biogenesis in a volume-dependent manner. In aged people, there is evidence
that local hypoxic training (i.e., BFR) is beneficial to promote additional adaptations than
normal training. Supplementary studies using BFR (e.g., gravity induced-BFR [307]) have
to be encouraged since it represents an easy method that promotes effects on both aerobic
and strength adaptations. In another way, further research on nutritional interventions,
such as BCAAs/leucine supplementation efficiency in combination with resistance train-
ing, especially in frail population and giving concrete guidelines, would be relevant in a
perspective of personalized medicine.
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6. Conclusions and Perspectives

The regulation of skeletal muscle protein synthesis is a key event for skeletal muscle
growth and hypertrophy, especially in response to exercise training (Figure 5). The devel-
opment of strategies to struggle against atrophy is fundamental to improve the quality of
life or the capacity of sick people to recover from illness. Thus, it is imperative to better
understand the cellular and molecular mechanisms involved in skeletal muscle failure,
as well as the impact of chronic exercise and additional nutritional strategies on muscle
dysfunctions. mTORC1 controls embryonic and adult myogenesis without being essential
for adult skeletal muscle mass maintenance under normal conditions. However, mTORC1
is essential for muscle growth and hypertrophy under mechanical stimulation, especially by
controlling mRNA translation and ribosome biogenesis at multiple levels. After resistance
exercise, translocation of mTOR to the lysosome surface and to the cell membrane leads
to mTOR association with its regulators, RHEB and eIF3f, and appears consistent with a
raised mRNA translation. Importantly, physical exercise is a powerful modulator of the
aforementioned pathway, which needs to be more investigated in order to identify the best
approaches to counteract atrophy in the long-term. The impact of resistance training has
garnered increasing attention, notably in the context of aging. Resistance training appears
beneficial in the elderly, especially when training with high-volume and low intensity is
privileged. Of note, investigations on ribosomal turnover, including ribophagy (i.e., the
degradation of ribosomes through autophagy) are still limited and need further attention.

Figure 5. Resistance exercise and muscle mass preservation. Resistance training promotes hypertrophy and low-
intensity/high-volume training may induce both improvements in muscle mass and strength, as well as mitochondrial
adaptations in aged people. Further studies have to be encouraged to better understand the impact of resistance training
combined with hypoxic stress and eccentric actions during muscle atrophy. mTORC1, mechanistic/mammalian target of
rapamycin complex 1; eiF3f, eukaryotic initiation factor 3f; DAGK, diacylglycerol kinase.
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