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Abstract: Aging is associated to cognitive decline, which can lead to loss of life quality, personal
suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms
explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory
signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary
n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain,
possess immunomodulatory properties, and are precursors of lipid derivates named specialized
pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that
is modified during aging, resulting in chronic inflammation. In this review, we first examine the
effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as
precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly,
we highlight evidence supporting a role of n-3 PUFA during aging.
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1. Introduction

Aging is a world concern as the elderly population tripled from 4% to 13% in the last century
and is expected to grow sharply to reach 20% of the population in 2025 and 33% in 2050 [1]. Aging is
associated to cognitive decline for 15–20% of the elderly >65 [2–4]. These cognitive alterations can lead
to age-related disease such as neurodegenerative diseases. Alzheimer’s disease is the predominant
one, affecting 24 million people in the world [5]. Thus, healthy aging constitutes a real economic
challenge of the 21st century for the nations. The mechanisms explaining this process are still not
fully elucidated, but neuroinflammation seems largely involved. Then, strategies to reduce and
resolve neuroinflammation in a time-limited manner are encouraged. Recent studies suggest that
nutrition, particularly fish oil, has promising anti-inflammatory effects. Fish oil contains n-3 long chain
polyunsaturated fatty acids (LC-PUFAs), which are precursors of bioactive lipids called specialized
pro-resolving mediators (SPMs) that largely contribute to this beneficial effect. Here, we review the
effect of aging on neuroinflammation, in particular microglia activity and cognitive decline, and how
n-3 LC-PUFAs and their derivates impact neuroinflammation, especially during aging. We discuss that
nutrition, an environmental factor to which individuals are exposed throughout life, plays a key role to
prevent or delay neuroinflammation during aging.
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2. Aging and Neuroinflammation

Brain aging is associated to a chronic low-grade inflammation in the central nervous system
(CNS) [6]. Microglial cells are the resident innate immune cells of the CNS and are involved in various
physiological and pathophysiological functions [7,8]. These cells initiate the immune response when
they recognize damage- (DAMPs) and pathogen-associated molecular patterns (PAMPs) thanks to
their various pattern recognition receptors (PRRs), including toll-like receptors (TLRs) and nucleotide
oligomerization domain (NOD)-like receptors [9]. They are strictly regulated by signals from the
CNS [10] and with aging, they change their morphology, reduce their arborization, and decrease
their mobility in human, non-human primates and rodents and then become senescent [11–18].
Indeed, aged microglia are “primed”, and are characterized by increased production of inflammatory
markers, at baseline and in response to an immune stimulus, and by a decreased capacity to
return to homeostasis [19–21]. Aged microglia also fail to degrade myelin fragments, resulting
in the accumulation of lipofuscin granules, markers of microglial aging [22–24]. Thus, during
aging, microglial functions change, resulting in increased immune age-related responses, driving the
development of cognitive deficits, impaired synaptic plasticity and the progression of neurodegenerative
pathologies [25,26]. These changes are mainly the result of age-induced defective mechanisms driving
the inflammatory response [21,27].

During aging, under the basal condition, there is an increase in the expression of blood and brain
levels of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin-6 (IL-6),
interleukin-1β (IL-1β), and interleukin-18 (IL-18), and a decrease in the expression of anti-inflammatory
factors such as interleukin-10 (IL-10), interleukin-4 (IL-4), or brain derived neurotrophic factor
(BDNF) [28,29]. Compared with young mice, aged mice have a higher expression of IL-6 in the
hippocampus, cortex, and cerebellum [30,31], and a lower expression of IL-10 [32]. In aged microglial
cells, there is a constant production of nuclear factor-kappa B (NFκB), a transcription factor involved in
the activation of inflammatory pathways, leading to increased production of IL-6 [33]. Aged microglial
cells from rodents produce more IL-1β and IL-6 than young ones [22,34–36]. Moreover, the serum level
of IL-6 in elderly has been linked to the incidence of deficits in mobility and walking speed [37–39].
Markers of microglial activation are also increased during aging: major histocompatibility complex II
(MHC II) [40,41], CD68 [42,43], caspase-1, as well as CD11b [44]. Indeed, in elderly without neurological
pathologies, MHC II expression is related to increased brain IL-1β expression [45]. In the same way,
ex vivo and in situ studies have shown that microglial cells of aged rats and mice display, compared
with those of younger animals, a greater expression of MHC II, CD11b, and CD68—all markers of
microglial cells’ activation [42,43]. The number of microglial cells expressing MHC II also increases
with age in nonhuman primates [15] and in rats [18]. In the hippocampus, the number of microglial
cells increases by 20% in aged mice compared with young adults [46].

The loss of homeostatic functions of microglia is a hallmark of unhealthy brain aging and
neurodegenerative disorders [47]. Interestingly, recent studies using high-dimensional single-cell
mapping or single cell RNAseq revealed that molecular signatures of microglia is altered with aging
with some similar genes in rodents and humans [48–50]. The identification of aged-microglia subtypes
allow to identify specific markers associated to unhealthy aging. Recent data pinpoint that mutations in
triggering receptor expressed on myeloid cells 2 (Trem2) and colony stimulating factor 1 receptor (Csf1r)
in microglia are responsible of neurodegenerative diseases, reinforcing the essential role of microglia
in healthy aging. In elderly, the soluble form of Trem2 in the cerebrospinal fluid was associated to
attenuated cognitive decline [51].

The increase in cytokine production in the blood and brain has been associated to age-related
cognitive decline. IL-6 levels in the plasma of elderly have been positively correlated to cognitive
decline, in particular to loss of speed of information processing [52–54]. This is in agreement with
the fact that IL-6-deficient mice are protected from age-related decline of their cognitive performance
following a bacterial endotoxin infection as compared with wild-type mice [55,56]. These mice also have
less pro-inflammatory cytokines in the hippocampus. Moreover, in aged rodents, it is hippocampal
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IL-1β that is associated to impairment of learning and memory [57–60]. Pharmacological inhibition of
IL-1β as well as its converting enzyme (ICE), which is essential for the release of IL-1β, has allowed to
reduce memory impaiments induced by infection or stress in aged mice [61,62] and has improved the
performance of aged rats [63]. Other studies have shown an increased expression of the NOD-like
receptor protein 3 (NLRP3) in the hippocampus of aged mice, which regulates caspase-1 activation,
and thus the maturation and secretion of IL-1β and IL-18 [64–66]. This NLRP3 activation by DAMPs as
well as the production of reactive oxygen species (ROS) have been associated to age-related cognitive
decline and neuropathological changes [67–69].

All these studies reveal that inflammation during aging characterized by microglial activation and
pro-inflammatory cytokine production is partly responsible for age-related cognitive decline. Hence,
reducing this low grade inflammation constitutes a good strategy to prevent age-related cognitive
decline and the development of neurodegenerative pathologies.

3. N-3 PUFAs as Precursors of Lipid Mediators Involved in the Resolution of Inflammation

In the brain, the main n-3 LC-PUFA is docosahexaenoic acid (DHA), which represents 12–14% of
total fatty acids in the brain [70–75] and has key-regulator functions in inflammation. Eicosapentaenoic
acid (EPA) is the other n-3 LC-PUFAs of great importance, despite its low level in the brain because of
its beta-oxidation [76]. Indeed, it is a precursor of many bioactive derivatives. N-3 LC-PUFAs can be
synthesized from n-3 PUFA precursor alpha-linolenic acid (ALA), but the conversion rate is very low in
humans [77,78] and becomes less efficient with aging [79,80]. Then, it is recommended to consume fish,
which is the main dietary source of n-3 LC-PUFAs [80]. The absence of n-3 LC-PUFA consumption and/or
a defect in their metabolism is responsible for increased neuroinflammation, leading to neurological
disorders [81]. Indeed, numerous reviews have reported the powerful anti-inflammatory properties of
n-3 LC-PUFAs [82–86].

Several mechanisms have been proposed to explain the immunomodulatory properties of n-3
LC-PUFAs. One of the most attractive is the synthesis of bioactive lipid mediators or oxylipins.
These oxylipins are synthesized sequentially: first, those involved in the regulation of inflammation
such as the eicosanoids (prostaglandins, leukotrienes, thromboxane), and then those involved in
the resolution of inflammation called SPMs (resolvins, protectins, maresins). SPMs have both
anti-inflammatory and pro-resolutive properties without immune suppression and induce a return
to homeostasis [87–90]. They actively coordinate and finely tune the inflammatory response. They
down-regulate the pro-inflammatory cytokines and up-regulate the anti-inflammatory cytokines,
promote the phagocytosis of cellular debris and dead cells without immune suppression, reduce
the concentration, and compete with pro-inflammatory oxylipins derived from n-6 PUFAs. Then,
they underlie most of the beneficial effects attributed to their precursors [84,91–93]. Several enzymes
are responsible for their synthesis: phospholipases A2 (PLA2s) for the release of fatty acids from
the membranes, as well as cyclooxygenase (COX)-2, lipoxygenase (LOX), and cytochrome P450
monoxygenases (CYP450) [94]. They convert DHA and EPA into bioactive lipid mediators. In human
serum, DHA- and EPA-derivates represent 30.7% and 25.9% of the identified SPMs, respectively [95,96].
These enzymes are expressed in the brain [97–100]. Following an inflammatory stimulus such as
lipopolysaccharide (LPS), COX-2 is rapidly expressed in the hippocampus [100,101]. It was shown
that COX-2 inhibition delays resolution of acute inflammation [102]. 15-LOX and 5-LOX are the
most abundant LOX in the brain [97]. 15-LOX is both neurotoxic owing to the oxidative stress it
generates [103] and neuroprotective owing to the SPMs it synthesizes [104,105]. Indeed, the impairment
of 15-LOX activity (by gene deletion or pharmacological inhibition) reduces the SPM production in the
brain and is associated to cognitive alterations [97]. CYP450 produces anti-inflammatory n-6 derived
epoxides [106–109]. These enzymes have also been identified in brain cells such as microglia, astrocytes,
oligodendrocytes, and neurons [110–113].
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3.1. DHA-derived SPMs

Different SPMs can be synthesized from DHA (Figure 1): monohydroxy DHA (17-HDHA) by
acetylated COX-2, CYP450, and 15-LOX [114,115] and resolvin D1 (RvD1) via the production of
17-HDHA by 5-LOX [116,117]. These bioactive derivates have been mostly described at the periphery,
but have also been detected in the brain. RvD1 was measured in mouse brain following cerebral
ischemia [118]. Its level is modulated by a DHA intravenous injection [119] and during inflammation;
it decreases at the beginning and then increases during the resolution phase [120]. RvD1 acts at
picomolar range, but exerts its biological effects at nanomolar range [117,121]. The receptor of RvD1 is
lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) in rodents and G protein coupling receptor
32 (GPR32) in humans [116]. Several brain structures express ALX/FPR2: brainstem, spinal cord,
hypothalamus, cortex, hippocampus, cerebellum, and striatum [122]. At the cellular level, these
receptors are expressed in microglial cells [123], neurons [122,124], and astrocytes [125,126]. Via these
receptors, RvD1 regulates micro-RNAs (miRNAs), which play a key role in modulating the expression
of target genes such as inflammatory genes [123,125,127–129].
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Other SPMs are derived from DHA: di-hydroxy-DHA termed protectin D1 (PD1) or neuroprotectin
D1 (NPD1) when produced in the CNS by 5- and 15-LOX [130–133], and maresin 1-2 (MaR1-2)
by 12/15-LOX [114,115,134]. NPD1, MaR1, and its precursor 14-HDHA were measured in the
hippocampus [135]. The level of NPD1 and MaR1 decreases in the hippocampus of Alzheimer’s disease
patients [136,137] and the level of NPD1 greatly increases following brain ischemia or acute central
LPS injection [118,135]. NPD1 receptor has been identified only at the periphery in macrophages, but
not in microglia [138], whereas the MaR1 receptor has not been identified yet [136]. NPD1 regulates
NFκB, and then consequently pro-inflammatory gene expression [118,139,140]. MaR1 decreases
pro-inflammatory signaling cascades and influences macrophages towards an M2 repair phenotype
after cerebral ischemia or spinal cord injury [141–143].

3.2. EPA-derived SPMs

EPA is converted by acetylated COX-2 or CYP450 into 18R-HEPE, which is then metabolized
into resolvins E1, E2, and E3 by 5- or 15-LOX (Figure 1) [114,144,145]. These derivates have been
detected in the hippocampus [135,146,147]. RvE1 induces a decrease in LPS-induced pro-inflammatory
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cytokines’ (TNF-α, IL-6, IL-1β) gene expression in microglial cells by inhibiting the NFκB signaling
pathway [123]. The receptors of RvE1 are a G protein coupling receptor, ChemR23, or chemokine like
receptor 1 (CMKLR1) [144] and a leukotriene B4 receptor (BLT1) [148]. ChemR23 has been identified
in the prefrontal cortex, hippocampus, and brainstem [149]. These receptors are also expressed in
microglial cells [123,150], neurons [122,124], and astrocytes [126].

4. Role of Lipid Mediators in the Resolution of Inflammation

A large number of studies support the beneficial role of n-3 LC PUFAs in inflammation in human
and animal models of acute and chronic inflammation, including in the brain (for recent reviews,
see [82,83]). Here, we will review the biological roles at the brain level of RvD1 and RvE1, two
distinct lipid mediators generated from the n-3 LC-PUFAs DHA and EPA, known for their powerful
anti-inflammatory and pro-resolutive properties.

4.1. In Humans

The effect of RvD1 was mainly studied in Alzheimer’s and Parkinson’s patients (Table 1).
In patients with dementia, the levels of RvD1 in cerebrospinal fluid are positively associated with the
improvement of cognitive functions [126]. RvD1 promotes Aβ phagocytosis by macrophages isolated
from Alzheimer’s patients, reducing the amyloid load [151,152]. Moreover, as cited in Krashia et al.,
endogenous RvD1 is decreased in patients diagnosed with early-Parkinson’s disease [153]. As a result,
the decrease of RvD1 levels in Alzheimer’s and Parkinson’s disease patient’s brain could contribute to
the disease development and progression. Conversely, an increased anti-inflammatory RvD1 activity
has been reported in maniac and depressive patients, suggesting that RvD1 may serve to improve
inflammatory imbalance [154].

The effect of RvE1 was reported in patients at the periphery (Table 1) [155–157], but not at the
brain level. Hence, more studies are needed to develop this area.

Table 1. Role of lipid mediators in the resolution of inflammation in humans.

Ref. Authors Year Subjects Supplementation Key Findings

[126] Wang et al. 2015 AD, MCI, and SCI
patients; 57–68 yrs - RvD1 levels in CSF correlate to

MMSE scores

[151] Famenini
et al. 2017 MCI, SCI that are

E3/E3 or E3/E4
1000 mg DHA + 1000 mg

EPA/d for 35 months

RvD1 decreases the M1/M2 ratio
in patients with ApoE E3/E3,
improving Aβ phagocytosis

[152] Mizwicki
et al. 2013

Sporadic AD
patients and

controls
- RvD1 rebalances inflammation to

promote Aβ phagocytosis

[153] Krashia
et al. 2019 Early Parkinson’s

disease patients

Decreased endogenous level of
RvD1 correlates to increased

levels of pro-inflammatory factors
in CSF

[154]
Kok

Kendirlioglu
et al.

2019 Bipolar disorder-I
patients -

The increase in RvD1 during
manic and depressive states

improves inflammatory imbalance

[155] Uno et al. 2016

Patients
undergoing

hepatobiliary
resection

Oral supplementation of
Oral Impact (Nestlé Health

Science), 1000 kcal/d
containing EPA and arginine

for 5 consecutive days
before the operation

Increased production of plasma
RvE1 suppresses

operation-induced acute
inflammation

[156] Hiram et al. 2015 Human pulmonary
arteries -

RvE1 resolves human arterial
hyperreactivity via the resolution

of inflammatory markers

AD: Alzheimer’s disease; ApoE: apolipoprotein E; CSF: cerebrospinal fluid; EPA: eicosapentaenoic acid; MCI:
mild cognitive impairment; MMSE: mini-mental status examination; RvD1: resolvin D1; RvE1: resolvin E1; SCI:
subjective cognitive impairment.
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4.2. In Animals

Several studies report that, in rodent models of inflammation, RvD1 and RvE1 display
anti-inflammatory activities in the CNS (Table 2). Indeed, RvD1 reduces the activation of NFκB
and the expression of pro-inflammatory factors such as IL-1β, IL-6, TNF-α, and iNOS in rats with
hemorrhagic shock or in streptozotocin (STZ)-induced diabetic retinopathy [158,159]. RvD1 attenuates
neuroinflammation through ALX-FPR2 receptor via miRNA in a neonatal hypoxia-ischemia rat
pup model or in a remote damage model [125,160]. Moreover, RvD1 induces the polarization of
macrophages and microglia toward an M2 phagocytic phenotype [161–163]. Chronic and early RvD1
administration in a rat model of Parkinson’s disease prevents central and peripheral inflammation, as
well as neuronal dysfunction and motor deficits [153]. In addition, the precursors of RvD1, 17R-HDHA
and 17S-HDHA, reduce the production of pro-inflammatory cytokines in the spinal cord and in the
hippocampus [135,164].

RvE1 reduces the expression of pro-inflammatory cytokines IL-1β and IL-6 in the prefrontal cortex
and decreases the neuropathological features of Aβ pathology in a murine model of Alzheimer’s
disease [165]. Furthermore, repeated RvE1 administration moderates the activation of microglia by
promoting ramified microglia following traumatic brain injury or peripheral brain injury [166].

The effect of RvD1 on neuroinflammation is associated to effects on cognition. Indeed, RvD1
prevents cognitive deficits. In a rodent model of systemic inflammation or traumatic brain injury, an
intraperitoneal administration of 17R-RvD1 prevents cognitive decline [166,167]. Of note, higher levels
of brain RvD1 in Fat-1 mice, owing to higher brain n-3 LC-PUFAs induced by genetic means, are linked
to less cognitive deficits, a reduction in microglial activation, and in pro-inflammatory status following
brain ischemia [168,169]. Conversely, lower levels of brain RvD1, owing to 15-LOX inhibition, are
related to alterations in working memory and synaptic plasticity in rats [97].

RvD and RvE have been reported to prevent emotional behavior alterations in rodent models
of mood disorders in the review of Furuyashiki et al. [170]. These SPMs have positive effects in
LPS-induced or chronic stress-induced or post-myocardial infarct depression [164,171–176].

Table 2. Role of lipid mediators in the resolution of inflammation in animals.

Ref. Authors Year Animals Treatment Key Findings

[97] Shalini et al. 2018 Adult rat Alox15 knock-down

Decrease in RvD1 levels in the
prefrontal cortex associated to
alteration in working memory

performance

[125] Bisicchia
et al. 2018 Adult rats

Intraperitoneal injection of
RvD1 (0.4 µg/kg) 3, 5, and 7

days after HCb lesion

RvD1 reduces glial activation and
prevents neuronal death,

promoting functional recovery

[135] Orr et al. 2013 12 weeks C57BL/6J

Intracerebroventricular
administration of

17S-HpDHA (1 µg) over 24 h
via osmotic pump

17S-HpDHA attenuates
hippocampus neuroinflammatory

markers

[153] Krashia et al. 2019

Syn rats (overexpressing the
full-length human SNCA
locus under the control of
the endogenous human

regulatory elements)

Intraperitoneal injection of
RvD1 (0.2 µg/kg) twice a

week for 8 weeks

RvD1 prevents microglial
activation, and reduces CSF IFN-γ

and MHC-II expression, and
neuronal and motor deficits

[158] Sordi et al. 2019 Hemorrhagic shock-induced
rats

Intravenous injection of
RvD1 (0.3 or 1 µg/kg)

Administration of RvD1 on
resuscitation inhibits NFκB
activation and reduces the

expression of pro-inflammatory
factors

[159] Yin et al. 2017 STZ-induced diabetic
retinopathy rats

Intravitreal administration
of RvD1 (1000 ng/kg)

RvD1 inhibits the activation of the
NLRP3 inflammasome and

associated cytokine production

[160] Liu et al. 2019 Hypoxic-ischemic induced
10-day old rat pups

Intraperitoneally injection of
RvD1 (5 µg/kg) 1 h before

hypoxia-ischemia

RvD1 administration reduces
percent infarction area, microglia
activation, and pro-inflammatory

factor level
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Table 2. Cont.

Ref. Authors Year Animals Treatment Key Findings

[161] Rossi et al. 2015 Footpad-LPS injected rats Intravitreal administration
of RvD1 (10, 100, 1000 ng/kg)

RvD1 decreases the ocular
damage reducing the presence of
B and T lymphocytes, changing

the expression of miRNA and the
polarization of local macrophages
and decreasing the local levels of

ubiquitin-proteasome system

[162] Titos et al. 2011 Peritoneal macrophages
from C57BL/6J mice 10 nM RvD1

RvD1 polarizes macrophages
toward a M2 phenotype and

promotes macrophages
phagocytosis

[164] Abdelmoaty
et al. 2013 Adult rats Intrathecally administration

of 17R-RvD1 (300 ng)

17R-RvD1 attenuated
carrageenan-induced spinal

TNF-α release

[165] Kantarci
et al. 2018

5xFAD female mice
co-expressing human APP
and PS1 with multiple FAD

mutations

Intraperitoneally RvE1
injection (1.5 µg/kg) three

times a week, for 2 months

RvE1 restores the expression of
three SPMs and the cytokine
levels in the prefrontal cortex

[166] Harrison
et al. 2015 TBI-induced C57BL/6 mice

Intraperitoneally RvE1 or
17R-RvD1 injection (100ng)

for 7 consecutive days,
beginning 3 days before TBI

induction

RvE1 and 17R-RvD1 reduce
microglial activation and promote

microglial ramification.
17R-RvD1, but not RvE1 reduces

cognitive deficits.

[167] Terrando
et al. 2013 Tibia-fracture induced

C57BL6

Intraperitoneally 17R-RvD1
injection (100 ng) before

surgery

17R-RvD1 reduces plasma IL-6
levels 6 h and 24 h after surgery

[168] Delpech
et al. 2015 LPS-treated Fat-1 mice -

The increase in brain n-3 PUFA
reduces LPS-induced

pro-inflammatory cytokine
production and subsequent
spatial memory alteration

[169] Luo et al. 2014 Transient cerebral ischemia
Fat-1 mice -

Suppression of NFκB activation,
decrease in pro-inflammatory

mediators, reduction in microglial
activation, and increase in RvD1

level in hippocampus. Less severe
hippocampal CA1 neuronal loss

and cognitive deficits

[171] Deyama
et al. 2017 LPS-induced depression

model Balb/c mice

Intracerebroventricular
infusion of RvD1 (10 ng) and
RvD2 (10 ng), 22 h after LPS

challenge

Antidepressant effect of RvD1 and
RvD2 through mTORC1 signaling

pathway

[172] Deyama
et al. 2018 LPS-induced depression

model Balb/c mice

Intracerebroventricular
infusions of RvE1 (1 ng) or
RvE2 (10 ng), 22h after LPS

challenge

Antidepressant effect of RvE1 and
RvE2 via ChemR23 in the

prefrontal cortex and
hippocampus

[173] Deyama
et al. 2018 LPS-induced depression

model Balb/c mice

Intracerebroventricular
infusions of RvE3 (10 or 100
ng), 22 h after LPS challenge

Antidepressant effect of RvE3

[174] Klein et al. 2014 Fibromyalgia-like model
Swiss mice

Intravenous administration
RvD1, 17R-RvD1, or RvD2

(300 ng/mouse) 30 min after
fibromyalgia induction and
4 days after, 30 min before

behavioral evaluation

17R-RvD1 and RvD2 (but not
RvD1) reduce painful and

depressive symptoms

[175] Gilbert et al. 2014 Myocardial infarction
induced rats

n-3 PUFA rich diet for 10
days before myocardial

infarction + RvD1 injection
in the left ventricle the 10th
day, 5 min before ischemia

RvD1 restores cardioprotection
when added to the inhibitors of

15-lipoxygenase and of
cycloxygnase-2

[176] Ishikawa
et al. 2017

Chronic unpredictable
stress-induced depression

model Balb/c mice

Intracerebroventricular
RvD1 or RvD2 (10ng)

infusion

RvD1 and RvD2 ameliorate
depressive-like behavior

ChemR23: Chemerin Receptor 23; CSF: cerebrospinal fluid; HCb: hemicerebellectomy; HpDHA: hydroperoxyl-
docosahexaenoic acid; LPS: lipopolysaccharides; MHCII: major histocompatibility complex II; mRORC1: mammalian
target of rapamycin complex 1; NLRP3: NOD-like receptor family, pyrin domain containing 3; PUFA: polyunsaturated
fatty acid; RvD: resolvin D; RvE: resolvin E; SPM: specialized pro-resolving mediators; STZ: streptozotocin; TBI:
traumatic brain injury.
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4.3. In Vitro

The effects of RvD1 and RvE1 were tested on different brain cells, highlighting their pro-resolutive
properties (Table 3). In microglial cells, RvD1 enhances the effect of the anti-inflammatory cytokines
IL-4, Arg1, and Ym1 and reduces the activation of microglia by decreasing CD11b expression,
leading to a more anti-inflammatory phenotype of microglia [163,177,178]. Moreover, RvD1 reduces
LPS-induced pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β) gene expression in microglial
BV2 cells by regulating miRNA expression [123]. It was also reported that RvD1 down-regulates
Aβ-induced inflammation in human microglia [136]. RvD2 decreases the expression of toll like receptor
4 (TLR4, the receptor of LPS) following LPS treatment, and consequently its downstream signaling
pathway NFκB [179]. RvE1 also reduces microglial activation and pro-inflammatory cytokine release
in microglial cells [123,177]. In astrocytes, RvD1 decreases LPS-induced TNF-α production [164].
In neurons from spinal nods, RvD1 increases neurite outgrowth [180]. In PC12 neural cells, used
as an in vitro model of Parkinson’s disease, RvD1 reduces TNF-α and IL-6 mRNA expression [181].
The anti-inflammatory properties of RvD1 were also tested in macrophage cells. RvD1 reduces the
expression of pro-inflammatory markers (cytokines, PGE2) and increases anti-inflammatory cytokine
IL-10 in murine macrophages stimulated by LPS [182]. RvD1 polarizes primary human macrophages
toward a pro-resolutive phenotype through GPR32 receptor [183].

Table 3. Role of lipid mediators in the resolution of inflammation in vitro.

Ref. Authors Year Cells Treatment Key Findings

[123] Rey et al. 2016 BV-2 microglial
cells

10 nM RvD1 or RvE1, 30 min
before LPS treatment and during

24 h

RvD1 and RvE1 both decreased
LPS-induced proinflammatory

cytokines (TNF-α, IL-6, and IL-1β) gene
expression via miRNA for RvD1 and

NFκB pathway for RvE1

[136] Zhu et al. 2016
Human
CHME3

microglial cells
0–0.5 µM RvD1 for 1 h and 6 h

RvD1 down-regulates Aβ42-induced
inflammation via the reduction in

microglial activation

[163] Li et al. 2014 BV-2 microglial
cells

1, 10, or 100 nM RvD1 for 30 min
before addition of 10 ng/mL

murine IL-4

RvD1 enhances the IL-4-induced M2
polarization

[164] Abdelmoaty
et al. 2013 Rat primary

astrocytes

500 nM 17-R-RvD1, 30 min before
IFN-γ or LPS stimulation and

during 24 h

17-R-RvD1 attenuates IFN-γ or
LPS-induced TNF-α production

[177] Xu et al. 2013 Primary
microglial cells

1, 10, 100 ng/mL RvE1, 15 min
before LPS treatment and during

the 24 h LPS treatment

RvE1 suppresses LPS-induced
microgliosis and prevents TNF-α

release

[179] Tian et al. 2015 Rat primary
microglial cells

1.25, 2.5, 5, 10, 20 µM RvD2, 2 h
before LPS treatment and during

the 2 h LPS treatment

RvD2 reduces LPS-induced
inflammatory markers (TNF-α, IL-6,

IL-1β, IL-18, NO, TLR4, NFκB, IκB) and
microglial activation markers (Iba1,

CD11b)

[180] Shevalye
et al. 2015 Mouse primary

neurons 50 nM RvD1 for 24 h RvD1 increases neurite outgrouth

[181] Xu et al. 2017

PC12
Parkinson’s

disease model
cells

50, 100, 200 nM RvD1, 2 h prior
MPP+ treatment

RvD1 attenuates MPP+ upregulation of
TNF-α and IL-6 mRNA expression via

the inhibition of the activation of
p38/ERK and NFκB signaling pathways

[182] Benabdoun
et al. 2019

Murine
macrophage
RAW 264.7

100, 200, 500 nM RvD1 for 72 h
RvD1 reduces LPS-induced PGE2 and
TNF-α production, and increases IL-10

production

[183] Schmid
et al. 2016

Human
primary

macrophages
10 nM RvD1 for 48 h

RvD1 decreases IL-1β and IL-8
secretion and tends to reduce MCP-1

via the activation of GPR32

RvD1: resolvin D1; RvE1: resolvin E1; GPR32: G protein-coupled receptor 32; MPP+: 1-methyl-4-phenylpyridinium
ion; PGE2: prostaglandin E2.
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5. Defects in Lipid Metabolism and Lipid Mediator Production during Aging

During aging, brain levels of n-3 LC-PUFAs decrease, although all brain structures are not affected
in the same way [30,32,70,184]. This reduction was observed in human [185,186], especially in the
cortex, the hippocampus, and the cerebellum [73,187–189], and in rodents [30,32,190,191], in particular
in the hippocampus [191] and the cortex [73], which are key structures in mnesic processes. This
decrease is mainly because of changes in lipid metabolism: alteration in the intestinal absorption of
essential fatty acids [192–194]; impairment in the enzymes of phospholipid synthesis [195]; reduced
conversion rates of the precursors into LC-PUFAs owing to reduced activity of the enzymes involved
in their synthesis, in particular of ∆6 desaturase [186,196,197]; and modifications in the expression of
the genes implicated in the metabolism of PUFAs. Indeed, single nucleotide polymorphisms (SNPs) in
desaturase genes FADS1 (∆5 desaturase), FADS2 (∆6 desaturase), as well as ELOVL2 (elongase 2) are
related to higher ALA and lower EPA plasma phospholipid levels with age, suggesting different rates of
conversion [198]. Moreover, another possible reason of the decrease of n-3 LC-PUFAs in the membranes
is their high propensity to oxidation to generate peroxidation products such as malonaldehyde (MDA),
4-hydroxy-2-nonenal (4-HNE), or 4-hydroxy-2-hexenal (4-HHE). Indeed, levels of MDA and 4-HNE
are increased in aged brain of humans and rodents [199,200].

Aging-associated DHA metabolism disturbance could participate in cognitive decline (Figure 2).
This has been demonstrated both in humans and animals. In elderly, decreased n-3 PUFA consumption
associated to reduced erythrocyte DHA levels are inversely correlated with age-related cognitive
decline [201–203]. In rats, a low-DHA dietary supply for one or more generations is related to
alterations in cognitive function [204–206]. In addition, we showed in aged mice that an n-3 PUFA
deficient diet impairs memory as well as neuroinflammation and synaptic plasticity [32,207–210].
Furthermore, the decrease in brain DHA content induced by a n-3 PUFA deficient diet increases
vulnerability to inflammation, which trigger both synaptic and memory alteration [211,212]. On the
contrary, a two-month n-3 LC-PUFA supplementation in aged mice (between 20 and 22 months old)
reverses age-induced spatial memory deficits [30].

Age-related alteration of n-3 PUFA metabolism contributes to reducing the n-3 LC-PUFA content
in brain phospholipids. As n-3 LC-PUFAs are precursors of bioactive mediators involved in the
resolution of inflammation, it may have consequences on SPM profile and production. Indeed, it was
recently shown that blood oxylipin profile is altered in 45–64-year-old healthy men and women versus
19–28-year-old young people [213,214]. Moreover, Gangemi et al. (2005) demonstrated that aging is
associated to a decrease in urinary LxA4/leukotriene, a ratio of anti-inflammatory/pro-inflammatory
mediators synthesized from arachidonc acid and considered as an index of the endogenous
anti-inflammatory potential [215]. Moreover, LxA4 is significantly lower in cerebrospinal fluid
(CSF) of humans with Alzheimer’s disease as compared with humans with mild cognitive impairment
or subjective cognitive impairment, with a positive correlation between CSF LxA4 and cognitive
performance [126].

In animals, oxylipin profile modification was also reported with aging. Aged rodent brains
display higher levels of TxB2, 6-keto-PGF1α, and PD1-like metabolites [214]. In a model of senescence-
accelerated prone mice (SAMP8), the cortex contains higher levels of PGE2, TxB2, and 9,10-DiHOME
and lower levels of 20-HETE and DHA-derived mediators (11-, 14-, and 20-HDoHE) [214]. However,
when compared with same age senescent-accelerated mouse resistant 1 (SAMR1) mice, SAMP8 mice
do not exhibit any difference in LXA4 or RvD1 levels, despite a greater degree of inflammation in
SAMP8 mice [216]. Moreover, aged BalbC mice display higher levels of pro-inflammatory LTB4 and
PGs, but lower anti-inflammatory RvD1 and MaR1 in peritoneal macrophages compared with young
mice [217].

The modifications of oxylipin profile are linked to changes in the expression of the enzymes
involved in oxylipin formation. In humans, the expression of PLA2 and LOX increases with aging
in post-mortem brain [214]. Similar results were obtained in 70-year-old versus 41-year-old patients
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concerning PLA2 and CYP [214]. In Alzheimer’s disease patients, 15-LOX level is also increased in the
hippocampus [126].
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In animals, the expression of 5-LOX is increased with aging [214] whereas the expression of
12-LOX is decreased in nine-month-old SAMP8 mice [216].

The changes in oxylipin profile may have compensatory consequences on their receptors. Indeed,
in humans, ALX/FPR2 and ChemR23 levels are higher in the hippocampus of Alzheimer’s disease
patients as compared with controls [126]. A similar result was obtained for ALX/FPR2 in SAMP8,
despite that its level is similar to the SAMR1 controls [216].

All these results suggest an altered resolution of inflammation during aging that may contribute
to the age-related cognitive decline, as high inflammation is associated to altered cognition.

6. Evidence Supporting a Role of Dietary n-3 PUFAs during Aging

Bioactive nutrients such as n-3 PUFAs constitute an interesting potential way to prevent or delay
neuroinflammation that occurs during aging. Here, we will focus on dietary n-3 PUFAs because they
modify the levels of brain n-3 LC-PUFAs [83,84,218] that are both anti-inflammatory and pro-resolutive
and prevent cognitive decline associated to aging.

Evidence in humans (Table 4) and animals (Table 5) supports a powerful role of n-3 LC-PUFAs
in the regulation of both inflammatory pathways, and in fine, in the resolution of inflammation,
including in the brain (recently reviewed in [83]). Here, we will focus on dietary supplementation
using n-3 LC PUFAs during aging. Barberger-Gateau highlighted in elderly that the more they
eat n-3 PUFAs, the less they are subjected to cognitive decline [219]. Similarly, Tan et al. showed
in the Framingham Study participants that lower erythrocyte DHA levels are related to cognitive
impairment [220]. Moreover, in a prospective observational study, baseline dietary DHA intake levels
at 70 years old are positively correlated with a better declarative memory test performance at the
age of 75 in a healthy population [221]. Dietary supplementation with n-3 PUFAs conducted in
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humans has been motivated by observational studies showing the link between dietary consumption
of DHA and improved cognitive function and/or reduced cognitive decline in the elderly. Indeed,
fish oil consumption, leading to increased levels of DHA in erythrocytes, has been associated with
better cognitive performance in elderly [222] and with a lower risk of developing neurological
disorders [223–225]. DHA dietary supply is associated to better performance and speed in a verbal
learning test in a cohort of 45–70-year-old healthy individuals [226] and to improved mini mental state
examination (MMSE) scores, used to evaluate cognitive functions and memory abilities, in a cohort
of elderly of 75-year-olds [227]. Yurko-Mauro et al. have shown in a systematic meta-analysis that
DHA intake improves episodic, working and semantic memories [228]. More recently, McNamara et al.
have revealed that fish oil consumption decreases self-reported inefficiencies in everyday functioning
as well as improves cognition in elderly with cognitive complaints [229]. Moreover, circulating n-3
PUFAs (including DHA) have been negatively associated to the level of cytokines [230–232].

Table 4. Evidence supporting a role of dietary n-3 PUFAs during aging in humans.

Ref. Authors Year Subjects Supplementation Key Findings

[219] Barberger-
Gateau 2009 Three cities cohort

participants (75.9 years old)
Mediterranean diet

for 5 years

Higher Mediterranean diet adherence
associated to better cognitive

performance assessed

[220] Tan et al. 2012
Dementia-free Framingham

cohort participants
(67 years old)

Dietary habits

Lower red blood cell DHA level
associated to lower scores on tests of
visual memory, executive function,

and abstract thinking

[221] Titova et al. 2013 PIVUS cohort participants
(70 years old)

Dietary habits for
5 years

A 7-day dietary intake of EPA and
DHA positively associated with

increased global cognitive
performance

[222] Whalley
et al. 2004 Aberdeen participants (64

years old) Fish oil supplement
Fish-oil-supplement use and

erythrocyte n-3 PUFA content
associated with better cognitive aging

[223] Morris et al. 2003
Chicago Health and Aging

Project participants
(73 years old)

Dietary habits
Total intake of n-3 PUFAs (and DHA)

associated with reduced risk of
Alzheimer’s disease

[224] Barberger-
Gateau et al. 2007 Three cities cohort

participants (75.9 years old)
Mediterranean diet

for 4 years

Weekly consumption of fish or regular
use of n-3 PUFA rich oils associated to
a reduced risk of Alzheimer’s disease

[225] Devore et al. 2009 Rotterdam study cohort
participants (>55 years old)

Moderate fish
consumption

Moderate fish consumption not
associated to dementia risk

[226] Kalmijn et al. 2004
Doetinchem cohort

participants
(45–70 years old)

Dietary habits

Marine n-3 PUFA (fatty fish
consumption) inversely related to the

risk of impaired overall cognitive
function and speed

[227] Gonzalez
et al. 2010 Elderly population of

Asturias (75 years old) Dietary habits
EPA and DHA intake (fish intake)

negatively associated with cognitive
impairment

[229] McNamara
et al. 2018 Cincinnati participants

(62–80 years old)

Supplementation
with 1.6 g/d EPA +

0.8 g/d DHA for
24 weeks

Supplementation associated with
reduced cognitive symptoms in

everyday activities

[230] Ferrucci et al. 2006 Chianti participants
(20–98 years old) Dietary habits

Plasma n-3 PUFAs associated with
lower levels of pro-inflammatory

markers (IL-6, IL-1ra, TNF-α, CRP)
and higher levels of

anti-inflammatory markers (soluble
IL-6r, IL-10, TGF-β)

[231] Alfano et al. 2012
Health, Eating, Activity, and
Lifestyle cohort participants

(>29 years old)
Dietary habits

Higher intake of n-3 PUFAs
associated with decreased

inflammation (CRP level) and
decreased aspects of fatigue

[232] Farzaneh-Far
et al. 2009 Heart and soul cohort

participants (>64 years old) Dietary habits
Inverse association between red blood

cell n-3 PUFA levels and the
inflammatory markers CRP and IL-6

CRP: C-reactive protein; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; PIVUS: Prospective Investigation
of the Vasculature in Uppsala Seniors; PUFA: polyunsaturated fatty acids.
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Table 5. Evidence supporting a role of dietary n-3 PUFAs during aging in animals.

Ref. Authors Year Animals Treatment Key Findings

[30] Labrousse et al. 2012 20-month-old C57BL/6J

Supplementation in
EPA and DHA from

20 to 22 months
(25 mg and 15 mg/d)

n-3 PUFA supplementation reduces
hippocampal cytokine expression and

astrocyte morphology and restores
spatial memory deficits

[233] Gamoh et al. 2001 100-week-old Wistar rats
Supplementation in
DHA (300 mg/kg/d)

for 5 weeks

n-3 PUFA supplementation decreases
the number of reference memory

errors and working memory errors

[234] Petursdottir
et al. 2008 10-month-old SAMP8 mice

Supplementation in
EPA and DHA for 8
weeks (11.7% EPA
and 14.3% DHA in

the diet)

n-3 PUFA supplementation delays
cognitive decline through n-3 PUFA

incorporation into brain
phospholipids

[235] Bhattacharya
et al. 2007 6-week-old C57BL/6 mice

Supplementation
with EPA and DHA
(400–600 mg/d) for

8 weeks

n-3 PUFA supplementation decreases
pro-inflammatory cytokine

production (IL-6, IL-1β, TNF-α) in
peritoneal macrophages

[236] Jia et al. 2006 7-week-old B6C3F1 mice

Supplementation in
EPA and DHA for

4 weeks (35 mg and
150 mg/d)

n-3 PUFA supplementation
suppresses IL-6 transcription in

macrophages in a model of
nephropathy

[237] Yaqoob and
Calder 1995 High fat diet MF1 mice

Supplementation in
EPA and DHA

(120 mg and 50 mg/d)
for 8 weeks

n-3 PUFA supplementation decreases
macrophage TNF-α and IL-6

production

[238] Sadeghi et al. 1999 Adult C57Bl/6 under high
fat diet (20%)

Supplementation in
EPA and DHA for

5 weeks (100 mg and
100mg/d)

n-3 PUFA supplementation decreases
plasmatic TNF-α, IL-6, and IL-1β
concentrations after LPS injection

[239] Vreden et al. 1995 5-week-old Brown Norway
rats

Supplementation
with 14% fish oil for

6 weeks

n-3 PUFA supplementation reduces
IL-1β production in macrophages

[240] Miguelez et al. 2006 Adult Sprague-Dawley rats
Supplementation in
EPA and DHA for

6 weeks

n-3 supplementation decreases
plasma IL-6 levels following an acute

challenging dose of exogenous
human IL-1β

[241] Minogue et al. 2007 22-month-old Wistar rats
Supplementation in

EPA for 4 weeks
(125mg/d)

EPA supplementation attenuates
IL-1β and IFN-γ concentrations and

reduces JNK expression in
hippocampus, associated to a

reduction in age- and Aβ-induced
deficits in LTP

DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; LTP: long term potentiation; PUFA: polyunsaturated
fatty acids.

Beneficial effects of n-3 LC-PUFAs have also been found in animals. Administration of a DHA/EPA
diet to aged mice protects against neuroinflammation and cognitive impairment [30] and improves
spatial cognition and learning ability and memory [233,234]. Interventional studies in aged rodents
have demonstrated that the ingestion of a fish oil-enriched diet decreases the ex vivo production of IL-1β,
TNF-α, and IL-6 by monocytes and macrophages [235–237]. Moreover, circulating concentrations of
IL-1β, TNF-α, and IL-6 following LPS injections are lower in rats and mice fed a fish oil-enriched
diet [238–240]. Furthermore, age-related brain expression of pro-inflammatory cytokines in rodents is
reduced with high levels of DHA [241].

In addition, it is possible to modulate oxylipin profile via dietary interventions. Indeed, as reviewed
by Caligiuri et al. in human blood, the oxylipin profile is changed towards a less inflammatory profile
after n-3 LC-PUFA consumption [214]. We found that in mice treated with LPS, a brain n-3 LC-PUFA
increase by dietary supplementation promotes the synthesis of n-3 PUFA derived SPMs and decreases
n-6 PUFA-derived SPMs displaying an anti-inflammatory profile [100]. Moreover, increased plasmatic
pro-inflammatory oxylipins in elderly is reversed by dietary n-3 PUFA (alpha-linolenic acid, the
precursor of n-3 LC-PUFAs) [213]. The OmegAD study revealed that Alzheimer’s disease patients
treated with n-3 PUFAs preserve their RvD1 levels as compared with placebo-treated patients [242].
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In aged rats, n-3 LC-PUFA supplementation increases DHA-derived oxylipins in the cortex and
improves the reference memory-related ability learning [243].

The modification of SPM levels in blood and brain cells of aged human and rodents is accompanied
by some modification of the expression of their enzymes involved in their synthesis. 15-LOX mRNA
expression increases in n-3 LC-PUFA supplemented group and decreases in n-3 LC-PUFA deficient
diet [100,244,245]. 15-LOX generates both 15-HETEs that inhibit NFκB [103] as well as RvD1 that
contributes to the preservation of cognitive performance [97].

These results suggest that dietary habits may be essential regulators of oxylipin profile and
reinforce the importance of the recommendation of n-3 PUFA rich diet.

7. Conclusions

In conclusion, aging is characterized by low-grade neuroinflammation, in particular, activation of
microglial cells and increase in the production of brain pro-inflammatory factors, such as cytokines.
This neuroinflammation is associated with cognitive decline (15–20% of the >65-year-old elderly),
which affects life quality and has a major economic and social impact. In this context, it is a priority to
find strategies to delay the evolution towards neurodegenerative diseases. n-3 LC-PUFAs and their
bioactive lipid derivates (SPMs) are promising as they reduce and resolve inflammation. SPMs are
modulated by aging and dietary means reinforcing the importance of nutrition in the regulation of
inflammation. Changes in dietary n-3 PUFA balance should have dramatic consequences in brain
PUFA metabolism, and finally in the response to neuroinflammation particularly during aging. More
studies are needed to confirm the role of SPMs in age-related changes, with this field being yet in
emergence, and to investigate the interest to combine different oxylipins to potentiate their beneficial
effects during aging. The clinical form (encapsulated SPMs or more stable-SPM analogues), the doses,
and the way of administration should also be defined.
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