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Abstract

Studies carried out to analyse the risks of levees must include an evaluation of

the probabilities of occurrence of different failure mechanisms. The probabilis-

tic quantitative evaluation of these mechanisms remains difficult due to often

insufficient data, the natural variability of the materials, structures that are

very long, and the unavailability of mechanical models for certain failure

mechanisms. This makes it necessary to call for expert judgement to evaluate

the probabilities of failure. However, expert judgement generally has qualita-

tive and subjective dimensions, and it includes biases that are liable to impair

the capacities of an expert to elicit their evaluations. This article proposes an

approach to processing expert judgement that includes the modalities of Indi-

vidual expert Elicitation, Calibration, Aggregation, and Debiasing of expert

judgement (IeCAD). This IeCAD approach has been developed for river levees

in view to correcting biased expert evaluations in the case of evaluating the

failure probability of structures.
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1 | INTRODUCTION

River levees are structures that are raised above the nat-
ural level of the land in view to protecting naturally
floodable areas (Peyras et al., 2015). Evaluating the reli-
ability of levees is a major challenge for the managers of
these structures in order to predict a risk of failure
(Kolen, Slomp, & Jonkman, 2013). Moreover, many reg-
ulations require the evaluation of the reliability of struc-
tures in a probabilistic framework, in order to
demonstrate levee failure risks (Ciria et al., 2013).

Many levees are old structures and there is limited
knowledge on their initial construction and further rein-
forcements over time, and information on their behav-
iour is seldom available (Ciria et al., 2013; Tourment,
2018). So evaluating the reliability of river levees in a
probabilistic framework is difficult due to the scarcity of
available data, related to the material composition of the
levee throughout its length, their geotechnical properties,
hydraulic and mechanical behaviour of levees as leak-
ages, pore pressures, and displacements. Contrary to
other hydraulic structures such as dams for which large
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amounts of data linked to their construction and moni-
toring are available (Mouyeaux et al., 2018), the lack of
information on the composition of levees often makes
difficult their evaluation using probabilistic approaches.

Several studies have proposed methods to quantify
the reliability of levees. The International Levee Hand-
book (Ciria et al., 2013) and the FloodProBE project
(FloodProbe, 2012) highlight existing methods for ana-
lysing the reliability of levees: (a) Expert assessment
based on previous experiences using index-based
methods; (b) Index-based methods in which a number of
performance features are assessed to determine reliabil-
ity; (c) Empirical models for levee failure mechanisms
where rules can be established to assess performance;
and (d) Physical models to determine the reliability of a
levee based solely on physics (FloodProbe, 2012).

According to this classification, different levee manage-
ment organisations have developed methods and tools to
conduct levee assessments. Serre, Peyras, Curt, Boissier, and
Diab (2007); Serre, Peyras, Tourment, and Diab (2008)
developed a method to assess levees based on data from
visual inspections. Vuillet, Peyras, Carvajal, Serre, and Diab
(2013) and Peyras et al. (2015) developed a levee assessment
method aimed at estimating the performance of levees
using probability distributions for levee performance indica-
tors. Reliability analysis tools can be used to determine the
overall reliability of a levee, such as the Risk Assessment for
Strategic Planning method in the UK (Gouldby, Sayers,
Mulet-Marti, Hassan, & Benwell, 2008), and the flood early
warning system in the Netherlands (Knoeff, Vastenburg,
Van den Ham, & Lopez de la Cruz, 2011).

Due to complex levee failure mechanisms (Simm et al.,
2012), the different sources of data for levee assessments
(Van der Meij et al., 2012), and the uncertainty on the data
available (Vuillet et al., 2013), a high level of expertise is
required to determine the probabilities of the levee failure
mechanisms (Mériaux & Royet, 2007). The objective of this
study is to propose a probabilistic approach to evaluate the
reliability of levees based on expert judgement. The study
proposes specific elicitation, calibration, and debiasing
methods to process expert evaluations and thus reduce the
biases intrinsic to expert judgement. In the end, the objec-
tive is to propose methods based on expert judgement for
estimating the levee failure probability (the estimated or
the subjective probability of failure), constituting an expert
estimate of the actual levee failure probability.

In the scientific literature, expert judgement is the
expression of an opinion based on knowledge and experi-
ence that the expert makes in response to a question (Ortiz
et al., 1991). Despite their competences and in-depth knowl-
edge, the opinions expressed by the expert contain the biases
specific to opinions and judgements (O'Hagan et al., 2006).
Indeed, there is always a transformation that can cause a

difference between the knowledge held and the way it is
presented and expressed (Bateson, 1979). The cognitive liter-
ature gives a definition of biases linked to expert judgement
(Yachanin & Tweney, 1982): biases are distortions of expert
reasoning that impair the validity of its inferences and con-
clusions (Kahneman, Slovic, & Tversky, 1982).

The methods of treating expert judgement are mainly
dealt with in the statistical literature, with applications in
economics (Lichtendahl Jr, Grushka-Cockayne, &
Winkler, 2013), insurance (Goulet, Jacques, & Pigeon,
2009), energy (Shlyakhter, Kammen, Brodio, & Wilson,
1994), and industry (Clemen & Lichtendahl, 2002; Cooke,
1991). They have been developed to reduce biases when
employing expert judgement and consist of three main
modalities for dealing with bias: (a) elicitation of expert
opinion, by focusing on developing the best modalities for
collecting opinions in view to eliciting the most precise
expert judgement possible (Vick, 2002), (Soll & Klayman,
2003), (Koehler & Harvey, 2004); (b) calibration of expert
judgements (Cooke, 1991), including the weighting of opin-
ions as a function of their pertinence, and their aggrega-
tion (Lichtendahl Jr et al., 2013); (c) debiasing expert
judgement, aimed at applying mathematical corrections to
expert evaluations (Clemen & Lichtendahl, 2002).

Regarding civil engineering, there are few works that
focus on treating expert judgement and reducing bias.
Peyras, Royet, and Boissier (2006) suggested employing
expert judgement to measure the occurrence of function
loss. Nonetheless, the subjective probabilities provided by
the experts were not subjected to any specific protocol
relating to their collection or treatment. Vuillet et al.
(2013) proposed modalities for eliciting expert judgement
aimed at reducing biases, though they did not lead to the
explicit reduction of cognitive biases.

This article first presents the development of a proto-
col for eliciting expert opinions in the form of failure
mechanisms probabilities. Then, a calibration and aggre-
gation model is proposed for the opinions expressed by a
panel of experts. Lastly, this article presents the develop-
ment of an approach used to debias the opinion of the
expert panel. The approach developed is applied to the
case of an existing levee.

2 | APPROACH TO EVALUATING
FAILURE PROBABILITIES BY
EXPERT JUDGEMENT

2.1 | Principles—general overview

The principle of the approach developed to evaluate the
failure probabilities of levees is based on the comparison
between:
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• The calibration variables whose true values are known
through numerical calculation, and which permit eval-
uating the capacity of the experts to provide a pertinent
and precise estimation, and then calibrate and debias
their evaluation,

• The variables of interest whose values are searched by
expert judgement.

The calibration variables are determined by expert
judgement on the one hand, and by numerical calcula-
tion on the other. The comparison between the expert
and numerical evaluation allows determining the calibra-
tion weighting given to the expert opinions of each expert
of the panel and the correction coefficients given to the
expert biases.

The proposed IeCAD (Individual elicitation, Calibra-
tion, Aggregation, and Debiasing) approach comprises
three steps of treating expert judgement (Figure 1):

• The elicitation by expert judgement of the failure proba-
bilities of levee failure mechanisms;

• The calibration and aggregation of the opinions of dif-
ferent experts in view to aggregating them;

• The debiaising of expert opinions in order to process the
biases of over- and under-confidence liable to impair
the calibrated and aggregated expert evaluations:

2.2 | Identification of the calibration
variables and the variables of interest

In our study, the variables of interest are the failure prob-
ability of cross-sections of an existing levee with respect
to the sliding, internal erosion, and scouring failure
mechanisms. Concerning the sliding mechanism, the
probability of failure can be assessed by a reliability anal-
ysis. Concerning internal erosion and scouring, these

both failure mechanisms are subject to many stability
criteria that can be found in the literature according to
the type of erosion, materials, and levee profiles (Ciria
et al., 2013; Vrijiling, Vrijling, 2001; Apel and Thieken,
Apel, Annegret, Thieken, Merz, & Blöschl, 2006,
Mazzoleni, Barontini, Ranzi, & Brandimarte, 2014;
Vorogushyn, Merz, Lindenschmidt, & Apel, 2010). So for
internal erosion and scouring mechanisms, it is difficult
to make formulation choices given the large number of
physical laws and parameters potentially combinable as
well as uncertainties resulting from these modelling
assumptions and from the natural variability of the prop-
erties of the material composition of the levee throughout
its length. In the end, there is not a really state of the art
consensus for the limit state conditions for internal ero-
sion and scouring in the national regulations, standards
and professional recommendations. Failure probabilities
of levee with respect to the internal erosion and scouring
failure mechanisms cannot be obtained easily with
mechanical and modelling approaches, as evidenced by
the important research carried out on the subject such as
in the ICOLD regional club “European Working Group
on Internal Erosion of Dams, Dikes and Levees and their
Foundations” (https://internal-erosion.irstea.fr/). So, we
are looking for the levee failure probability with respect
to internal erosion and scouring mechanisms using
expert judgement, and the variables of interest that we
consider in our study are the failure probability of levee
cross-sections with respect to these mechanisms.

The calibration variables must be of the same nature
as the variables of interest to permit calibration and
debiasing (Cooke, 1991). We adopted for the calibration
variables the failure probability of the cross-sections of
levees with respect to the sliding failure mechanism.
Indeed, the sliding mechanism has a precise formulation
of its limit conditions and so permits calculating a
failure probability using quantitative approaches (Peyras,
Merckle, Royet, Bacconnet, & Ducroux, 2010).

FIGURE 1 Explanatory chart of the

Individual expert Elicitation, Calibration,
Aggregation, and Debiasing (IeCAD) approach

developed
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To determine the calibration variables by numerical
calculation, we search the failure probability of the sliding
failure mechanism using a mechanical-probabilistic model
based on the limit equilibrium and in which the resistive
properties of the materials are modelled by probabilistic
laws (Mouyeaux et al., 2018). It is then possible to use
Monte Carlo simulations to obtain a probabilistic distribu-
tion of the safety factor and calculate the failure probabil-
ity of the cross-section studied. Figure 2 illustrates the
probabilistic distributions for friction and cohesion angle
on a levee cross-section. With Monte Carlo simulations
and considering a Morgenstern-Price method for sliding
criteria, the probabilistic distribution of the safety factor
obtained (Figure 2), and then the failure probability of the

levee cross-section can be evaluated considering the inte-
gral of safety factor distribution less than 1.

For the sliding failure mechanism, we study inner
slope instability in considering deep sliding circle into the
embankment and levee foundations, in order to study
slope instability conducting to the complete levee failure
(see the slope circle considered in Figure 3).

2.3 | Approach to elicit expert opinions
for river levees

Implementing the approach to eliciting expert opinions
starts with identifying a panel with several experts whose

FIGURE 2 Example of a probabilistic model of the resistive properties of materials for a levee cross-section
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activities are directly linked to river levees (Koehler &
Harvey, 2004).

Each of the experts of the panel is questioned individ-
ually on the failure probabilities of several levee cross-
sections to be evaluated with respect to different failure
mechanisms. The experts are given enough information
and time to fully understand the issue before being
questioned. At this purpose, a questionnaire form used to
collect the expert judgement was developed to this end.
For each calibration variable and variable of interest to
be elicited, the form contains three main items
(Figure 3): the question, the information, and the
response:

• The question asked to the experts concerns the sliding
failure mechanism: “Given all the information avail-
able, what is the probability Pf that the levee will fail
due to sliding of the downstream slope if a flood occurs
that reaches the crest of the levee?.” Each expert esti-
mates the probability Pf related to the sliding failure

probability in the hypothetic situation where the flood
reaches the crest of the levee. These estimates (vari-
ables of interest) will be after compared to the calcu-
lated probabilities (calibration variables) obtained in
the identical hydraulic situation.

• The information are the geometric, hydraulic, and geo-
technical data, the standard cross-section to be evalu-
ated, the probability laws of the geotechnical
characteristics of the cross-section, the data from the
deterministic analysis represented by the safety factor
SF related to the sliding failure mechanism.

• The response of the expert elicitations in the form of
an uncertainty interval and a most likely value:

• An uncertainty interval [quantile 5%, quantile
95%]. Civil engineers are used to working with such
quantiles since they are the same in semi-
probabilistic methods such as Eurocodes (Vuillet
et al., 2013),

• The most likely value contained in the uncertainty
interval elicited.

FIGURE 3 Example of a levee cross-section sheet taken from the questionnaire form
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2.4 | Expert opinion calibration and
aggregation approach for river levees

2.4.1 | Calibration of expert opinions

The approach to calibrating the panel experts' opinions is
based on Cooke's (1991) model. It consists in evaluating
and weighting the panel experts' opinions in relation to
calibration variables whose real values are known.
Cooke's (1991) model allows calculating an individual
calibration weight we for each expert and the relative cali-
bration weight w0

e in relation to all the experts of the
panel, since the closer this expert's elicitations are to real-
ity, the higher the calibration weight assigned to them is.

The calibration weight is determined on the basis of
the calibration score Ce and the entropy score Ke

according to the following formulas (Cooke, 1991):

we =Ce:Ke andw0
e =

Ce:Ke

Pz
e=1

Ce:Ke

, ð1Þ

where we is the calibration weight of the expert e, w0
e is

the calibration weight relative to the expert e in a panel
of experts, Ce is the expert e's calibration score e, Ke is the
expert e's entropy score e, and z is the number of experts.

The calibration score Ce permits evaluating the accu-
racy of the information given by the expert for the cali-
bration variables, by comparing between a distribution
obtained by the expert and a distribution calculated
numerically. It is determined by an error probability eval-
uated with the χ2 statistical test (interdependence test).
The calibration score Ce is evaluated by the following for-
mula (Cooke, 1991):

Ce=1−P 2*n*Ie c,pð Þð Þ=1−X 2 2*n*Ie c,pð Þð Þ, ð2Þ

where P() is the probability of a random variable follow-
ing a χ2 law; X2ðÞ is the distribution function of a random
variable following the χ2 law; n is the number of calibra-
tion variables; c is the calibration vector representing the
portion of true values included within each inter-quantile
interval c = {c1, c2,…, cj}; p is the theoretical probabilities
vector representing each inter-quantile interval p = {p1,

p2,…, pj} ; Ie c,pð Þ= Pj
i=1

ciln
ci
pi

� �
: relative information

between the theoretical probabilities p and the calibra-
tion vector c.

The entropy score Ke permits measuring the quantity
of information contained in the probabilistic distributions
given by the experts. It is based on a measure of the dis-
tances between the vector of subjective probabilities s and

the vector of theoretical probabilities p. The entropy score
Ke is evaluated by the following equation (Cooke, 1991):

Ke =
1
n

Xn

i= 1

Ie,i p,sð Þ, ð3Þ

where s is the vector of subjective probability rep-
resenting the subjective probabilities of each inter-
quantile interval. The probabilities of s are determined by
the percentage of each inter-quantile interval relative
to the probabilistic scale of the calibration

variable s= q5%−q0%
q100%−q0%

, q50%−q5%
q100%−q0%

, q95%−q50%
q100%−q0%

, q100%−q95%
q100%−q0%

n o
; and

Ie p,sð Þ= Pj
i=1

piln
pi
si

� �
is the relative information between

the vector of subjective probabilities s and the vector of
theoretical probabilities p.

2.4.2 | Aggregation of expert opinions

We propose applying the aggregation of the panel experts'
opinions by way of the median of the quantiles. The aim
is to conserve the initial form of the expert elicitations
given in a probabilistic format, with a value considered
as the most likely, and an uncertainty interval
(Lichtendahl Jr et al., 2013). This approach corresponds
to the weighted sum of the calibrated quantiles of the
panel experts' opinions. The aggregated quantiles (q5%,
q50%, q95%) are evaluated by the following formulas:

q5% =
X

w0
e:q5% eð Þ;q50% =

X
w0

e:q50% eð Þ;q95%

=
X

w0
e:q95% eð Þ,

ð4Þ

where q5%, q50%, q95% are the aggregated quantile
corresponding to a probability, respectively of 5, 50,
and 95%.

At the end of the expert opinion calibration and
aggregation phase, we now have a single evaluation of
the expert panel that takes into account the relative
weight of each expert in the panel. This calibrated and
aggregated evaluation is the response of the expert panel
to the question of evaluating the failure probabilities of
levee for a given failure mechanism.

2.5 | Expert judgement debiasing
approach for river levees

The aim is to apply mathematical corrections to the
panel's expert evaluations, in order to get as close as
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possible to the calibration variables. The objective is to
quantitatively identify the trend of the expert panel's
opinions for under- or over-confidence which impair the
estimation of the most likely value and the uncertainty
interval, and then to apply a mathematical correction.
We propose to implement an expert opinion debiasing
approach based on the model of Clemen and Lichtendahl
(2002), consisting in determining three correction coeffi-
cients by iterative calculation.

The first coefficient β is intended to correct the most
likely value corresponding to the 50% quantile:

R*
i = βRi, ð5Þ

where R*
i is the most likely debiased value; β is the cor-

rection coefficient of the most likely value; Ri is the cali-
brated and aggregated expert elicitation of the most likely
value (q50%).

The second coefficient αL is aimed at correcting the
value elicited of the lower bound of the uncertainty inter-
val, corresponding to the 5% quantile:

L*
i = β−αLð ÞRi + αLLi, ð6Þ

where L*i is the debiased lower bound of the uncertainty
interval; αL is the correction coefficient of the lower
bound of the uncertainty interval; Li is the calibrated;
and aggregated expert elicitation of the lower bound of
the uncertainty interval (q5%).

The purpose of the third coefficient αU is to correct
the elicited value of the upper bound of the uncertainty
interval, corresponding to the 95% quantile:

U*
i = β−αUð ÞRi + αUUi, ð7Þ

where U*
i is the debiased upper bound of the uncertainty

interval; αU is the correction coefficient of the upper
bound of the uncertainty interval; Ui is the calibrated;
and aggregated elicitation of the upper bound of the
uncertainty interval (q95%).

3 | APPLICATION AND RESULTS
OF THE APPROACH DEVELOPED

The levee studied is an earth-fill levee 5,500 m long
raised to protect a town in France (Figure 4). The height
of the levee varies from 1 to 6 m (Figure 5).

The approach developed was implemented by a panel
of six engineers having different professional backgrounds

and experiences (geotechnics, river hydraulics, civil engi-
neering, and hydrology). The calibration variables (vari-
ables no. 1–30) correspond to failure probabilities
associated with the sliding mechanism for 30 cross-sec-
tions: these variables are obtained by numerical
mechanical-probabilistic calculation and permit a robust
statistical analysis.

The study was applied to 30 variables of interest (vari-
ables no. 31–60; Table 1) obtained by expert judgement:

• Variables of interest no. 31–40 correspond to failure
probabilities of the sliding mechanism. For these
10 variables of interest, we have expert judgement
evaluation but also numerical calculation evaluation,
so we will be able to compare the results from IeCAD
approach to the true values of the variables,

• Variables of interest no. 41–60 correspond to failure
probabilities with respect to internal erosion and
scouring mechanisms.

3.1 | Application and results of the
expert opinion elicitation phase

Figure 6 presents the elicitations of expert no. 1 relating
to failure probabilities (Pf) regarding three failure mecha-
nisms. The number of the variable related to its cross
section is given in the vertical axis, the expert values
(quantiles 5, 50, 95%) are the black squares and the true
values obtained by calculations are the grey dots.

Table 2 shows the distribution the true known values
of the calibration variables in the interquantile intervals
elicited by the six experts for the cross-sections
no. 1 to 30:

The percentage of the true values contained in the
range [5%, 95%] varies from 40% (17% + 23%) for expert
no. 3 to 66% (33% + 33%) for expert no.2, which is consid-
erably lower than the target percentage of 90% (90% cor-
responds to the interquantile interval between quantiles
5 and 95%). The distribution of the median of the elicita-
tions of expert opinions contains 55% of the true values
in the uncertainty interval [5%, 95%], which is also con-
siderably lower than the target percentage of 90%. This
means that a large number of true values lie outside the
uncertainty intervals elicited by the panel experts,
reflecting a trend towards overconfidence or under-
confidence in the expert judgement.

The distribution of the median of the elicitations of
expert opinions contains 26% of true values in the inter-
val [0%, 5%], which is higher than target percentage of
5%. This means that a high percentage of the expert eval-
uations led to overestimated values for the failure
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probability, reflecting a trend towards under-confidence,
and expressing caution in the experts' evaluations. These
overestimated evaluations tend towards safety, but can
also lead to decisions to carry out expensive levee rein-
forcement works in excess of their real necessity. On the
other hand, the distribution of the mean of the elicita-
tions of expert opinions contains 19% of true values in
the interval [95%, 100%], which is also higher than the
target percentage of 5%. This means that a high

percentage of the expert evaluations also gave under-
estimated failure probability values, reflecting a trend
towards overconfidence. These underestimated evalua-
tions do not tend towards safety and lead to over-
estimating the levee's resistance. The combined presence
of large numbers of biases of over- and under-confidence
(with nonetheless a greater bias towards under-
confidence tending towards safety) demonstrate in a gen-
eral way the biases intrinsic to expert evaluations.

FIGURE 4 Aerial view of the levee studied (scale: 1/25,000 in A3 format)
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3.2 | Application and results of the
expert opinion calibration phase

The result of the expert opinion calibration is given with
the mean of the calibration scores, the entropy scores and
relative calibration weighting (Table 3), obtained from
the 30 calibration variables (no. 1–30).

Since elicitation is performed on the q5%, q50% and
q95% quantiles, the theoretical probability vector
p associated with the inter-quantile intervals is p = {0.05,
0.45, 0.45, 0.05}. The calibration vectors c can be obtained
directly from Table 2 (for expert 1, c = {0.30, 0.37, 0.23,
0.10}). The calibration score Ce presented in Table 3 is
then calculated using the relative information between
c and p vectors, Ie(c,p) according Equation 2 (for expert 1:
Ie(c,p) = 0.38, which gives a score Ce = 0.79 by using
Equation 2).

For the calculation of the entropy score, as the
elicited failure probability values are expressed in the for-
mat (10−x), we change the variable in order to conserve a
constant difference in absolute value between (10−x)
and (10−(x − 1)), which amounts to applying the common
logarithm to the elicited probabilities (log10(Pf)). For
example, expert 1 elicits the probability values of 10−4,
10−2 and 10−1 for the quantiles 5, 50 and 95%, respec-
tively, for the first calibration variable. With the variable
change to base log10, we thus obtain q5% = −4, q50% = −2
and q95% = −1, which makes it possible to evaluate the
subjective probability vector s1 = {0.24, 0.39, 0.19, 0.18}

and the relative information Ie,1(p,s) = 0.31 with Equa-
tion 3. The entropy score Ke is finally evaluated with
Equation 3, and corresponds to the average of the relative
information Ie,i(p,s) evaluated for the 30 calibration
variables.

The results obtained from the calibration of the expert
opinions show that the values of the calibration score
(Ce) vary between 3 and 91%. The highest value was
obtained by expert no.2, indicating that their elicitations
contained the highest number of true calibration values
in comparison to the elicitations of the other panel
experts. On the contrary, the lowest calibration score was
obtained by expert no.3, indicating that their elicitations
contained the lowest number of true calibration values.

Regarding the entropy score, the values varied from
0.52 to 1.04. The highest value was obtained by expert
no.4, indicating that the uncertainty intervals elicited
by expert no. 4 were more precise than those given by
the other experts of the panel. On the contrary, the
lowest score was obtained by expert no.5, indicating
that the uncertainty intervals elicited by this expert
were wider than those given by the other experts of the
panel.

Finally, the calibration phase allowed assigning a rel-
ative calibration weighting to each expert, taking into
account both the pertinence and the precision of their
evaluations. In our application, it turned out that expert
no. 2 had the best relative calibration weighting (40%) in
the panel, contrary to expert no.5 (3%).

FIGURE 5 Standard cross-section

TABLE 1 Table summarising the calibration variables and the variables of interest used in the approach

Failure mechanism

Calibration variables Variables of interest

Number of variables No. of variable Number of variables No. of variable

Sliding 30 No.1–30 10 No. 31–40

Internal erosion — — 10 No. 41–50

Scouring — — 10 No. 51–60
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3.3 | Application and results of the
expert opinion aggregation phase

The aggregation phase corresponds to a weighted sum
performed for each of the quantiles q5%, q50% and q95%
(using Equation 4) and for each of the variables. For the
levee section corresponding to variable n�1, the results
obtained are q5% = −3.34, q50% = −1.93 and q95% = −0.72
(in log10[Pf] scale), which correspond respectively to
q5% = 4.6E−04, q50% = 1.2E−02 and q95% = 1.9E−01 (Pf).
Figure 7 illustrates the result for the 30 calibration

variables associated with the theoretical levee cross-
sections (continuous lines).

Figure 7 can be interpreted using Table 4 below,
which presents the distribution of the true values of the
calibration variables in the inter-quantile intervals at the
end of the expert opinion aggregation phase:

At the end of the calibration and aggregation phase,
we observed that the distributions of the calibrated and
aggregated expert opinions contained 60% of true
values in the uncertainty interval [5%, 95%]. Thus, the
aggregation and the calibration of expert opinions led

FIGURE 6 Elicitations of expert

no. 1 relating to calibration variables
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to a higher number of true values in the uncertainty
interval [5%, 95%] in comparison to the raw elicitations
comprising 55% of true values in this interval (Table 2).
This calibration and aggregation phase therefore
improved the quality of the expert evaluations, despite
the fact that the correction did not allow reaching the
percentage of the ideal target interval (90%), leaving a
still considerable bias of overconfidence or under-
confidence following the calibration and aggregation
phase.

More specifically, the results obtained following the
calibration and aggregation phase showed a substantial
reduction of the true values in the overconfidence inter-
val [95%; 100%], falling from 19% (Table 2) to 10%
(Table 4), which was a significant improvement and thus
tending to increase the reliability of the levees. The evolu-
tions in the interval [5%, 95%] were slight, changing from
26% (Table 2) to 30% (Table 4), expressing a small evolu-
tion in processing under-confidence during the calibra-
tion and aggregation phase.

TABLE 2 Distribution of the true

values of the calibration variables

(no. 1–30) in the interquantile intervals

elicited by the experts and the median

of the elicitations

Calibration variable (no. 1–30)

Inter-quantile interval [0%, 5%] [5%, 50%] [50%, 95%] [95%, 100%]

Expert no. 1

(Pf) (no. 1–30) n 9 11 7 3

% 30% 37% 23% 10%

Expert no. 2

(Pf) (no. 1–30) n 9 10 10 1

% 30% 33% 33% 3%

Expert no. 3

(Pf) (no. 1–30) n 10 5 7 8

% 33% 17% 23% 27%

Expert no. 4

(Pf) (no. 1–30) n 10 8 8 4

% 33% 27% 27% 13%

Expert no. 5

(Pf) (no. 1–30) n 0 4 15 11

% 0% 13% 50% 37%

Expert no. 6

(Pf) (no. 1–30) n 8 8 6 8

% 27% 27% 20% 27%

Median of elicitations

(Pf) (no. 1–30) n 7.67 7.67 8.83 5.83

% 26% 26% 29% 19%

TABLE 3 Results of the expert opinion calibration phase in comparison to the calibration variables

No. expert

Calibration score Entropy score log10(Pf) Weight of individual calibration Weight of relative calibration

Ce Ke we w0
e

1 0.79 0.74 0.59 0.28

2 0.91 0.91 0.83 0.40

3 0.03 0.79 0.02 0.01

4 0.46 1.04 0.48 0.23

5 0.14 0.44 0.06 0.03

6 0.19 0.52 0.10 0.05

Total 1
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3.4 | Application and results of the
expert panel opinion debiasing phase

The correction coefficients defined in the debiasing phase
were obtained by an iterative calculation, starting with
the coefficient β (Equation 5): until obtaining 50% of the
true values in the interquartile interval [0%,50%] (and
therefore 50% in the interquartile interval [50%,100%]).
Then, the correction coefficients αL and αU
(Equations (6) and (7) respectively) are also obtained by
iterative calculation: until obtaining respectively 5% of

the true values in the interquantile interval [0%, 5%] and
5% of the true values in the inter-quantile interval [95%,
100%]. The correction coefficients obtained by these itera-
tive calculations are: (a) coefficient β = 1.22 for the cor-
rection of quantile q50%, (b) coefficient αL = 1.51 for the
correction of quantile q5% and (c) coefficient αU = 1.83
for the correction of quantile q95%.

• The correction coefficient (β = 1.22 ) shows that panel
of experts tended to reduce its estimations regarding the
most likely central variables (Ri). Thus, a coefficient β

FIGURE 7 Calibration variables,

calibrated and aggregated calibration

variables and their uncertainty intervals

TABLE 4 Distribution of the true

calibration values (no. 1–30) in the

inter-quantile intervals

Calibrated and aggregated elicitations of calibration variables (no. 1–30)

Interquartile interval [0%, 5%] [5%, 50%] [50%, 95%] [95%, 100%]

(Pf) (no. 1–30) n 9 15 3 3

% 30% 50% 10% 10%
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must be applied to the central values resulting from the
aggregation phase to obtain the value of the 50% qua-
ntile of the calibration variable;

• The correction coefficient ( αL = 1.51 ) reflects that the
distances estimated between (Li) and (Ri) resulting
from the aggregation phase tend to be lower than those
they should have been. Thus, it was necessary to apply
a coefficient αL to obtain the debiased distance
between the 5% and the 50% quantile;

• The correction coefficient ( αU = 1.83 ) reflects that the
distances estimated between (Ri) and (Ui) resulting
from the aggregation phase tend to be lower than they
should have been. Thus, a coefficient αU must be
applied to obtain the debiased distance between the
50% and the 95% quantile.

For the levee section corresponding to variable n�1,
with these correction coefficient values, and using Equa-
tions (5)–(7), the values of the debiased quantiles are

q5% = −4.48, q50% = −2.35 and q95% = −0.14 (in log10(Pf)
scale), which correspond, respectively, to q5% = 3.3E−05,
q50% = 4.4E−03 and q95% = 7.2E−01 (Pf). Figure 8 shows
the debiased opinions of the expert panel resulting from
the application of correction coefficients to the aggre-
gated opinions of the panel of experts.

Figure 8 is interpreted using Table 5 below, which
presents the distribution of the true values of the calibra-
tion variables in the interquantile intervals following the
debiasing phase.

At the end of the debiasing phase, we observed that the
distributions of the opinions of the expert panel contained
94% of true values in the uncertainty interval [5%, 95%].
Thus, the debiasing phase of the opinions of the expert
panel permitted reaching the percentage of the ideal target.

The results obtained after the debiasing phase show an
optimal reduction of true values in the overconfidence
interval [0%; 5%], falling from 30% (Table 4) to 3%
(Table 5), indicating a considerable improvement in the

FIGURE 8 Debiased calibration

variables of the panel of experts
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quality of the evaluation of the structures. The evolutions
in the interval [95%, 100%] were also considerable, decreas-
ing from 10% (Table 4) to 3% (Table 5), expressing a mar-
ked evolution in the treatment of overconfidence bias
during the expert opinion debiasing phase, tending towards
an improvement in the reliability of the structures.

3.5 | Synthesis of the IeCAD approach to
processing expert judgement

Figure 9 summarises the evolution of the quality of infor-
mation provided by expert judgement in the sequence of
the different phases of processing the IeCAD approach:

• interval [5%, 95%]: the distributions of the expert panel
opinions contained 55% of true values following the

elicitation phase, then 60% following the calibration
phase, then 94% following the debiasing phase;

• interval [0%, 5%]: the distributions of the expert panel
opinions contained 26% of true values following the
elicitation phase, then 30% following the calibration
phase, then 3% following the debiasing phase;

• interval [95%, 100%]: the distributions of the expert
panel opinions contained 19% of true values following
the elicitation phase, then 10% following the calibra-
tion phase, then 3% following the debiasing phase.

3.6 | Application to the variables
of interest

The expert judgement calibration and debiasing approach
was applied to the variables of interest. Figure 2 presents

TABLE 5 Distribution of the true

values of the calibration variables

(no. 1–30) in the debiased interquantile

intervals

Inter-quantile interval [0%, 5%] [5%, 50%] [50%, 95%] [95%, 100%]

(Pf) (no. 1–30) n 1 14 14 1

% 3% 47% 47% 3%

FIGURE 9 Evolution of the quality of information in the sequence of processing the Individual expert Elicitation, Calibration,
Aggregation, and Debiasing (IeCAD) approach
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the results on 30 variables of interest corresponding to
10 levee cross-sections studied for three failure mecha-
nisms (sliding, internal erosion, and scouring).

For variables of interest no. 31–40 relating to the slid-
ing mechanism, Table 6 shows the distribution of the
true values in the interquantile intervals, calibrated and
aggregated on the one hand, and aggregated and debiased
on the other.

At the end of the debiasing phase, we observed that
the distributions of the debiased expert panel opinions
contained 90% of true values in the uncertainty interval
[5%, 95%]. Thus, the expert panel opinion debiasing
phase permitted reaching the ideal target interval.

In detail, the results obtained after the debiasing
phase show a reduction of the true values in the under-
confidence interval [0%; 5%], falling from 20%

TABLE 6 Distribution of the true

values of the variables of interest

(no. 31–40) in the calibrated and

aggregated confidence intervals

Inter-quantile interval [0%, 5%] [5%, 50%] [50%, 95%] [95%, 100%]

Calibrated and aggregated variables

(Pf) (no. 31–40) n 2 5 2 1

% 20% 50% 20% 10%

Calibrated, aggregated, and debiased variables

(Pf) (no. 31–40) n 1 6 3 0

% 10% 60% 30% 0%

FIGURE 10 Debiased variables of

interest associated with their confidence

intervals
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(Table 6 – calibration and aggregation phase) to 10%
(Table 6- debiasing phase), which is a considerable
improvement, tending towards increased reliability of the
structures. The evolutions in the interval [95%, 100%] are
equally considerable, dropping from 10% (Table 6 – cali-
bration and aggregation phase) to 0% (Table 6- debiasing
phase), reflecting a substantial change in the treatment of
the overconfidence bias during the expert opinion
debiasing phase. These evolutions of overconfidence bias
are positive since they tend towards greater reliability for
the structure.

The correction provided by debiasing therefore
appears significant, demonstrating the advantage
of applying a full treatment including calibration-
aggregation and debiasing to the evaluations performed
by the panel of experts for failure probabilities. By way of
illustration, Figure 10 shows the treatment of the vari-
ables of interest for the internal erosion (no.41–50) and
scouring (no.51–60) failure mechanisms for which no
limit state models were available.

3.7 | Discussion

The results obtained in the case study show that the
calibration-aggregation phase as well as the debiasing
phase of the developed approach allow improving the
results obtained from expert elicitations.

The quality of the final result is logically conditioned
by the quality of the experts. Logically more experienced
experts can result in better evaluation of the levee failure
probability, statistically. This would be reflected in partic-
ular in the width of the uncertainty intervals ([5%, 95%]
in the case study): the better the experts, the narrower
the interval (leading to a more precise result); on the con-
trary, with less experienced experts, the interval obtained
would be wider (leading to an imprecise result).

In the case study, the panel was composed of six
experts, which is a rather high number for a risk analysis
study of river levee (Peyras et al., 2012). These experts
had different experiences in the concerned disciples
(geotechnics, civil engineering, hydraulics) and also dif-
ferent levels of qualification (junior, confirmed and
senior). Thus, there is necessarily a dispersion in their
assessments.

This article did not study the influence of the number
of experts on the results. In the case study, a panel of six
experts was selected in order to reproduce a panel of
experts as implemented in the river dike risk analysis
studies (typically 3–6 experts—see Peyras et al., 2012).
However, an increase in the number of experts would not
necessarily lead to an improvement in results: for exam-
ple, it can be expected that the quality of results would be

better if the number of experts were reduced by keeping
the most qualified experts. Thus, the professional qualifi-
cation of experts would have a greater influence on the
results in relation to the number of experts.

4 | CONCLUSION

Regarding the field of river levees, the lack of data on
structures, the uncertainties that impair them and the
lack of consensus in the state of the art for the limit states
related to internal erosion and scouring failure mecha-
nisms, reduce the opportunity of using statistical and
probabilistic methods for determining their failure proba-
bility using mechanistic-probabilistic approaches. This
makes expert judgement essential for evaluating the fail-
ure probabilities of levees with respect to different failure
mechanisms.

However, the presence of biases, which will impair
the opinions of experts, is a considerable drawback
when calling on expert judgement in a risk analysis
study. Consequently, our study proposed an approach
for evaluating the failure probabilities of levees based on
expert judgement and which includes the treatment of
the latter.

The approach proposed permits eliciting, calibrating,
aggregating and debiasing expert evaluations. The appli-
cation of this methodological approach provided signifi-
cant advantages:

• combining expert opinions based on calibration and
entropy scores;

• estimating a quantitative uncertainty on the final fail-
ure probability obtained using an uncertainty interval;

• identifying the best expert elicitations and assigning a
calibration weighting according to their pertinence
and precision;

• treating the presence of over- and under-confidence
bias quantitatively in order to obtain a final debiased
failure probability.

At the end, the methods proposed use the expert
judgement for estimating the levee failure probability
(the estimated or the subjective probability of failure), con-
stituting an expert estimate of the actual levee failure
probability.

On the basis of this work, our research will be contin-
ued by testing our method to several dike case studies so
as to continue validating the robustness of the approach.
At the end, we plan to use the IeCAD approach in an
operational framework to evaluate the probabilities of
failure mechanisms (internal erosion and scouring) in
risk analysis studies.
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Otherwise, the approach developed for river levees
can be adapted and applied to other areas where recourse
to expert judgement is the only means available for
obtaining usable information in the framework of carry-
ing out a reliability analysis. In particular, the approach
applied to levees can be extended to other hydraulic
structures by making specific adjustments for each cate-
gory of civil engineering structure, as small dams often
poorly documented or large linear channels.
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