

Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO2 inhalation in a female rat model of panic disorder

Luana Tenorio-Lopes, Stéphanie Fournier, Mathilde Henry, Frédéric Bretzner,

Richard Kinkead

▶ To cite this version:

Luana Tenorio-Lopes, Stéphanie Fournier, Mathilde Henry, Frédéric Bretzner, Richard Kinkead. Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO2 inhalation in a female rat model of panic disorder. Translational Psychiatry, 2020, 10 (1), pp.1-12. 10.1038/s41398-020-01076-x . hal-03171940

HAL Id: hal-03171940 https://hal.inrae.fr/hal-03171940

Submitted on 17 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ARTICLE

Open Access

Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO₂ inhalation in a female rat model of panic disorder

Luana Tenorio-Lopes¹, Stéphanie Fournier², Mathilde S. Henry³, Frédéric Bretzner⁴ and Richard Kinkead²

Abstract

Panic disorder (PD) is ~2 times more frequent in women. An excessive ventilatory response to CO_2 inhalation is more likely during the premenstrual phase. While ovarian hormones appear important in the pathophysiology of PD, their role remains poorly understood as female animals are rarely used in pre-clinical studies. Using neonatal maternal separation (NMS) to induce a "PD-like" respiratory phenotype, we tested the hypothesis that NMS disrupts hormonal regulation of the ventilatory response to CO_2 in female rats. We then determined whether NMS attenuates the inhibitory actions of 17- β estradiol (E_2) on orexin neurons (ORX). Pups were exposed to NMS (3 h/day; postnatal day 3–12). The ventilatory response to CO_2 -inhalation was tested before puberty, across the estrus cycle, and following ovariectomy. Plasma E_2 and hypothalamic ORX_A were measured. The effect of an ORX₁ antagonist (SB334867; 15 mg/ kg) on the CO_2 response was tested. Excitatory postsynaptic currents (EPSCs) were recorded from ORX neurons using whole-cell patch-clamp. NMS-related increase in the CO_2 response was observed only when ovaries were functional; the largest ventilation was observed during proestrus. SB334867 blocked this effect. NMS augmented levels of ORX_A in hypothalamus extracts. EPSC frequency varied according to basal plasma E_2 levels across the estrus cycle in controls but not NMS. NMS reproduces developmental and cyclic changes of respiratory manifestations of PD. NMS disrupts the inhibitory actions of E_2 on the respiratory network. Impaired E_2 -related inhibition of ORX neurons during proestrus is a novel mechanism in respiratory manifestations of PD in females.

Introduction

Many panic disorder (PD) patients experience respiratory symptoms, including hyperventilation, sleep apnea, chest pain, and dyspnea^{1–3}. According to Klein's "*False* suffocation alarm hypothesis", excessive sensitivity to respiratory stimuli is at the core of PD⁴. CO₂ inhalation can trigger intense fear, autonomic, and ventilatory

¹Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada

²Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, OC. Canada responses⁵ and the probability of experiencing the panicogenic effects of CO_2 is greater in PD patients than healthy subjects^{6,7}. Located in a hypothalamic region initially known as the "panic area", orexin-producing neurons (ORX) regulate arousal and the intensity of respiratory reflexes^{8–10}. ORX concentration in the cerebrospinal fluid of PD patients is higher than in healthy subjects¹¹ and activation of ORX neurons and ORX-1 receptors are both necessary to observe a panic-prone state in rats and in humans^{11–13}.

Early life adversities are an important risk factor for PD; clinical and pre-clinical data show that unstable parental conditions or experimental disruption of maternal care augment respiratory and behavioral responses to CO_2^{14-16} .

© The Author(s) 2020

Correspondence: Richard Kinkead (Richard.Kinkead@fmed.ulaval.ca)

Full list of author information is available at the end of the article

These authors contributed equally: Luana Tenorio-Lopes, Stéphanie Fournier

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Much like chronic stress, neonatal maternal separation (NMS) augments ORX function^{17–19}. Together, these data strongly argue that NMS-related dysregulation of ORX function is an important mechanism in excessive ventilatory response to CO_2 inhalation in PD patients. The mechanisms responsible for abnormal ORX-modulation of the ventilatory control system are not fully understood, but to make significant progress that will ultimately influence clinical practice, pre-clinical research requires animal models that are close to the clinical reality^{20,21}.

The prevalence of PD is 2–3 fold greater in women than in men, yet most of our basic knowledge arises from experiments performed on males despite strong evidence indicating that endocrine regulation of ORX neurons is sex-specific^{22,23}. This is an important issue because clinical observations point to an important role of ovarian hormones in the pathophysiology of PD. The incidence of PD rises at puberty and in adult women, the responsiveness to CO₂ inhalation is highest during the premenstrual phase. Together, these observations suggest that PD patients are more sensitive to hormonal fluctuation than healthy subjects²⁴⁻²⁶. To address this issue, we first tested the hypothesis that early life adversities (in the form of NMS) disrupts hormonal regulation of the ventilatory response to CO₂. Specifically, we determined whether NMS-related increase in the responsiveness to CO₂ inhalation evolves with reproductive status of females. Non-invasive respiratory measurements were performed prior to puberty, across each phase of the estrus cycle, and following ovariectomy. We then used a pharmacological approach to determine whether activation of ORX₁-receptors is necessary to NMS-induced enhancement of the CO₂ response. The evidence indicating that 17β -estradiol (E₂) inhibits ORX neurons being indirect^{27,28}, we then used whole-cell patch-clamp recordings to assess E2's effects on green fluorescent protein (GFP)-labeled ORX neurons in females. Finally, we tested the hypothesis that NMS disrupts E_2 's inhibitory actions on the ORX system and its influence on CO₂induced respiratory manifestation of PD in females.

Methods

Animals and ethical approval

Experiments were performed on sexually mature female Sprague–Dawley rats and pre-pubertal rat pups (14–15 days old) of both sexes. Rats were preferred to mice because, unlike mice, enhancement of the CO_2 response due to early life adversities is sex-specific in this species^{15,29}. Details about age, body weight, and animal distribution amongst the experimental groups are reported in Supplemental Table 1 and in the figures. All animals were born and raised in our animal care facilities. Rats were supplied with food and water *ad libitum* and maintained in standard conditions (21 °C, 12:12-h

dark–light cycle: lights on at 06:00 and off at 18:00). Animal Care Committee of Université Laval approved all the experimental procedures and protocols, which were in accordance with the guidelines of the Canadian Council on Animal Care.

Neonatal maternal separation (NMS)

The NMS protocol was identical to the one used in our previous studies^{29,30}. Briefly, virgin females were mated and 3 days after delivery, each litter was separated daily from their mother 3 h/day (09:00–12:00) from postnatal day 3–12. Control animals were undisturbed during the same period; see the Supplement for details. Rats were weaned and raised under standard animal care conditions until experiments were performed. For each group, rats originated from multiple litters to avoid litter-specific effects.

Whole-body plethysmography and tissue sampling

Ventilatory variables were measured in unrestrained, unanesthetized rats using whole-body plethysmography according to standard procedures³⁰. 45 to 60 min prior to the recording, females were injected either with vehicle or with the selective ORX_1 receptor antagonist (SB334867; 15 mg/kg). Ventilation was recorded at rest (room air) followed by hypercapnic exposure (5% CO₂, balance air; 10 min). CO₂ levels used to assess ventilatory and behavioral responsiveness varies between 5 and 35% in animals and humans^{31,32}. The level chosen here ensured a robust ventilatory response with minimal change in behavior to avoid movement artefacts that interfere with respiratory measurements. At the end of the experiment, rats were deeply anesthetised; as NMS increases vaginal sensitivity³³, determination of the estrus cycle by vaginal smear was performed only at this time to avoid influencing results. Blood and brains were then harvested to obtain post-CO₂ samples immunohistochemistry and quantification of plasma E2 levels. Experiments were performed between 13:00 and 15:00. Note that blood and brains were also obtained from a distinct group exposed to room air to obtain baseline data for E2 and quantification of ORXA in hypothalamus extracts. For setup, protocol, and data collection details, see the Supplement.

Ovariectomy and 17β-estradiol (E2) replacement

Ovariectomy (OVX) was used to reduce circulating ovarian hormones chronically; surgery was performed according to standard procedures³⁴. Two weeks after surgery, the CO₂ response was measured and compared between NMS and controls. A distinct group of OVX females received either vehicle (peanut oil; 100 μ l) or one E₂ injection (3 or 10 μ g) every 4 days to restore E₂ level within physiological range and mimic cyclic fluctuations. The effects of higher E₂ supplementation was tested in

another group of OVX females by injecting with 25 μ g. The last injections were performed on the day of the experiments. Based on the evidence suggesting that E₂ inhibits ORX neurons^{27,28}, only E₂ was used in the replacement.

c-Fos/orexin-A immunohistochemistry

We first used *c-Fos* protein expression to determine whether NMS augments neuronal activation of ORX neurons in females. Based on ventilatory measurements, this initial evaluation was performed during the proestrus phase only. 40 μ m coronal brain sections were doublelabeled with primary antibodies against *c-Fos* and ORX_A to confirm cell phenotype. Since the physiological function of ORX neurons differs between hypothalamic sub regions^{35–37}, single (ORX_A only) and double-labeled cells were counted in the dorsomedial and lateral hypothalamus (DMH and LH, respectively) and the perifornical area (PeF). See Supplement for details.

Whole-cell patch-clamp recording of orexin neurons Identification of orexin neurons with an adeno-associated virus (AAV)

Four weeks-old females were injected with an AAV construct that expresses a green fluorescent protein (GFP) under the control of an ORX promoter. During surgery, rats received unilateral injections (1 μ l/side) of the ORX: GFP virus in the following stereotaxic coordinates (from Bregma: RC: -2.6 mm; ML: 1.2 mm; DV: -9.0 mm). A 4-week recovery period ensured consistent GFP labeling; the intensity of GFP labeling observed in the PeF area was more apparent than in adjacent areas.

Slice electrophysiology

Hypothalamic slices (300 μ m) containing GFP-labeled ORX neurons were used for whole-cell patch-clamp recording of basic electrophysiological properties, excitatory postsynaptic currents converging onto ORX neurons, and responses to E₂ application (100 nM; 10 min). E₂ concentration was based on the literature³⁸. Slice preparation and recording procedures were performed as described previously^{39,40}. Since ORX neurons of the LH do not contribute to cardiorespiratory regulation³⁷, recordings were performed in the PeF/DMH. The estrus cycle was determined after the brain was harvested; data were compared between NMS and controls. See the Supplement for details.

Statistics

Multifactorial analysis of variance (ANOVA) assessed the effects of NMS and estrous cycle on respiratory variables, 17β -estradiol (E₂), immunohistochemical, and electrophysiological data. CO₂ exposure was also considered for analyses of respiratory data and E₂; a repeated measures design was used when appropriate; equality of variance was tested. The relationship between E_2 and the ventilatory response to CO₂ was assessed using analysis of co-variance (ANCOVA) and a correlation z-test. Since patch-clamp data often originate from multiple cells from the same animal, a mixed ANOVA model (mixed-effect model) was used to ensure that between-group differences were not attributable to a specific subject⁴¹. ANOVA results are reported in the figures for clarity and conciseness. All data are presented as means ± SEM. A significant ANOVA results ($P \le 0.05$) was followed by a *post* hoc test (Fisher's least significant difference) to identify specific differences; a Bonferroni correction was applied when multiple comparisons were performed. Analyses were performed using Statview 5.0 (SAS Institute, Cary, NC, USA) and JASP (version 0.13; University of the Netherlands).

Results

The ventilatory response to CO_2 and 17β -estradiol (E₂) levels across the female's reproductive status

 CO_2 inhalation induced a rapid and robust hyperpnoea, which was greater in NMS females than controls (Fig. 1A, B). The intensity of the respiratory frequency and minute ventilation responses varied across the different phases of the estrus cycle and the largest difference between NMS and controls were observed during proestrus (Fig. 1A, B and Supplementary Fig. 1B). Baseline E₂ levels fluctuated across the estrus cycle and peaked during proestrus; NMS did not affect those values (Fig. 1C). During proestrus, CO_2 exposure augmented E₂ levels in control, but not NMS females (Fig. 1D). The E₂ levels measured following CO_2 exposure during proestrus were inversely correlated with the intensity of the breathing frequency response in NMS but not controls (Fig. 1E).

Prior to puberty, the hypercapnic ventilatory response was modest⁴²; the response did not differ between sexes and was unaffected by NMS (Fig. 2A and see Supplementary Fig. 1C, D for effects on other respiratory variables). In adults, OVX reduced E₂ levels (Supplementary Fig. 2) and the CO_2 response such that the intensity of the hyperpnoea was now similar between groups (Fig. 2B). In OVX females, the first E₂ supplementation protocol restored plasma E_2 to physiological levels (Fig. 3C) and increased the respiratory frequency response in NMS but not controls. In both groups, the response was directly proportional to E₂ levels (Fig. 2B, C and Supplementary Fig. 1). While the E_2 levels achieved with the second supplementation protocol exceed normal values (Fig. 2D), this treatment demonstrated that at that elevated E_2 inhibits the ventilatory response to CO₂ (Fig. 2D and Supplementary Fig. 1E, F).

None of the ventilatory variables and other indicators of metabolism measured at rest differed between

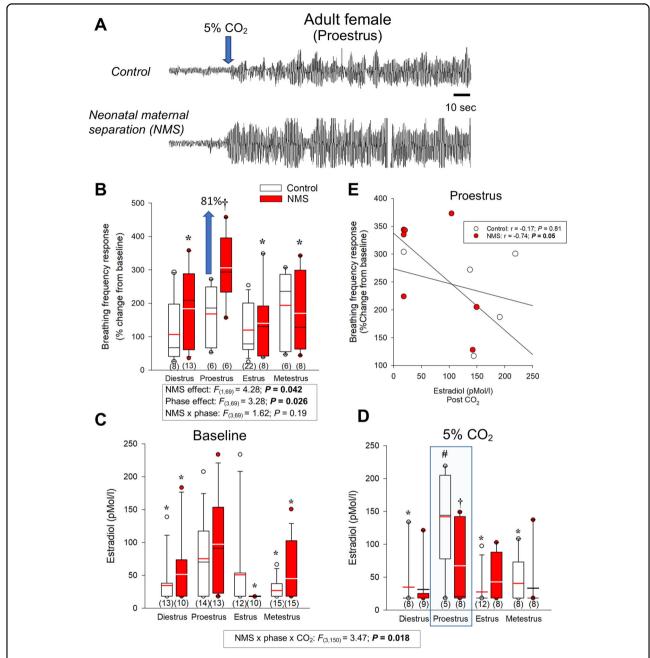


Fig. 1 Comparison of the hyperventilatory response to CO_2 inhalation (5% CO_2 ; 10 min) between adult females raised under standard conditions or subjected to neonatal maternal separation (NMS) across the different phase of the estrus cycle. A Original plethysmographic recording comparing ventilatory activity at rest and at the onset of CO_2 inhalation (blue arrow) in a female raised under control conditions (top trace) versus a female subjected to neonatal maternal separation (bottom trace; NMS: 3 h/day; postnatal days 3–12). **B** The breathing frequency response expressed as a percentage change from baseline (room air). 17 β -estradiol (E₂) levels across the estrus cycles measured **C** while breathing room air (baseline) and **D** 30 min following CO₂ inhalation test (5% CO₂; 10 min). **E** Regression analysis comparing the relationship between E₂ levels during proestrus (post-CO₂; blue box) and the intensity of the breathing frequency response to CO₂ between NMS (red circles) and control females (white circles). Box plots: the top and bottom boundaries of the box indicate the 25th and 75th percentile, respectively. Within the box, the black bar indicates the median; the other bar (red or white) indicate the mean. The error bars indicate the 10th and 90th percentiles. The numbers in brackets below the boxes indicate the number of replicates in each group. *Post hoc* pairwise comparisons were performed only when warranted by ANOVA. *Indicates a value different from corresponding proestrus value at *P* < 0.05.

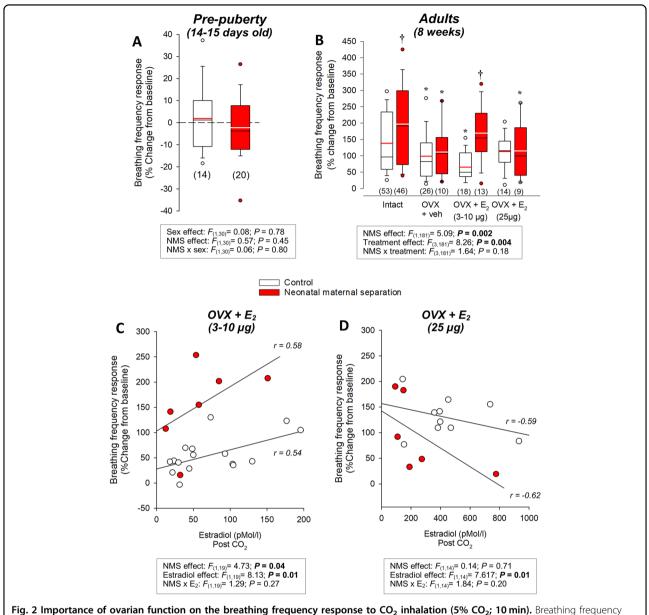
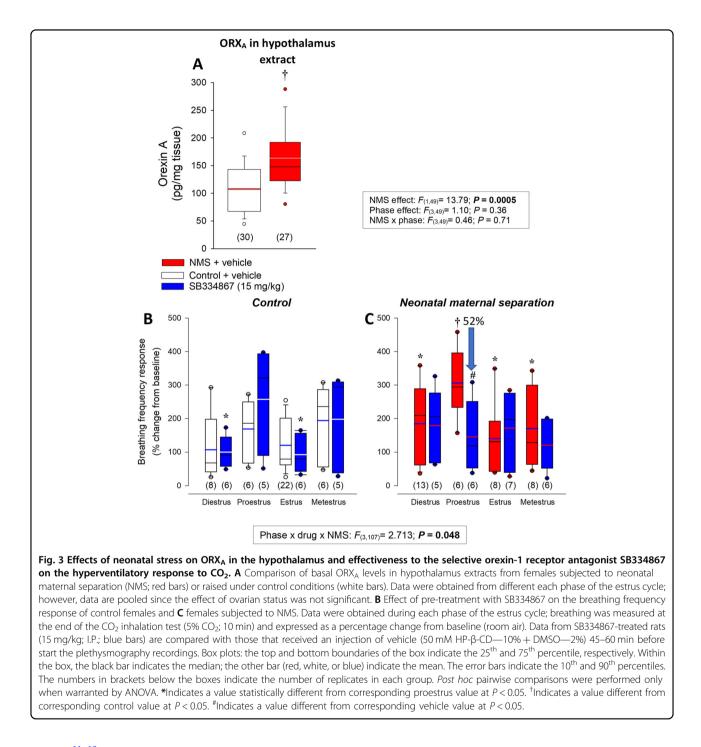
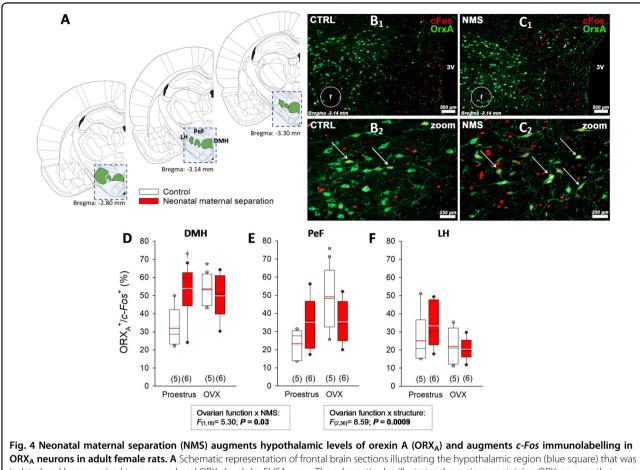



Fig. 2 Importance of ovarian function on the breathing frequency response to CO₂ inhalation (5% CO₂; 10 min). Breathing frequency response to CO₂ inhalation (5% CO₂; 10 min) in **A** pre-pubertal rat pups (14–15 days old) and **B** adult females with intact ovaries or following (OVX) with and without 17- β estradiol (E₂) replacement. Data from intact adult females include females without surgical procedure (from Fig. 1) and females that subjected to sham surgery that received vehicle injections (peanut oil; 100 µl). Ovariectomy or sham surgeries were performed 2 weeks prior to ventilatory measurements. E₂ replacement reproduced cyclic fluctuations by performing a daily injection every 4 days over 12 days prior to the experiments (4 injections in total). Each injection contained either vehicle (peanut oil, 100 µl) or E₂ (3 or 10 µg; normal levels or 25 µg; high levels). The histograms represent the frequency responses expressed as a percentage change from baseline (room air). Data are compared between rats raised under standard conditions (white bars) or subjected to neonatal maternal separation (NMS; red bars). Box plots: the top and bottom boundaries of the box indicate the 25th and 75th percentile, respectively. Within the box, the black bar indicates the median; the other bar (red or white) indicate the mean. The error bars indicate the 10th and 90th percentiles. The numbers in brackets below the boxes indicate the number of replicates in each group. *Post hoc* pairwise comparisons were performed only when warranted by ANOVA. *Indicates a value different from the corresponding control value at *P* < 0.05. The relationship between plasma E₂ levels and the intensity of the hyperventilatory response in OVX females supplemented with **C** normal E₂ (3–10 µg) or **D** high E₂ (25 µg).

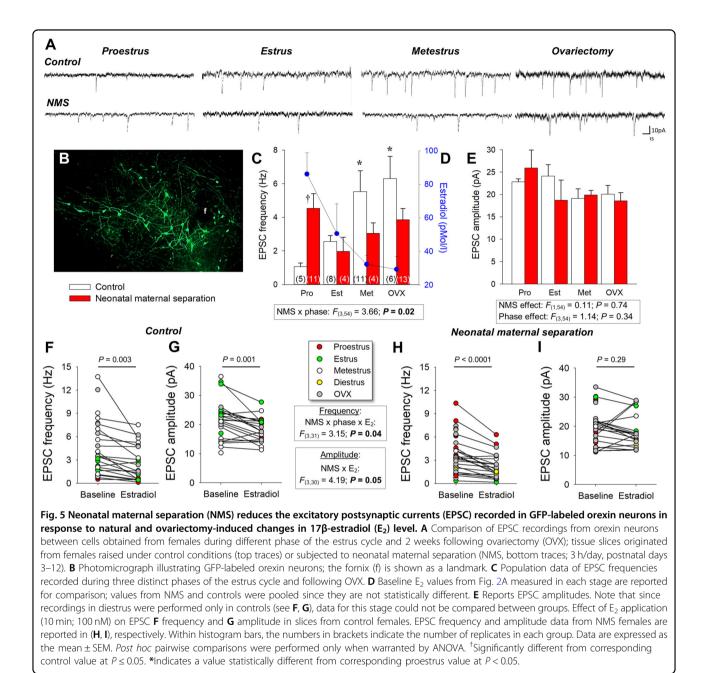
groups. Breathing frequency of "resting" OVX females was slightly higher than intact females but this was not sufficient to augment minute ventilation (Supplementary Table 1).


Excessive ORX modulation contributes to NMS-related increase in CO_2 response

Anomalies in ORX neurotransmission contributes to the pathophysiology of a panic-prone state in rats and in

humans^{11–13}. To determine whether enhanced ORX contributes to NMS-related increase in CO_2 responsiveness in females, we first quantified ORX_A levels in hypothalamus extracts; values obtained in NMS females were 51% higher than controls (Fig. 3A). We then inactivated ORX₁ receptors by pre-treatment with SB334867. The treatment did not affect breathing at rest (Supplementary Table 1) and generally had limited effects on the CO_2 response; however, SB334867 prevented the excessive ventilatory response of

NMS rats during proestrus (Fig. 3C and Supplementary Fig. 3). As physiological data indicate that NMS-related anomalies in respiratory control are more important during proestrus (Fig. 1), we used *c-Fos* immunolabeling to determine if ORX neurons of NMS females were more active than control during that phase (Fig. 4). By comparing data with OVX females, we evaluated the sensitivity to E_2 withdrawal between groups. In the DMH, the percentage of ORX neurons expressing *c-Fos* was greater in NMS than


ORX_A neurons in adult female rats. A Schematic representation of frontal brain sections illustrating the hypothalamic region (blue square) that was isolated and homogenised to measure basal ORX_A levels by ELISA assay. The schematic also illustrates the regions containing ORX neurons that were delineated to quantify *c-Fos* immunolabelling (adapted with permission from ref. ⁷²). Photomicrographs comparing *c-Fos* (Texas red) and ORX_A (FITC) immunolabelling between tissue sections from females in proestrus **B**₁ raised under control conditions (CTRL) or **C**₂ previously subjected to NMS (3 h/day, postnatal days 3–12). The third ventricle (3 V) and fornix (f) are identified as landmarks. Panels **B**₂ and **C**₂ were obtained at higher magnification for CTRL and NMS, respectively and white arrows identify double-labeled neurons. **D** Comparison of the proportion of ORX_A positive neurons expressing *c-Fos* in the dorsomedial hypothalamus (DMH) between NMS and controls during proestrus and two weeks following ovariectomy (OVX). Similar analyses were performed in **E** the perifornical area (PeF) and **F** the lateral hypothalamus. Box plots: the top and bottom boundaries of the box indicate the 25th and 75th percentile, respectively. Within the box, the black bar indicates the median; the other bar (red or white) indicate the mean. The error bars indicate the 10th and 90th percentiles. The numbers in brackets below the boxes indicate the number of replicates in each group. *Post hoc* pairwise comparisons were performed only when warranted by ANOVA. [†]Significantly different from corresponding rootsponding proestrus value at *P* < 0.05.

control during proestrus. Since OVX increased this ratio only in controls, the level achieved was now similar between groups (Fig. 4D). While a similar trend was observed in the PeF, neither NMS nor OVX affected the number of doublelabeled cells in the LH (Fig. 4E and F, respectively).

Neonatal maternal separation disrupts E_2 regulation of orexin neurons of the PeF/DMH

As our data indicate that NMS-related potentiation of ORX action on respiratory control is the greatest during proestrus, we then used whole-cell patch-clamp recording to assess the impacts of NMS and E_2 on ORX neurons. In naturally cycling females, membrane potential (V*m*) did not change across the estrus cycle and values recorded in

NMS females were slightly lower than controls. However, OVX augmented cell capacitance and the resting V*m* of ORX neurons in NMS but not controls (Supplementary Table 2). None of the other basic cell properties was influenced by NMS or ovarian function (Supplementary Table 2). Ovarian status influenced the excitatory postsynaptic currents (EPSC) frequency, especially in controls (Fig. 5A, C). In those females, EPSC frequency was inversely proportional to the basal level of E_2 associated with each phase of the estrus cycle (Fig. 5C). In contrast with controls, ORX neurons from NMS females had the highest EPSC frequency during proestrus, when E_2 levels peaked (Fig. 5A, C). EPSC amplitude was not affected by NMS or the estrus cycle (Fig. 5A, E). Bath application of

 E_2 reduced EPSCs frequency in both control and NMS; however, the largest drop was observed during proestrus in NMS females (-0.63 versus -4.09 Hz for control and NMS, respectively). E_2 reduced EPSC amplitude in ORX cells from control but not NMS (Fig. 5F, G–I).

Discussion

Puberty and cyclic fluctuations in ovarian hormones are normal physiological processes but in a subpopulation of women, these events contribute to the onset and cyclic exacerbation of PD⁴³⁻⁴⁵. Thus, elucidating how ovarian function affects respiratory manifestations of PD is of utmost importance to our understanding of the pathophysiology of this disorder. Early life adversities are a significant risk factor for PD and the sex-specific enhancement of the ventilatory response to CO_2 inhalation in rats is an attractive model to address this question²⁹. Here, we show that in NMS females endogenous release of E_2 during CO_2 inhalation is insufficient to maintain the ventilatory response within a normal range. These data support our main hypothesis and indicate that mature (functional) ovaries are necessary to observe an excessive ventilatory response to CO_2 inhalation in NMS females. This, and the involvement of the ORX system in this process strengthens the model and our demonstration that NMS disrupts E_2 regulation of ORX neurons point to a novel mechanism in the pathophysiology of PD in females.

Neonatal maternal separation affects E_2 signaling regulating the response to CO_2 inhalation

Progesterone and E₂ both fluctuate across the estrus cycle. However, the largest NMS-related increase in CO_2 response coincided with the peak in E₂ (proestrus) and following OVX, restoring normal E2 levels alone was sufficient to reinstate an excessive ventilatory response in NMS rats. We, therefore, conclude that E_2 plays a primary role in the enhanced response to CO2. NMS does not affect the cyclic changes in E_2 or progesterone under basal conditions (Fig. 1C;⁴⁶) but attenuates E_2 release following CO₂ exposure, especially during proestrus. The sympathetic system regulates ovarian E₂ secretion⁴⁷, and ovarian aromatase expression peaks during proestrus⁴⁸. Since plasma E₂ closely reflects brain levels⁴⁹, such impairment in E₂ signalling within the brain of NMS females is likely. The inability of NMS females to augment E_2 in response to CO_2 during proestrus suggests that NMS reduced E_2 synthesis capacity and thus compromise the response to an acute challenge. The relationships between E2 levels and the intensity of the ventilatory response suggest that impairment of E₂ signalling contributes to the abnormal respiratory phenotype of NMS females. Experiments performed on OVX females show that E₂ can attenuate the excessive CO₂ response of NMS females; however, higher levels are necessary.

Neonatal maternal separation augments ORX activation under basal conditions

Having previously shown that NMS does not affect the carotid body's response to CO_2 in male and female rats⁵⁰, our investigation focused on central mechanisms regulating the ventilatory response to CO₂. Orexin neurons project to key medullary areas regulating breathing, including those that generate respiratory rhythm and contribute to CO₂ chemosensitivity⁹. The clinical evidence implicating ORX in PD is important^{11,51} and our results showing that NMS augments ORX_A levels in the hypothalamus are consistent with clinical and preclinical data. A similar increase has been reported in males¹⁸ but since regulation of ORX neurons likely differs between sexes^{19,22}, testing this effect in females was necessary. ORX synthesis is activity-dependent and highly plastic⁵². In light of the close relationship between the hypothalamo-pituitary adrenal (HPA) axis and the ORX system^{19,53} the enhancement of basal HPA activity commonly reported in animals and humans who experienced early life adversities could explain the higher ORX_A level in hypothalamic extracts⁵⁴⁻⁵⁶. In adult rats, however, disruption of HPA axis function by NMS is significant only in males^{57,58}. Thus, another mechanism should be considered to explain this result.

In control females, comparison of *c-Fos* expression between females experiencing high (proestrus) and low (OVX) E2 clearly supports an inhibitory action of estrogens on ORX neurons. Conversely, the high c-Fos/ ORX_A ratio observed in NMS females, regardless of the ovarian function, suggests a generally higher degree of basal activity and a reduced sensitivity to E2 and/or insufficient levels. This result therefore provides a plausible explanation for greater level of ORX_A in hypothalamic extracts and the larger ventilatory response to CO_2 inhalation. The latter interpretation is supported by fact that NMS augmented the *c-Fos*/ORX_A ratio in PeF/DMH areas that, unlike the LH, regulate cardiorespiratory homeostasis³⁷. Moreover, pre-treatment with SB334867 prevented NMS-related increase in the ventilatory response to CO_2 .

Neonatal maternal separation disrupts E_2 regulation of ORX neurons

ORX neurons are essential to several homeostatic functions. To the best of our knowledge, this is the first study documenting the impact of natural fluctuations in ovarian hormones (and OVX) on basic properties and excitatory synaptic inputs in females. While natural fluctuations in ovarian hormones have no impact on basic properties, the Vm and capacitance values obtained during the natural E_2 nadir (metestrus) differs from those recorded following OVX. While OVX is the gold standard in preclinical research for evaluating gonadal hormone effects in females⁵⁹, these results remind us that the changes induced by OVX may be more complex than a simple reduction of circulating hormones. Keeping that limitation in mind, the opposing effects of OVX on Vm between NMS and controls nonetheless indicate that NMS affects the way ovarian hormones influence this important property of ORX neurons.

Orexin neurons are the target of multiple afferent signals form diverse origins^{10,60,61}. The frequency and amplitude of spontaneous EPSC's reflect the number and the strength of excitatory synaptic inputs acting on ORX neurons, respectively. E_2 acts via both membrane and nuclear receptors and the results reported here provide valuable insights into the mechanisms by which endogenous E_2 contributes to inhibition of ORX neurons. EPSC frequencies measured in controls were inversely related to basal plasma E_2 levels associated with natural cyclic fluctuations or OVX; exogenous E_2 elicited a similar decrease in frequency in the minutes that followed its application onto slices. This implies that both E_2 receptor types could regulate the number of synapses converging onto ORX neurons. Conversely, the fact that only acute E_2 reduced EPSCs amplitude suggests that regulation of synaptic strength by E_2 signalling is rapid but transient.

E₂ is generally known to promote dendritic spine formation, potentiate excitatory synaptic transmission, and reduce the efficacy of GABAergic inhibition⁶²⁻⁶⁵. In the cortex and the hippocampus, however, application of LY 3201 (a selective agonist of the nuclear receptor ER β) can elicit an opposite response by reducing dendritic spines and increasing expression of glutamic acid decarboxylase (GAD)⁶⁶. This increase in GAD expression, combined with a reduction in the expression of NMDA receptors shifts the balance between excitatory and inhibitory neurotransmission in favor of inhibition⁶⁶. Together, these effects explain the anxiogenic and anxiolytic actions of ER α and ER β , respectively⁶⁷. Since E₂ inhibits expression of ERs⁶⁸, region-specific changes in the relative expression of ERα and ERβ likely contribute to the phasedependent effects reported here. While NMS affects ERB expression in the hippocampus of males⁶⁹, its impact in females is yet to be tested.

At the system level, the CO₂ responses measured in controls indicate that as E_2 declines across the cycle, the increased activation of ORX cells is dampened to prevent excessive hyperphoea. Obviously, this mechanism is not fully functional in NMS females. Regulation of ORX neurons is a complex process that involves an important local network of neurons and astrocytes⁶⁰ but obviously, NMS reduces E_2 's actions on these cells. In fact, the CO₂ response following E_2 replacement in OVX NMS females suggests that depending on the concentration administered, E_2 may have excitatory or inhibitory effects. Interestingly, PD is rare following menopause but E_2 replacement therapy has been linked with the development of panic attacks in some patients⁷⁰.

Limitations and conclusion

Inadequate modeling of human disease hinders translation of basic knowledge into effective treatment for human²¹. While our study shows that NMS closely reproduces developmental and cyclic changes in the respiratory manifestations of PD and enhancement of ORX modulation, we must keep in mind that animal research cannot reproduce the complex psychosocial reality often associated with PD. Furthermore, the estrus cycle in rodents is not equivalent to the menstrual cycle in humans⁵⁹. That being said, NMS nonetheless meets key criteria expected from an animal model, including timedependent and sex-specific effects on respiration 20,71 . The results reported here, therefore, offer valuable insights into the basic mechanism in this neurological disorder affecting female rats. Our demonstration that NMS disrupts the inhibitory actions of E₂ on respiratory control are significant as they offers new avenues to alleviate PD.

Acknowledgements

L.T.L. was supported by National Council for Scientific and Technological Development CNPq–Brazil (206239/2014-9-PDE) and an operating grant from the Canadian Institutes of Health Research (MOP 133686 to R.K. and F.B.) and the Fondation de l'Institut Universitaire en Cardiologie et Pneumologie de Québec (R.K.). The authors acknowledge the technical support of Dr. R. Gulemetova, Dr. Olivier Pothier-Piccinin, Agathe Bernet, and Anabel Buteau-Poulin in this research. We also acknowledge the generous intellectual contributions and guidance offered by Dr. G. Drolet.

Author details

¹Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada. ²Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada. ³INRAE, Université de Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, F-33000 Bordeaux, France. ⁴Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences. Département de Psychiatrie et de Neurosciences, Université Laval, Québec, QC, Canada

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/10.1038/s41398-020-01076-x).

Received: 25 September 2020 Revised: 1 October 2020 Accepted: 20 October 2020

Published online: 10 November 2020

References

- Grassi, M. et al. Are respiratory abnormalities specific for panic disorder? A meta-analysis. *Neuropsychobiology* 70, 52–60 (2014).
- Su, V. Y.-F. et al. Sleep apnea and risk of panic disorder. Ann. Fam. Med. 13, 325–330 (2015).
- Freire, R. C. et al. Clinical features of respiratory and nocturnal panic disorder subtypes. *Psychiatry Res.* 152, 287–291 (2007).
- Klein, D. F. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch. Gen. Psychiatry 50, 306–317 (1993).
- Vollmer, L. L., Strawn, J. R. & Sah, R. Acid-base dysregulation and chemosensory mechanisms in panic disorder: a translational update. *Transl. Psychiatry* 5, e572 (2015).
- Coryell, W., Pine, D., Fyer, A. & Klein, D. Anxiety responses to CO₂ inhalation in subjects at high-risk for panic disorder. J. Affect Disord. 92, 63–70 (2006).
- Gorman, J. M. et al. Anxiogenic effects of CO₂ and hyperventilation in patients with panic disorder. Am. J. Psychiatry 151, 547–553 (1994).
- Carrive, P. & Kuwaki, T. in *Current Topics in Behavioral Neurosciences* (eds Lawrence, A. J., & de Lecea, L), vol. 33, 157–196 (Springer, 2017).
- Gestreau, C., Bevengut, M. & Dutschmann, M. The dual role of the orexin/ hypocretin system in modulating wakefulness and respiratory drive. *Curr. Opin. Pulm. Med* 14, 512–518 (2008).
- Li, A. & Nattie, E. E. Orexin, cardio-respiratory function and hypertension. Front. Neurosci. 8, 22 (2014).
- 11. Johnson, P. L. et al. A key role for orexin in panic anxiety. *Nat. Med* **16**, 111–115 (2010).
- Johnson, P. L. et al. Orexin 1 and 2 receptor involvement in CO₂-induced panic-associated behavior and autonomic responses. *Depress Anxiety* 32, 671–683 (2015).
- Johnson, P. L. et al. Activation of the orexin 1 receptor is a critical component of CO₂-mediated anxiety and hypertension but not bradycardia. *Neuropsychopharmacology* 37, 1911–1922 (2012).
- 14. Asselmann, E. et al. Assessing the interplay of childhood adversities with more recent stressful life events and conditions in predicting panic pathology

among adults from the general population. J. Affect Disord. 225, 715-722 (2018).

- Battaglia, M., Ogliari, A., D'Amato, F. & Kinkead, R. Early-life risk factors for panic and separation anxiety disorder: insights and outstanding questions arising from human and animal studies of CO₂ sensitivity. *Neurosci. Biobehav. Rev.* 46, 455–464 (2014).
- Ogliari, A. et al. The relationships between adverse events, early antecedents, and carbon dioxide reactivity as an intermediate phenotype of panic disorder: a general population study. *Psychother. Psychosom.* **79**, 48–55 (2010).
- 17. Sargin, D. The role of the orexin system in stress response. *Neuropharmacology* **154**, 68–78 (2019).
- Feng, P., Vurbic, D., Wu, Z. & Strohl, K. P. Brain orexins and wake regulation in rats exposed to maternal deprivation. *Brain Res.* **1154**, 163–172 (2007).
- Grafe, L. A. & Bhatnagar, S. Orexins and stress. Front. Neuroendocrinol. 51, 132–145 (2018).
- Schenberg, L. C. Towards a translational model of panic attack. *Psychol. Neurosci.* 3, 9–37 (2010).
- Perry, C. J. & Lawrence, A. J. Hurdles in Basic Science Translation. Front Pharm. 8, 478–478 (2017).
- Grafe, L. A. & Bhatnagar, S. The contribution of orexins to sex differences in the stress response. *Brain Res.* **1731**, 145893 (2018).
- Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav Rev. 35, 565–572 (2011).
- Nillni, Y. I., Pineles, S. L., Rohan, K. J., Zvolensky, M. J. & Rasmusson, A. M. The influence of the menstrual cycle on reactivity to a CO₂ challenge among women with and without premenstrual symptoms. *Cogn. Behav. Ther.* 46, 239–249 (2017).
- Reardon, L. E., Leen-Feldner, E. W. & Hayward, C. A critical review of the empirical literature on the relation between anxiety and puberty. *Clin. Psychol. Rev.* 29, 1–23 (2009).
- Nillni, Y. I., Toufexis, D. J. & Rohan, K. J. Anxiety sensitivity, the menstrual cycle, and panic disorder: a putative neuroendocrine and psychological interaction. *Clin. Psychol. Rev.* **31**, 1183–1191 (2011).
- 27. Russell, S. H. et al. Orexin A interactions in the hypothalamo-pituitary gonadal axis. *Endocrinology* **142**, 5294–5302 (2001).
- El-Sedeek, M., Korish, A. A. & Deef, M. M. Plasma orexin-A levels in postmenopausal women: possible interaction with estrogen and correlation with cardiovascular risk status. *BJOG.* **117**, 488–492 (2010).
- Genest, S. E., Gulemetova, R., Laforest, S., Drolet, G. & Kinkead, R. Neonatal maternal separation induces sex-specific augmentation of the hypercapnic ventilatory response in awake rat. J. Appl Physiol. **102**, 1416–1421 (2007).
- Tenorio-Lopes, L. et al. Neonatal maternal separation opposes the facilitatory effect of castration on the respiratory response to hypercapnia of the adult male rat: Evidence for the involvement of the medial amygdala. J. Neuroendocrinol. 29, e12550–e12550 (2017).
- Leibold, N. K et al. Carbon dioxide inhalation as a human experimental model of panic: the relationship between emotions and cardiovascular physiology. *Biol. Psychol.* 94, 331–340 (2013).
- Leibold, N. K et al. CO₂ exposure as translational cross-species experimental model for panic. *Transl. Psychiatry* 6, e885–e885 (2016).
- Pierce, A. N., Ryals, J. M., Wang, R. & Christianson, J. A. Vaginal hypersensitivity and hypothalamic–pituitary–adrenal axis dysfunction as a result of neonatal maternal separation in female mice. *Neuroscience* 263, 216–230 (2014).
- Fournier, S., Gulemetova, R., Baldy, C., Joseph, V. & Kinkead, R. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 308, R659–R667 (2015).
- Zhang, W., Zhang, N., Sakurai, T. & Kuwaki, T. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. *Brain Res.* **1262**, 25–37 (2009).
- Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. *Nature* 437, 556–559 (2005).
- Sunanaga, J., Deng, B.-S., Zhang, W., Kanmura, Y. & Kuwaki, T. CO₂ activates orexin-containing neurons in mice. *Respiratory Physiol. Neurobiol.* 166, 184–186 (2009).
- Oberlander, J. G. & Woolley, C. S. 17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J. Neurosci. 37, 12314–12327 (2017).

- Fournier, S. et al. Distinct dampening effects of progesterone on the activity of nucleus tractus solitarus neurons in rat pups. *Exp. Physiol.* 104, 463–468 (2019).
- Baldy, C., Chamberland, S., Fournier, S. & Kinkead, R. Sex-specific consequences of neonatal stress on cardio-respiratory inhibition following laryngeal stimulation in rat pups. *eNeuro.* 4, ENEURO.0393-17.2017 (2017).
- Fournier, S. et al. Gestational stress promotes pathological apneas and sexspecific disruption of respiratory control development in newborn rat. J. *Neurosci.* 33, 563–573 (2013).
- Putnam, R. W., Conrad, S. C., Gdovin, M. J., Erlichman, J. S. & Leiter, J. C. Neonatal maturation of the hypercapnic ventilatory response and central neural CO₂ chemosensitivity. *Respir. Physiol. Neurobiol.* **149**, 165–179 (2005).
- Reed, V. & Wittchen, H. U. DSM-IV panic attacks and panic disorder in a community sample of adolescents and young adults: how specific are panic attacks? J. Psychiatr. Res 32, 335–345 (1998).
- Lovick, T. A. Sex determinants of experimental panic attacks. *Neurosci. Biobehav Rev.* 46P3, 465–471 (2014).
- Gorman, J. M. et al. Physiological changes during carbon dioxide inhalation in patients with panic disorder, major depression, and premenstrual dysphoric disorder: evidence for a central fear mechanism. *Arch. Gen. Psychiatry* 58, 125–131 (2001).
- Dumont, F. S., Biancardi, V. & Kinkead, R. Hypercapnic ventilatory response of anesthetized female rats subjected to neonatal maternal separation: Insight into the origins of panic attacks? *Respiratory Physiol. Neurobiol.* **175**, 288–295 (2011).
- Uchida, S. & Kagitani, F. Neural mechanisms involved in the noxious physical stress-induced inhibition of ovarian estradiol secretion. *Anat. Rec.* 302, 904–911 (2019).
- Kobayashi, H., Yoshida, S., Sun, Y.-J., Shirasawa, N. & Naito, A. Changes of gastric aromatase and portal venous 17β-estradiol during the postnatal development and estrus cycle in female rats. *Endocrine* **46**, 605–614 (2014).
- Sze, Y., Gill, A. C. & Brunton, P. J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. *J. Neuroendocrinol.* 30, e12644 (2018).
- Soliz, J., Tam, R. & Kinkead, R. Neonatal maternal separation augments carotid body response to hypoxia in adult males but not female rats. *Front Physiol.* 7, 432 (2016).
- Flores, Á., Saravia, R., Maldonado, R. & Berrendero, F. Orexins and fear: implications for the treatment of anxiety disorders. *Trends Neurosci.* 38, 550–559 (2015).
- Gao, X.-B. & Wang, A. H. Experience-dependent plasticity in hypocretin/ orexin neurones: re-setting arousal threshold. *Acta Physiologica* 198, 251–262 (2010).
- Winsky-Sommerer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24, 11439–11448 (2004).
- Chintamaneni, K., Bruder, E. D. & Raff, H. Programming of the hypothalamicpituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific. *Endocrinology* **155**, 1763–1770 (2014).
- Weaver, I. C. et al. Epigenetic programming by maternal behavior. *Nat. Neurosci.* 7, 847–854 (2004).
- de Kloet, E. R., Sibug, R. M., Helmerhorst, F. M. & Schmidt, M. Stress, genes and the mechanism of programming the brain for later life. *Neurosci. Biobehav Rev.* 29, 271–281 (2005).
- Wigger, A. & Neumann, I. D. Periodic maternal deprivation induces genderdependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. *Physiol. Behav.* 66, 293–302 (1999).
- Genest, S. E., Gulemetova, R., Laforest, S., Drolet, G. & Kinkead, R. Neonatal maternal separation and sex-specific plasticity of the hypoxic ventilatory response in awake rat. J. Physiol. 554, 543–557 (2004).
- Koebele, S. V. & Bimonte-Nelson, H. A. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. *Maturitas* 87, 5–17 (2016).
- Burt, J., Alberto, C. O., Parsons, M. P. & Hirasawa, M. Local network regulation of orexin neurons in the lateral hypothalamus. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **301**, R572–R580 (2011).
- Sakurai, T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 15, 719–731 (2014).
- Woolley, C. S. Acute effects of estrogen on neuronal physiology. Annu. Rev. Pharmacol. Toxicol. 47, 657–680 (2007).

- Woolley, C. & McEwen, B. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. *J. Neurosci.* 12, 2549–2554 (1992).
- Smejkalova, T. & Woolley, C. S. Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. *J. Neurosci.* 30, 16137–16148 (2010).
- Mukherjee, J. et al. Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABA_A receptors at inhibitory synapses. *Proc. Natl Acad. Sci. USA* **114**, 11763–11768 (2017).
- 66. Tan, X-j et al. Reduction of dendritic spines and elevation of GABAergic signaling in the brains of mice treated with an estrogen receptor β ligand. *Proc. Natl Acad. Sci. USA* **109**, 1708–1712 (2012).
- Walf, A. A. & Frye, C. A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. *Neuropsychopharmacology* **31**, 1097–1111 (2006).

- Murata, T., Narita, K. & Ichimaru, T. Rat Uterine Oxytocin Receptor and Estrogen Receptor α and β mRNA Levels are Regulated by Estrogen Through Multiple Estrogen Receptors. J. Reprod. Dev. 60, 55–61 (2014).
- Wang, H., Meyer, K. & Korz, V. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience. *Psychoneuroendocrinology* 38, 250–262 (2013).
- Kunte, H., Harms, L., Plag, J., Hellweg, R. & Kronenberg, G. Acute onset of panic attacks after transdermal estrogen replacement. *Gen. Hospital Psychiatry* 36, e7 (2014).
- 71. Moreira, F. et al. Modeling panic disorder in rodents. *Cell Tissue Res.* **354**, 1–7 (2013).
- 72. Paxinos, G. & Watson, C. *The rat brain in stereotaxic coordinates.* 4th Edition edn. (Academic Press, San Diego, 1998).