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Abstract: Continuous daily estimates of evapotranspiration (ET) spatially distributed at plot scale
are required to monitor the water loss and manage crop irrigation needs. Remote sensing approaches
in the thermal infrared (TIR) domain are relevant to assess actual ET and soil moisture status but due
to lengthy return intervals and cloud cover, data acquisition is not continuous over time. This study
aims to assess the performances of 6 commonly used as well as two new reference quantities including
rainfall as an index of soil moisture availability to reconstruct seasonal ET from sparse estimates and
as a function of the revisit frequency. In a first step, instantaneous in situ eddy-covariance flux tower
data collected over multiple ecosystems and climatic areas were used as a proxy for perfect retrievals
on satellite overpass dates. In a second step, instantaneous estimations at the time of satellite overpass
were produced using the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE)
energy balance model in order to evaluate the errors concurrent to the use of an energy balance model
simulating the instantaneous IRT products from the local surface temperature. Significant variability
in the performances from site to site was observed particularly for long revisit frequencies over 8
days, suggesting that the revisit frequency necessary to achieve accurate estimates of ET via temporal
upscaling needs to be fewer than 8 days whatever the reference quantity used. For shorter return
interval, small differences among the interpolation techniques and reference quantities were found.
At the seasonal scale, very simple methods using reference quantities such as the global radiation or
clear sky radiation appeared relevant and robust against long revisit frequencies. For infra-seasonal
studies targeting stress detection and irrigation management, taking the amount of precipitation into
account seemed necessary, especially to avoid the underestimation of ET over cloudy days during a
long period without data acquisitions.

Keywords: evapotranspiration; interpolation; remote sensing

1. Introduction

Evapotranspiration (ET) is an important component of the water cycle and its esti-
mation is required to monitor the water loss and manage crop irrigation needs to ensure
the efficient use of water in agricultural environments [1]. To reach that goal, spatially dis-
tributed and continuous daily estimates of ET at plot scale are needed. These requirements
cannot be easily met by existing in situ flux measurements. Remote sensing approaches
are then necessary to monitor ET over space and time. Since evapotranspiration is the
most efficient way to dissipate energy from the surface, there is a strong coupling between
water availability and surface temperature under water stress conditions. Information in
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the thermal infrared (TIR) domain is commonly used to assess actual evapotranspiration
and soil moisture status at relevant space and time scales [2,3]. The revisit intervals of
current high spatial resolution TIR missions such as LANDSAT (16 days, 100 m resolution)
are insufficient to monitor agricultural water resources management. NASA ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was recently
deployed to improve temporal sampling of TIR observation (4 days, 40 × 70 m, [4,5]).
ESA Copernicus Land Surface Temperature Monitoring (LSTM) has started its preparatory
phase and aims to support agricultural water management (3 days, 50 m, [6]). The French
Space Agency (CNES) and the Indian Space Research Organization (ISRO) also develop of
a new satellite mission called TRISHNA, combining ad hoc features for eco- and especially
agro-hydrological applications: a high spatial resolution (50 m) and a high revisit capacity
(2 to 3 days) in the thermal infrared domain [7].

Most methods using information in the TIR domain rely on data acquired once-a-day,
generally around noon, in late morning or early afternoon. Usually, an instantaneous energy
budget is computed at the time of the satellite overpass and provides a single instantaneous
latent heat flux estimate (LE), whereas a daily estimation is required for hydrological and
agricultural applications, as well as ET sequences over longer periods. Moreover, data
availability depends on both the revisit frequency and the presence of cloud cover. To
provide temporally continuous ET estimates using remote sensing, instantaneous estimates
need to be extrapolated to daily ET with a reconstruction of hourly variations. Moreover, ET
dynamic also needs to be reconstructed between two successive available daily ET values,
which corresponds to the period between two successive cloud-free images. Interpolation
techniques are then commonly used to provide continuous estimates of ET over the season.
To do so, ET is usually estimated as the product of a reference quantity to which ET is
largely proportional or at least positively correlated (that we call the interpolation reference
quantity hereafter) and a scaling factor obtained from the instantaneous ET estimate at the
time of the satellite overpass. The scaling factor is usually chosen as the ratio between the
instantaneous ET and the instantaneous value of the interpolation reference quantity at the
time of the acquisition. The reference quantity must be easy to measure or to estimate every
day. The reconstruction of missing ET data between available estimates is then performed
by (i) interpolating the scaling factor between remote sensing estimates, (ii) calculating
interpolated instantaneous ET from the reference quantity and the interpolated scaling
factor, and (iii) extrapolating daily ET each day from the instantaneous value.

The question of extrapolating instantaneous measurements to daily values has re-
ceived constant attention since thermal infrared remote sensing was proposed to estimate
evapotranspiration [8,9]. The main proposed techniques rely on the hypothesis that the
scaling factor is preserved during the day [10–12]. Components of the radiation budget
such as the global radiation Rg [9,13], the extraterrestrial solar radiation Rext [14,15] have
been often used as reference quantities to extrapolate instantaneous measurements to
daily ET. The available energy (AE) defined as the difference between the net radiation
and the soil heat flux has also been largely used as extrapolation reference quantity and
therefore the evaporative fraction (EF), ratio between ET and AE, as the extrapolation
reference quantity (e.g., [16–22]). Reference or potential evapotranspiration have also been
used [19,23]. Ref. [24] gave a list of the various scaling factors used in the literature together
with the key findings on their performances. However, many studies have underlined
that the basic assumption of a preserved scaling factor during the day is not generally met.
Ref. [25] underlined that daily self-preservation of the scaling factors is strongly influenced
by cloud cover. Sky conditions are then a potential source of error when deriving daily
ET [15,23,26]. Refs. [20,27] also showed that the daily course of evaporative fraction is sen-
sitive to soil moisture conditions and vegetation cover and considered the self-preservation
as an approximation. Refs. [22–24] quantified the divergence between reconstructed daily
ET and measured ET, concurrently for various extrapolation reference quantities, showing
that most of the reference quantities led to an underestimation of calculated daily ET by
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5 to 30% depending on the site and the reference quantity. The lower biases were obtained
when using reference quantities directly related to solar radiation.

The interpolation of ET values to fill the gaps between satellite acquisitions has
received less attention than the extrapolation to daily values [14,15,19,24,28,29]. Ref. [29]
used in situ measurements collected over a variety of land cover types as a proxy for
remotely sensed data to evaluate the impact of five interpolation reference quantities and
three interpolation techniques. The study focused on daytime mean data to evaluate
temporal upscaling at a daily time step. The five interpolation reference quantities ranked
among the most commonly used: the incident solar radiation, the available energy, the
net radiation, the reference ET described by [30] and the equilibrium evapotranspiration
as defined by [31] or [32]. They appeared to be relevant to obtain sequences of daily ET
estimates with less than 20% error when considering satellite revisit of 5 days or less. A
similar result was obtained by [24]. This precision is sufficient to obtain fairly reliable
seasonal ET estimates and to compare inter annual time series. However, [24] showed that
it may be too low to monitor rewetting events and water stress for shorter observation
periods, as the possibility to capture rapid changes in ET is reduced when satellite revisit
period increases. Moreover, most studies regarding ET interpolation assumed perfect
retrieval of the flux as no error was introduced into ET data to approximate the uncertainty
induced in the estimates of ET from remote sensing data. Since the errors in the remote
sensing-based ET estimates propagate into the subsequent reconstruction of the continuous
series of daily ET, a degradation of the quality of the retrievals is expected.

A major insight of our study was to deconvolute the respective impacts of remote
sensing estimation and interpolation by using, in a first part, in situ data from eddy
covariance flux monitoring stations considering no error related to remote sensing esti-
mation, and by using, in a second part, remote sensing estimates of ET which are subject
to estimation errors. In situ data were collected over multiple ecosystems and climatic
areas. Remote sensing estimations of ET at the time of satellite overpass were obtained
using the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) energy
balance model ([33,34]). This allowed evaluating the errors concurrent to the use of an
energy balance model simulating the instantaneous ET products from the instantaneous
surface temperature.

Beyond ET, estimating water stress is important for inferring the surface water status
and the root zone soil moisture level [3]. Providing insights into the relative performance
of differing temporal upscaling approaches over a large range of various datasets at
smaller time scales (i.e., dry-down periods) is crucial (i) to monitor evaporative water
loss and determine crop irrigation needs and (ii) to develop the irrigation techniques
and management practices necessary to ensure the efficient use of water in agricultural
environments. One issue is that under cloudy conditions, the stress is reduced compared
to the stress under clear sky conditions, as clouds can sharply reduce evaporative water
losses by providing shade or by bringing precipitations. Interpolating ET during a cloudy
period without data retrievals between two successive cloud-free days could then lead
to underestimate ET over a consequent period and give wrong information about the
evaporative water loss. It seems also necessary to have an accurate and easily measurable
proxy to highlight actual stress conditions when no instantaneous LE estimates are available
because of cloud occurrence. A simple, available, and easily measurable reference quantity
that could be introduced into the temporal upscaling to better take the surface water status
into account is the precipitation information. Indeed, the amount of rain could be a proxy
for the instantaneous water status of the surface and could be used to highlight actual
stress conditions. As far as we know, no studies ever used rain information as a reference
quantity to reconstruct ET continuous time series.

In this study, the performances of eight different reference quantities were evaluated
for different revisit frequencies. They include classical reference quantities already tested
on particular sites [29] as well as new ones such as the combination of one classical with
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a proxy derived from the amount of precipitation in order to constrain the surface water
status at the daily time scale. Thus, the objectives of the study are twofold:

1. To assess the performances of 8 reference quantities to reconstruct seasonal ET from
discontinuous estimates and as a function of the revisit frequency over multiple
agricultural ecosystems and climatic areas; an important point within this objective is
to test the interest of interpolation reference quantities that introduce information on
rain events for resetting the surface water status;

2. To estimate the relative importance of the interpolation with respect to the error or
uncertainties in the estimates of ET from a remote sensing-based model.

In a first part and as a preamble, we evaluate the reconstruction of daily ET from
instantaneous LE estimates on clear sky days in order to quantify the errors induced from
the sole extrapolation of instantaneous data to daily ET. In a second part, the reference quan-
tities and the interpolation techniques used in this study are presented and their accuracies
are evaluated at seasonal and daily scales. A last section encapsulates a discussion of the
results of this study highlighting the efficiency of the temporal interpolation upscaling and
giving an overview of the different benefits and disadvantages of the different reference
quantities evaluated.

2. Materials and Methods
2.1. Rationale and Outlines of the Method

The reconstruction of continuous evapotranspiration was evaluated over a variety of
crop systems including winter, spring and summer arable crops and orchards for two areas
in South France, two areas in North Africa, and one area in North Sahel, spanning different
water regimes (see Section 2.2). We investigated in detail the different steps affecting the
quality of the reconstruction:

Step 1: the estimation of ET at the time of remote sensing measurements, either from
in-situ eddy covariance or retrieved at the same locations with the SPARSE energy balance
model from surface temperature measurements.

Step 2: interpolation to fill the gaps between days with available instantaneous estimations.
Step 3: extrapolation from instantaneous estimation up to the daily scale.
The aim is to perform a review of the errors concurrent (i) to the chosen reference

quantity and method and ii) to the use of the SPARSE energy balance model for simulating
the instantaneous evapotranspiration products from the local surface temperatures (see
Section 2.3). The impact of the errors in estimating ET was evaluated by comparing the
reconstructed time series from the extrapolation and interpolation algorithms to the in
situ ET data. In a preliminary step we first evaluated the upscaling of instantaneous
observed data under clear sky to the daily scale (so that the extrapolation procedure is
evaluated per se). In a second step we evaluated the reconstructed time series of daily ET
derived from in situ data (so that the reconstruction procedure combining interpolation
and extrapolation is evaluated). In a third step we evaluated the reconstructed time series
of daily ET derived from surface temperature at the time of RS measurements (so that the
full reconstruction procedure combining interpolation, extrapolation and ET estimation
using SPARSE is evaluated). Revisit between 1 and 16 days were tested. Overpass in
the morning (10:30), as with Landsat platforms, and sometime after noon (e.g., 13:30), as
proposed for possible future missions, were considered. Morning overpass are expected to
provide more cloud-free situations (however this may differ from one area and one season
to another), while noon overpasses are supposed to provide more adequate information on
water stress.

Interpolation between days with available remote sensing data followed simple proce-
dures as proposed by [19,24,29]. ET was estimated as the product of a reference quantity
(q), that is easily measured or estimated every day, and a scaling factor (X) obtained from
the instantaneous ET estimate at the time of satellite overpass (Figure 1). Usually, X is
defined as the ratio between the instantaneous ET (here taken as the instantaneous latent
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heat flux LEi) and the instantaneous value of the reference quantity at the time of the
acquisition (subscript i):

Xi =
LEi

qi
(1)
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Figure 1. Illustration of the method to retrieve ET on days with no data acquisitions.

The instantaneous scaling factor X is interpolated between two acquisitions. Thus,
for any instant t on a day with no data acquisitions (subscript “interpolated”) with the
assumption that X is self-preserved:

ETt = qt × Xinterpolated (2)

Several reference quantities were considered including standard reference quantities
that were used in previous work related to the amount of incident radiation, the extraterres-
trial radiation, the available energy and the potential or the reference ET (see Section 2.4).
New reference quantities that were not used in previous studies were introduced in order
to account for variation of water status related to precipitation events or evolution of soil
moisture in drying events.

Daily estimation of ET is obtained by upscaling the instantaneous estimates (extrapo-
lation). On days with remote sensing data, we used the method developed by [19] which
computes the diurnal course of the latent heat flux on the basis of a parametric model of
the evaporative fraction with the diurnal courses of solar radiation and relative humidity
as inputs [20]: the model is described in Section 2.5. This model accounts for the different
behaviors of the evaporative fraction depending on the water status of the surface making
it possible to describe non conservative evaporative fraction during the day, in particular
in wet conditions. The approach differs from most of the works already presented in the
literature which assumed a constant evaporative fraction during the day, leading to a
systematic underestimation of the daily evapotranspiration by 10 to 30% that has to be
corrected afterwards (e.g., [15,24]).

For days without remote sensing measurements, we had to use another upscaling
method since the absence of surface temperature makes it impossible to compute evap-
orative fraction directly from energy flux estimates. In these situations, the upscaling
considered that the ratio between latent heat flux and the reference quantity, in particular
for those related to solar radiation, was conservative (which was confirmed for example by
the study by [24]).

2.2. In Situ Datasets

Twenty data sets including local meteorological conditions (wind speed, air tempera-
ture, humidity, atmospheric pressure, and precipitation), radiation budget (incident and
reflected solar radiation, incident and terrestrial longwave radiation and net radiation),
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surface fluxes (sensible, latent, and soil heat fluxes) collected over 8 different flux tower
sites were used to assess the performance of the interpolation methods. They were collected
over multiple ecosystems and climatic areas (Table 1). For the detailed description of sites
and datasets, see Appendix A. Half-hourly observations of meteorological conditions as
well as the components of the energy budget (Rn, H, G, LE) were continuously monitored
above the ground or the canopy from complete micro-meteorological eddy-covariance (EC)
stations. For sites with an energy balance closure of less than 80%, the closure was forced
using the residual method and the corrected LE was computed as Rn − H − G. For other
sites, the half-hourly closure was achieved with the conservation of the Bowen ratio H/LE;
thus, the corrected LE was computed as (Rn − G)/(1 + H/LE) [35] (Table 1).

2.3. Remote Sensing Estimates of ET—SPARSE Model

The two-source model named Soil Plant Atmosphere and Remote Sensing Evapo-
transpiration (SPARSE) solves the surface energy balance equations for the soil and the
canopy [33]. It was used in the present study for calculating instantaneous evapotran-
spiration from surface temperature following the methodology described earlier by [34].
Other required inputs were the main meteorological data (solar irradiance Rg, atmospheric
irradiance Ra, air temperature Ta, wind speed ua and air vapor pressure ea) and infor-
mation on vegetation height, Leaf Area Index, and fraction cover. The performances of
SPARSE for retrieving LE from remotely-sensed surface temperatures were assessed over
different datasets including most of the datasets used in the previous study by [34]. Results
were satisfactory with RMSE ranging between 40 and 80 W.m−2, which is in the range of
published results [36].

2.4. Reconstruction of Seasonal ET from Instantaneous Latent Heat Flux on Clear Sky
Days—Reference Quantities

Temporal upscaling was applied at each site using all combinations of reference
quantity and interpolation algorithms. Specifically, it was conducted with data simulating
a satellite revisit frequency of 1, 3, 8, and 16 days corresponding to what can be obtained
by large field-of-view sensors (MODIS) or well-known high spatial resolution missions
(LANDSAT, ASTER) that provide data and estimates of ET from TIR. Three days is in the
range of the targeted revisit by projected high spatial resolution TIR missions (TRISHNA,
LSTM). In this study, we assume that a day is cloud-free if the observed solar radiation
is higher than 85% of the theoretical clear sky radiation; the latter is being computed
using a simple radiation model at a specific time corresponding to the choice of the time
of the satellite overpass. The theoretical clear sky solar radiation was estimated as the
product of the extraterrestrial solar radiation calculated following [37] and a clearness
index from [38]. This threshold was selected according to preliminary analyses comparing
the model results with observations on known clear-sky days. In order to avoid artifacts or
non-representativeness depending on the arbitrarily chosen starting day, all starting days
before the first revisit were selected and the resulting output was taken as the average of
all configurations.

The height different reference quantities tested are listed in Table 2. For the first six
reference quantities, the observed instantaneous ratios (X in Equation (1)) LEi/AEi, LEi/Rgi,
LEi/Rn_FAO,i, LEi/Rcs,i, LEi/ET0,i and LEi/LEpot,i were respectively interpolated between
two dates simulating an acquisition constrained by the absence of clouds (Figure 1). Each
of them was then multiplied by their respective reference quantity q and upscaled to
reconstruct daily ET on days with no data acquisition (Equation (2)). The daily courses of
the different reference quantities were measured (Rg,t) or calculated (Rn_FAO,t, Rcs,t, AEt,
and LEpot,t). Rn_FAO,t and Rcs,t are calculated according to Appendix B. AEt is computed
from Rg as in Equation (9). LEpot,t is simulated with SPARSE.
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Table 1. Main characteristics of the dataset.

Site Name
(Country) Ecosystem Studied

Year Name Code
Number of

Days
Studied

ET0 (mm) Rain (mm)

Maximal
Observed

LAI
(m2 m−2)

Soil Type
(%Clay/%Sand)

Irrigation
(mm) Soil Albedo

Energy
Balance
Closure

Temperate climate

Auradé (FR) Wheat 2006 Aur W 2006 246 323 369 3.1 32/21 0 0.25 93%
Auradé (FR) Sunflower 2007 Aur Su 2007 164 394 374 1.7 32/21 0 0.25 88%
Auradé (FR) Wheat 2008 Aur W 2008 258 307 507 2.4 32/21 0 0.25 89%

Lamasquère (FR) Wheat 2007 Lam W 2007 269 656 531 4.5 54/12 0 0.25 94%
Lamasquère (FR) Corn 2008 Lam C 2008 161 416 296 3.8 54/12 50 0.25 83%
Lamasquère (FR) Wheat 2009 Lam W 2009 237 447 386 1.7 54/12 0 0.25 92%
Lamasquère (FR) Corn 2010 Lam C 2010 180 452 446 4.1 54/12 130 0.25 79%
Lamasquère (FR) Corn 2012 Lam C 2012 119 365 342 5.9 54/12 144 0.25 91%
Lamasquère (FR) Corn 2014 Lam C 2014 126 339 362 5.2 54/12 175 0.25 85%
Lamasquère (FR) Corn 2015 Lam C 2015 127 384 333 6.6 54/12 140 0.25 98%

Avignon (FR) Peas 2005 Avi P 2005 160 318 203 2.8 33/14 100 0.25 95%
Avignon (FR) Wheat 2006 Avi W 2006 246 439 256 5.5 33/14 20 0.25 94%
Avignon (FR) Sorghum 2007 Avi So 2007 161 501 168 3.0 33/14 80 0.25 95%
Avignon (FR) Wheat 2008 Avi W 2008 231 415 502 1.9 33/14 20 0.25 95%
Avignon (FR) Wheat 2012 Avi W 2012 248 460 437 1.1 33/14 0 0.25 96%

Sahelian climate

Wankama-M (NI) Millet 2009 Wan M 2009 275 867 430 0.4 13/85 0 0.30 91%
Wankama-F (NI) Savannah 2009 Wan S 2009 262 793 442 0.3 13/85 0 0.30 91%

Semi-arid climate

Kairouan (TU) Wheat 2012 Kai W 2012 167 381 161 2.1 31/40 0 0.25 60%

Kairouan (TU) Olive 2012–2015 Kai Or
2012/15

241
365
365
281

141
330
225
223

640
653
626
502

0.2 8/88 0 0.29 55%

Haouz (MO) Wheat 2004 Hao W 2004 148 338 192 4.1 34/20 170 0.20 93%
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Table 2. Reference quantities (q) used to reconstruct evapotranspiration (ET).

Symbol Reference Quantities Main Inputs Availability

AE Available Energy Rn, G
clear sky day at the

time of satellite
overpass

Rcs Clear Sky Radiation Day, time, lat, lon 30 min
Rg Global Radiation - 30 min

Rn_FAO Net Radiation (FAO)
Relative Humidity,

Air Temperature, Rg,
Rcs, albedo

30 min

LEpot Potential latent heat flux 30 min

ET0
Reference

Evapotranspiration

Relative Humidity,
Air Temperature, Rn,

G, wind speed
30 min

API Antecedent Precipitation
Index Day, rain 30 min

Rain Rain - 30 min

Two additional and original approaches that take the rain into account were also
developed and tested. The first approach consists in simulating a maximum evaporative
fraction (i.e., EF = 1) when a rainfall intensity greater than 2 mm is measured locally. The
EF ratio is then interpolated as before between two dates simulating a satellite overpass
constrained by the absence of cloud, considering into the series of observed EF the dates
for which EF is forced to 1. A threshold value of 2 mm is taken for a rain event, in order to
consider only significant wetting (this method is labeled “AE + rain” in what follows). As
this assumption may be strong, an alternative approach was also tested: EF is weighted
with the Antecedent Precipitation Index of the day (API). The API on day j + 1, in mm, is
calculated from that of the previous day j, as follows:

APIj+1 = APIj × 0.85 + rainj (3)

In fact, when a rain greater than 2 mm appears on day j, EFj+1 is calculated as:

EFj+1 =
APIj+1

APImax
(4)

where APImax is the maximum index calculated over the season. The EF ratio is then
interpolated between two dates simulating a satellite overpass considering into the series
of observed EF the dates for which EF is forced to the ratio between API and APImax
(Equation (4); this method is labeled “AE + API” in what follows). This means that the
number of observations used for interpolation is increased by the number of rainfall events
greater than 2 mm. The decrease in API from Equation (3) is not used to interpolate ET
during the dry down, but rather to provide a more realistic estimate of the soil moisture
status before each rainfall event, and therefore EF after the rainfall event. As a consequence,
an unrealistic increase of EF is probable before the first rainfall of any given period between
two successive satellite observations. This effect might be limited when the revisit frequency
is large enough, since the occurrence of important dry downs usually coincides with clear
sky conditions.

To perform the interpolation of the scaling factor X, we chose a linear technique.
Preliminary tests, not described in this article, showed that cubic spline interpolation
exhibited periods of very large discrepancies, especially when the revisit frequency was
high, consistent with the result of [24,29].

2.5. Reconstruction of Daily ET from Instantaneous Latent Heat Flux

The daily extrapolation approach proposed by [19] was used to build daily ET from
an instantaneous estimate of LE derived from instantaneous data over a clear sky day
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(Figure 2). The approach is based on the reconstruction of the diurnal dynamic of the
evaporative fraction. The latter depends on both atmospheric forcing and surface condi-
tions [27]. Ref. [20] introduced an empirical parameterization of the EF diurnal cycle which
produces a rather flat EF diurnal cycle under dry conditions but depicts a pronounced
concave up shape under wet conditions. Then, for any instant t:

EFt =

[
1.2−

(
0.4×

Rg,t

Rg,max
+ 0.5× RHt

100

)]
×

EFi,obs

EFi,sim
(5)

EFi,obs =
LEi

AEi
(6)

AEi = Rn,i −Gi (7)

where Rg is the observed global radiation, EFi,obs is the observed evaporative fraction at
the time of the data acquisition, EFi,sim is the evaporative fraction calculated at the time

of the data acquisition using the expression 1.2−
(

0.4× Rg,i
Rg,max

+ 0.5× RHi
100

)
and RH is the

relative humidity. Rg,max is set to 1000 W.m−2.
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AEi is the available energy at the time of the data acquisition.
Then:

LEt = EFt ×AEt (8)

With LEt, the latent heat flux at the instant t and AEt, the available energy at the same
instant reconstructed from:

AEt = Rg,t ×
AEi

Rg,i
(9)

Thus:
ETd = ∑ ETt (10)
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with ETt, the evapotranspiration at the instant t (ETt = LEt/λ, λ being the latent heat of
vaporization) and with ETd, the daily evapotranspiration. During nighttime, ETt is set to 0.

LE, Rn and G are available at the time of the satellite overpass. Rg is available at any
instant t.

When Rn,i and Gi are not available, thus every day without satellite overpass, the
upscaling procedure cannot rely on Equation (4) as in the above method, and ETd is
more simply computed from the sum of ET calculated at each instant t from Equation (2)
(ETt = st × Xinterpolated).

2.6. Evaluation of the Results and Statistical Metrics

The algorithms were qualitatively evaluated by comparing the reconstructed ETd time
series and ETd in situ measurements. The performance scores were quantified using the
root mean square error (RMSE), the bias (Bias) and the Nash-Sutcliff Index (NI). In a first
part, the performances of the method used to reconstruct daily ET from instantaneous in
situ measurements at 13:30 will be evaluated, then the accuracy of the reconstructed ET
cumulated over each season will be discussed. In a third part, the reconstruction statistics
at the daily time scale separately for cloudy and for clear days will be analyzed.

3. Results
3.1. Reconstruction of Daily ET from Instantaneous Latent Heat Flux on All Clear Sky Days

Performances of the method described in Section 2.5 to reconstruct daily ET from
instantaneous in situ measurements at 13:30 are summarized in Table 3. Results indi-
cate that, for ground measurements, RMSE vary between 0.19 mm day−1 and 0.98 mm
day−1 with 9/20 sites showing RMSE ≤ 0.60 mm day−1 and 6/20 sites showing RMSE
> 0.80 mm day−1. These values are within the range of other studies (e.g., [15]) and they
confirm the results we obtained in a previous study [19]. For most sites the method showed
a small positive bias, lower than 0.20 mm day−1, and a relatively good Nash Index with
values greater than 0.70 for 12/20 sites. At 10:30, lower NI were obtained (data not shown).
When considering the remote sensing dataset, RMSE ranged between 0.42 and 1.42 mm
day−1, which is also in the range of published evaluation of remote sensing estimates of
ET (e.x., [36,39]). The use of remote-sensing based instantaneous estimates to reconstruct
daily ET increased RMSE for 12/20 sites, in average by 0.45 mm day−1. For most of the
other datasets, especially for the summer crops (corn, sorghum, and sunflowers), RMSE
improved by 0.28 mm day−1 in average. The results are rather satisfactory: for 10 sites out
of 20, NI was beyond 0.6 and for 17 sites, NI was beyond 0.4 (Table 3). On average remote
sensing estimates were usually lower than in situ estimates with an average decrease of
bias of 0.25 mm day−1.

3.2. Accuracy of the Different Reference Quantities at Seasonal Scale

The evaluation of the reconstructed ET cumulated over each season against observed
ET is presented in Figure 3 and in Tables A1 and A2 in Appendix C. Figure 3 presents
a summary of the results reference quantity by reference quantity for all sites and the
different revisit scenarios. Detailed results for the daily revisit scenario are presented in
Table A1 (in-situ dataset) and Table A2 (remote sensing dataset) in Appendix C: cumulated
values and error associated for the different reference quantities and the different sites.

When considering the in situ dataset with a daily revisit (Figure 3a and Table A1),
overall results showed a consistent tendency to underestimate ET at seasonal scales for all
reference quantities with relative biases between 0 and −17%. Relative bias ranged from
0% per season (which correspond to a cumulative difference of 0 mm) to 45% (cumulative
difference of 160 mm). Overestimations whatever the reference quantity were obtained
only for three datasets (Aur W 2008, Lam W 2007, Kai W 2012, Table A1). Overestimations
were observed for 52 cases over 160 (all datasets and all reference quantities considered).
Considering only the error induced while evaluating ET cumulated over the entire season,
Rcs appeared as the best reference quantity to reconstruct ET for the daily revisit. Rn_FAO,
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ET0, LEpot, and AE + rain were also identified as good reference quantities on average,
but results were more contrasted from one site to another than with Rcs. In general Rcs
provided estimations larger than the other reference quantities.

When considering the interpolation of remote sensing estimates of ET with a daily
revisit (Figure 3a and Table A2), the overall results were significantly improved on aver-
age for most reference quantities with significant decreases in bias, resulting mostly in
slight overestimations (Table A2 in Appendix C). However, when looking at the results
of each reference quantity for each seasonal dataset, we noticed a larger scattering of the
performances with an increase of high error occurrences (see Figure 3a). Unfortunately,
Rcs that was performing the best when considering the in situ dataset provided here a
large overestimation and the worse results among all the other reference quantities. The
most robust results were obtained with LEpot, but all other reference quantities, except Rcs
and at a lesser extent AE + rain, provided acceptable results. It should be noticed that the
use of the model to compute instantaneous remotely-sensed fluxes as the base of the ET
reconstruction led to overestimate the seasonal ET for most of the sites.

Table 3. Statistics of the reconstruction of daily ET from instantaneous in situ latent heat flux and
instantaneous remotely-sensed derived latent heat flux on clear sky days at 13:30.

In Situ Dataset RS Derived Dataset

RMSE
(mm)

Bias
(mm) NI RMSE

(mm)
Bias

(mm) NI

Aur W 2006 0.94 0.05 0.62 1.14 −0.12 0.48
Aur Su 2007 0.92 0.13 0.26 0.49 0.15 0.79
Aur W 2008 0.76 −0.19 0.49 0.43 −0.29 0.92
Lam W 2007 0.41 0.02 0.83 1.01 −0.67 0.68
Lam C 2008 0.19 0.12 0.71 1.08 −0.45 0.46
Lam W 2009 0.53 0.05 0.79 1.42 −1.08 0.44
Lam C 2010 0.92 0.78 0.72 0.50 −0.23 0.86
Lam C 2012 0.98 0.65 0.33 0.54 0.50 0.71
Lam C 2014 0.88 0.61 0.41 0.64 0.51 0.69
Lam C 2015 0.81 0.25 0.23 0.71 0.35 0.75

Avi P 2005 0.49 0.13 0.92 1.14 −0.46 0.41
Avi W 2006 0.75 0.13 0.79 0.67 0.01 0.83
Avi So 2007 0.74 0.20 0.86 0.52 0.12 0.89
Avi W 2008 0.64 0.26 0.80 0.88 0.33 0.48
Avi W 2012 0.40 0.12 0.88 0.93 −0.35 0.42

Wan M 2009 0.56 0.21 0.70 0.90 −0.18 0.39
Wan S 2009 0.55 0.20 0.82 0.83 0.04 0.30

Kai W 2012 0.64 −0.26 0.38 0.66 0.04 0.60
Kai Or 2012/15 0.60 −0.17 0.75 0.91 −0.07 0.35

Hao W 2004 0.41 0.02 0.83 0.83 0.20 0.54

Figure 3b–d present the evaluation of cumulated ET estimated for longer revisits (3, 8
and 16 days). The different reference quantities are fairly robust when the revisit frequency
increases to a 3 day return interval, with only a slight degradation of the results compared
to the 1 day revisit. From 8 days on, the performances of the interpolation were greatly
decreased except for Rcs which allowed the best seasonal ET retrievals for a revisit frequency
beyond 8 days. There is a large underestimation for the 16 days revisit frequency, mostly
because acquisitions often occur during late stages of dry downs with low ET values and
miss many rainfall events (dry down tails are more often sampled at this revisit frequency).
This should be corrected by both interpolation methods accounting for rainfall, but only
one of them (AE + rain) provide a significant correction. It is probable that for the second
method (AE + API) the APImax value is not correctly estimated with such a low revisit
and should be decreased to a common “significant rainfall” order of magnitude instead
of the maximum API which depends on the maximum rainfall over the season. Large
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overestimations by the Rcs method are compensated with the overall underestimation at
16 days revisit, therefore leading to a correct estimate at that revisit frequency. Rcs, because
it does not account for the decrease in incoming radiation during cloudy periods (i.e., all
days with no acquisition when the revisit is daily) tend to overestimate the seasonal ET,
resulting in a good bias correction for the in-situ data set.
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Figure 3. Relative bias (%) between observed seasonal ET and reconstructed seasonal ET for each reference quantity and
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using in-situ data (red) and remote sensing estimates (blue). Each boxplot presents the statistical results over the different
crop cycles.

3.3. Clear Sky vs. Cloudy Days

Since the lack of data between two ET values could result chiefly from either a satellite
blank day (clear day but no satellite overpass) or cloud occurrence (satellite overpass
but overcast conditions), we analyzed the reconstruction statistics at the daily time scale
separately for cloudy and for clear days. Actually, if cloudy days prevent data acquisitions,
the revisit frequency of the sensor may also induce clear days without data acquisitions.
Seventy-seven percent of the reconstructed chronicles, for an 8-days revisit frequency,
showed poorer reconstructions statistics for cloudy days than for clear days where there
would be no data because no satellite acquisition. Figure 4 shows the ranking of the
reference quantities according to the Nash Index calculated over clear sky days and cloudy
days for an everyday and an 8-day revisit frequencies. For example, AE + API was 4 times
the best reference quantity (i.e., on 4 datasets), 1 time the second best, etc. to reconstruct ET
for cloudy days over a 8-day revisit frequency. For a daily revisit frequency, AE appeared as
the best reference quantity to reconstruct ET. For an 8-day revisit frequency, Rcs appeared as
the best estimator relatively to others to reconstruct ET for cloudy days, while AE + API is
the best reference quantity to reconstruct ET for clear days. Moreover, both were also better
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than the others except for Rcs to reconstruct ET for cloudy days. Using the information
given by the amount of precipitation via API seemed necessary to reconstruct ET.
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4. Discussion
4.1. Extrapolation Errors

The self-preservation hypothesis of EF during the day is, according to [22], one of the
major sources of bias in extrapolation algorithms. They suggested that improvement in
accuracy might also be obtained by a better modelling of available energy. The empirical
parameterization of the EF diurnal cycle from [20] used to reconstruct the daily ET from in-
stantaneous measurement on clear sky days (Equation (5)) is consistent with the consensus
amongst authors on the observed concave-up shape of most EF diurnal fluctuations. The
parameterization originally built for an olive orchard was applied over multiple crops and
led to reasonable daily ET estimations for all sites and the large number of climatologic
conditions sampled in our datasets (Table 3). Using this shape of EF to reconstruct daily ET
appeared as a good method for agricultural applications and performed well as evidenced
by a robust bias correction at seasonal timescales compared to a simpler conservative
EF assumption [19]. On days with no data acquisitions, the reconstruction of daily ET
depends on the reference quantities (Equation (2)). The errors generated from the daily
extrapolation of ET on these days with no data are however not significant compared to
the errors relevant to the interpolation between available remote sensing estimates itself
(not shown).

4.2. Accuracy of the Temporal Upscaling via Interpolation

The use of an interpolation based on the self-preservation of the ratio between LE and
the reference quantity are not relevant for long revisit frequency. That result is consistent
with the previous studies of [29,40,41]. Interpolated values of the ratio between LE and
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the reference quantity could then be a source of error and not reflect actual values of
ET between image retrievals, especially for long winters without acquisitions or during
monsoon periods. The poorer reconstructions statistics for cloudy days than for clear
days could explain the tendency to systematically underestimate ET when reconstructing
the series. Indeed, when ET is interpolated on a cloudy day, the evaporative demand is
reduced, the stress is also lower compared to values predicted with the linear interpolation.
The actual ET values are thus more or less strongly underestimated (Figure 5).
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There was significant variability in the performances from site to site particularly for
long revisit frequencies (over 8 days). Although the specific causes of these differences are
not fully understood, this result suggests that the revisit frequency necessary to achieve
accurate estimates of ET via temporal upscaling need to be fewer than 8 days whatever the
reference quantity used. Dry regions (as Kairouan and Haouz sites) with low ET fluxes
seemed to be less affected by the degradation of the revisit frequency than other regions
where ET is higher (Tables A1 and A2), which is quite logical when considering that the
variability of ET are lower.

It should be noted that interpolation at the time of satellite acquisition considers
sun-synchronous satellite such as Landsat platform, and that it would not be fully adapted
to other space systems such as MODIS on Terra and Aqua with variable acquisition time
from day to day (see [39]). In these cases, it would be required to interpolate integrated
daily value of ET rather than instantaneous values (e.x., [28,29,42]). However, as operations
are almost fully linear, this is not supposed to affect significantly our results.

4.3. Choice of the Reference Quantity Depends on the Objectives

The choice of a reference quantity cannot be solved simply: it strongly depends on
the objective pursued. At the seasonal scale, for the evaluation of the annual hydrologic
budget or inter-annual comparison, we can rely on very simple methods using reference
quantities which are available, and which appeared robust against long revisit frequencies,
such as Rg or Rcs. While cumulative ET is important for the seasonal water budget, it is also
important for agronomical or hydrological applications to look also at the dry down scale,
i.e., the day to day variations, during a water stress event for instance. The best reference
quantities to reconstruct seasonal ET are not necessarily the ones that perform best when
one looks at the dynamics of ET at the event scale. At the event scale, the most efficient
reference quantities over all sites are not the same as for the seasonal ET. For infra-seasonal
studies aiming at stress detection and irrigation management, accounting for the amount
of precipitation at least via API seemed necessary, especially to reduce the underestimation
of ET over cloudy days during a long period without data acquisitions.

Figure 6 showed that API is a more relevant index than the method using a threshold
value for rain to simulate a maximum EF. However, an overestimation of ET during a dry
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down period could occur while using API to model EF after a rain event. Actually, two
arguments allowed to minimize that possible issue: (i) during cloudy days with no data,
the stress is lower and strong dry downs are less likely and (ii) with a high revisit frequency,
the risk of missing a dry down is low as the chance of cloud free situation increases. For
low revisit frequencies (>8 days), missing dry downs before or after a rain event is a real
issue and the use of a surface water balance model providing a better guess of the evolution
of water status would be a useful tool to complete the method.
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Reference quantities to favor as AE + API are quite complex to implement. Indeed,
AE is available only on clear days with acquisitions and involved Rg. Moreover, it seemed
valuable to engage a combination of the different reference quantities to minimize underes-
timation induced on cloudy days for long periods without data.

5. Conclusions

Very strong uncertainties on ET arise from the choice of the reference quantity and
only a few studies based on a majority of natural ecosystems (forests and savannahs)
have been published on this specific issue of ET interpolation [29]. Our study is based on
agricultural ecosystems and the methods developed should be tested and transferred to
other ecosystems. This study strongly underlines that the choice of the reference quantity
is dependent on the objective: very simple reference quantities such as solar radiation
quantities as Rg or Rcs allows relevant reconstructed ET chronicles at the seasonal scale.
For stress detection and irrigation management studies, the use of a reference quantity
accounting for the amount of precipitation appeared necessary, especially during a long
period without data acquisitions.

Other uncertainties are also related to the vector chosen for the production of ET esti-
mations from remote-sensing data (SVAT models or energy balance models in this study).
There is little doubt about the possibility of providing a reliable continuous product at low
spatial resolution, although the lack of data especially during winter or monsoon periods
cause very high uncertainties when rebuilding ET. The question is more complex for the
high spatial resolution because of the low availability of thermal information that require
looking at more specific interpolation methods which can extend over several weeks.

Today, many datasets from different infra-red sensors are available at different frequen-
cies and spatial resolutions. Some authors have developed another methodological path
by proposing interpolation schemes to take advantage of the complementarities between
different sensors to combine products from different spatial resolutions. These studies
remain few in number and were mainly performed at low resolution [43] and are even
rarer at the plot scale ([23,44]).

Few studies have focused on product development at the spatial (plot) and temporal
(daily) scales adapted for monitoring the water stress. Actually, a strong decrease in the
reconstruction performances appears over 5 to 8 days without ET estimation. Only soil
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water balance or SVAT model which relies on the spatial distribution of water inputs
(irrigation or rain) and soil properties can compensate the lack of TIR data. In the future,
producing continuous ET estimations at the plot scale will probably rely not only on
remote sensing data acquired at different wavelengths and/or resolutions, but also on their
combination with local water balance models constrained at regular intervals by estimates
from the TIR domain. Several key directions for further study rely on merging different
methods such as the application of data assimilation and fusion techniques in order to
producing robust ET estimates to enhance capabilities for monitoring water availability
and ecosystem responses.
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Appendix A

Experimental Data Sets Description
Auradé and Lamasquère Data Sets
The two cultivated plots Auradé and Lamasquère are located in the Occitanie region

in France which exhibits a temperate climate. Data for Auradé were acquired in 2006
(wheat), 2007 (sunflower), and 2008 (wheat) while the data in Lamasquère were acquired
in 2007, 2009, 2011, and 2013 (wheat). Surface radiative temperatures were measured
with a precision infrared temperature sensor (IRTS-P, Campbell Scientific Inc., Logan,
UT, USA) at 2.8 m above ground in the 6 to 14 µm spectral band in Auradé. Surface
radiative temperatures were derived from longwave upwelling radiation measured by a
4-component net radiometer (CNR1 manufactured by Kipp and Zonen) at 3.65 m above
ground in the 4.5 to 42 µm spectral band in Lamasquère. Leaf Area Index (LAI) was
measured at key crop phenological stages (five to six measurements per crop cycle) using
destructive methods and sampling schemes adapted to each crop. The leaf area was
retrieved using a planimeter device. For a complete description of the site characteristics
and more information on these data sets, see [45].

Avignon Arable Crop Data Sets
The “remote sensing and flux site” of INRA (National Institute of Agronomic Research)

Avignon is located in South East France and characterized by a Mediterranean climate. Data
were acquired in 2005 (peas), 2006 (wheat), 2007 (sorgho), 2008 (wheat), 2012 (wheat), and
2013 (sunflower). Surface radiative temperatures were derived from longwave upwelling
radiation measured by a 4-component net radiometer (CNR1 manufactured by Kipp and
Zonen) at 3 m above ground in the 4.5 to 42 µm spectral band. LAI was measured at
key crop phenological stages (five to six measurements per crop cycle) using destructive
methods and sampling schemes adapted to each crop. Leaf area was measured using a
planimeter device. For a full description of the site characteristics and more information on
these data sets, see [46].

Tunisian Rainfed Wheat Data Set
The rainfed wheat was grown in 2012 in a semi-arid climate in central Tunisia, west

of Kairouan.
Surface temperature data were acquired with a nadir-looking Apogee thermoradiome-

ter at 2.3 m above ground in the 8 to 14 µm spectral band. LAI was estimated with
hemispherical photographs every 2 to 3 weeks depending on the phenological cycle. These

http://www.trema.ma/
http://www.trema.ma/
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data were evaluated using destructive measurements during key stages (growth and full
cover). More information on that data set is available in [30].

Tunisian Olive Orchard Data Set
The olive orchard site is located in a semi-arid climate in central Tunisia, west of

Kairouan. The site was equipped with infrared temperature sensors over the bare soil
and the canopy (IR120, Campbell Scientific Inc, Logan, UT, USA) to measure the canopy
and bare soil surface temperature at 9.8 m above ground in the 8 to 14 µm spectral band
from March 2012. Data are available on the SEDOO OMP website with the assigned
DOI:10.6096/MISTRALS-SICMED.1479 [47].

Morocco Irrigated Wheat Data Set
Data for the irrigated wheat site were acquired during the 2004 growing season in

the semi-arid.
Haouz plain in Morocco (B124 site, [31]). Surface temperature data were acquired

with a nadir-lookingApogee thermoradiometer at 2 m above ground in the 8 to 14 µm
spectral band. LAI was estimated with hemispherical photography every 2 to 3 weeks
depending on the phenological cycle, validated by destructive measurements during key
stages (growth and full cover). For a complete description of the site characteristics and
more information on the data sets, see [2].

Niger Crop and Fallow Data Set
The study area is located 60 km east of Niamey in the South West of the Republic

of Niger, characterized by a tropical semi-arid climate. It consists of two plots of around
15 ha each in the AMMA-CATCH observatory. The two data sets used in this study were
collected in 2009 over a millet field and a fallow field. Surface temperature data were
acquired with 10! incidence KT15 Heitronics at 2.9 m above ground in the 8 to 14 µm
spectral band. LAI was derived from hemispherical photographs. For a recent description
of both the site and data set, see [48].

Appendix B

Methods to calculate RN-FAO and RCS

RN−FAO = RNS + RNL

RNS = (1− α)Rg

RNL = −
(

1.35
Rg

RCS
− 0.35

)
(034− 0.14

√
ea)(T + 273.15)4

ea = 0.611e
17.27T

T+273.15
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T is the air temperature, α is the albedo, Rcs is the clear sky radiation and Rg is the
global radiation

b = 2π
(J− 81)

364
Sc = 0.1645 sin(2b)− 0.1255 cos(b)− 0.025 sin(b)

w =
π

12

{(
h +

mn
60

)
− 0.5t + 0.06667(Lz− Lm) + Sc − 12

}
δ = 0.4093 sin

(
2π

284 + J
365

)
w1 = w−

(
π

t
24

)
w2 = w +

(
π

t
24

)
dr = 1 + 0.033 cos

(
2π

J
365

)
Rext =

12
π

R0 ∗ 2dr((w2−w1) sinϕ sin δ+ cosϕ cos δ(sin w2− sin w1))

Rcs = (0.75 + 0.00002∗E)Rest

J is the day of year, h is the local hour, mn is the local minutes, Lz is the longitude of
the center of the zone, Lm is the longitude of the measurement site, t is the time scale, R0 is
the solar constant and E the elevation.

Appendix C
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Table A1. Cumulative seasonal evapotranspiration observed (ETobs, mm) and reconstructed (mm) with the different reference quantitiesand error associated (relative bias in %) for the in
situ dataset for a revisit frequency of 1 day. The best reference quantityfor each site is highlighted.

ETobs ETAE ETAE+API ETAE+rain ETRcs ETRg ETRn_FAO ETLEpot ETET0
Aur W 2006 375 344 (−8) 333 (−11) 366 (−2) 401 (+7) 339 (−10) 388 (+4) 498 (+33) 400 (+7)
Aur Su 2007 268 216 (−19) 220 (−18) 274 (+2) 289 (+8) 217 (−19) 273 (+2) 274 (+2) 254 (−5)
Aur W 2008 218 258 (+18) 262 (+20) 297 (+36) 319 (+46) 257 (+18) 242 (+11) 283 (+19) 266 (+22)
Lam W 2007 340 394 (+16) 382 (+12) 440 (+29) 477 (+40) 390 (+15) 389 (+14) 444 (+31) 413 (+22)
Lam C 2008 427 270 (−37) 260 (−39) 309 (−28) 334 (−22) 271 (−37) 270 (−37) 263 (−39) 268 (−37)
Lam W 2009 251 220 (−13) 224 (−11) 285 (+13) 306 (+22) 219 (−13) 270 (+7) 300 (+19) 245 (−3)
Lam C 2010 361 204 (−43) 209 (−42) 260 (−28) 261 (−28) 204 (−43) 204 (−43) 197 (−45) 200 (−45)
Lam C 2012 416 321 (−23) 299 (−28) 357 (−14) 387 (−7) 322 (−23) 303 (−27) 319 (−23) 322 (−23)
Lam C 2014 389 308 (−21) 304 (−22) 352 (−10) 344 (−12) 314 (−19) 312 (−20) 286 (−27) 276 (−29)
Lam C 2015 531 408 (−23) 415 (−22) 390 (−27) 476 (−10) 408 (−23) 408 (−23) 400 (−25) 656 (+24)
Avi P 2005 233 209 (−10) 209 (−10) 209 (−10) 233 (0) 209 (−10) 246 (+6) 266 (+14) 225 (−3)
Avi W 2006 375 337 (−10) 337 (−10) 337 (−10) 393 (+5) 337 (−10) 366 (−3) 424 (+13) 393 (+5)
Avi So 2007 386 338 (−12) 338 (−12) 338 (−12) 372 (−4) 338 (−12) 356 (−8) 352 (−9) 351 (−9)
Avi W 2008 424 351 (−17) 351 (−17) 351 (−17) 427 (+1) 352 (−17) 394 (−7) 482 (+14) 402 (−5)
Avi W 2012 303 278 (−8) 253 (−16) 311 (+3) 326 (+8) 278 (−8) 277 (−8) 309 (+2) 305 (+1)
Wan M 2009 339 257 (−24) 258 (−24) 279 (−18) 278 (−18) 257 (−24) 296 (−13) 265 (−22) 274 (−19)
Wan S 2009 335 262 (−22) 260 (−22) 276 (−18) 285 (−15) 263 (−22) 267 (−20) 264 (−21) 270 (−19)
Kai W 2012 265 280 (+6) 274 (+3) 287 (+9) 308 (+16) 280 (+6) 291 (+10) 279 (+5) 277 (+5)

Kai Or 2012/15 558 510 (−9) 451 (−19) 568 (+2) 524 (−6) 485 (−13) 579 (+4) 551 (−1) 552 (−1)
Hao W 2004 288 279 (−3) 274 (−5) 304 (+6) 318 (+10) 279 (−3) 280 (−3) 284 (−2) 282 (−2)

overall cumul 7082 6044 5913 6590 7058 6019 6411 6740 6631
overall relative bias (%) −15 −17 −7 −0 −15 −9 −5 −6
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Table A2. Cumulative seasonal evapotranspiration observed (ETobs, mm) and reconstructed (mm) with the different reference quantitiesand error associated (relative bias in %) for the
remotely-sensed derived dataset for a revisit frequency of 1 day. The best reference quantity for each site is highlighted.

ETobs ETsparse ETAE ETAE+API ETAE+rain ETRcs ETRg ETRn_FAO ETLEpot ETET0
Aur W 2006 375 299 349 (−7) 335 (−11) 365 (−3) 425 (+13) 349 (−7) 362 (−3) 338 (−10) 332 (−11)
Aur Su 2007 268 368 329 (+23) 301 (+12) 343 (+28) 451 (+69) 329 (+23) 335 (+25) 318 (+19) 303 (+13)
Aur W 2008 218 202 261 (+19) 244 (+12) 283 (+29) 382 (+75) 261 (+19) 274 (+26) 241 (+10) 230 (+5)
Lam W 2007 340 533 431 (+27) 409 (+20) 456 (+34) 575 (+69) 431 (+27) 447 (+32) 398 (+17) 393 (+16)
Lam C 2008 427 396 424 (−1) 396 (−7) 435 (+2) 518 (+21) 423 (−1) 434 (+2) 420 (−2) 395 (−8)
Lam W 2009 251 340 370 (+47) 350 (+40) 384 (+53) 393 (+56) 370 (+47) 385 (+53) 353 (+41) 346 (+38)
Lam C 2010 361 401 446 (+24) 430 (+19) 473 (+31) 565 (+57) 447 (+24) 443 (+23) 432 (+20) 425 (+18)
Lam C 2012 416 364 407 (−2) 376 (−10) 432 (+4) 483 (+16) 399 (−4) 385 (−8) 326 (−22) 328 (−22)
Lam C 2014 389 319 367 (−6) 350 (−10) 404 (+4) 400 (+3) 372 (−5) 363 (−7) 342 (−12) 323 (−17)
Lam C 2015 531 371 402 (−24) 388 (−27) 423 (−20) 473 (−11) 402 (−24) 393 (−26) 392 (−26) 384 (−28)
Avi P 2005 233 286 286 (+23) 286 (+23) 286 (+23) 319 (+37) 286 (+23) 293 (+26) 278 (+20) 277 (+19)
Avi W 2006 375 409 429 (+14) 429 (+14) 429 (+14) 481 (+28) 430 (+14) 455 (+21) 413 (+10) 407 (+8)
Avi So 2007 386 404 390 (+1) 390 (+1) 390 (+1) 425 (+10) 391 (+1) 398 (+3) 386 (0) 380 (−1)
Avi W 2008 424 342 368 (−13) 368 (−13) 368 (−13) 440 (+4) 369 (−13) 391 (−8) 344 (−19) 341 (−19)
Avi W 2012 303 357 370 (+22) 343 (+13) 375 (+24) 422 (+39) 370 (+22) 391 (+29) 351 (+16) 349 (+15)
Wan M 2009 339 417 428 (+26) 418 (+23) 434 (+28) 458 (+35) 428 (+26) 438 (+29) 429 (+27) 430 (+27)
Wan S 2009 335 448 285 (−15) 282 (−16) 294 (−12) 304 (−9) 285 (−15) 291 (−13) 288 (−14) 283 (−15)
Kai W 2012 265 297 252 (−5) 239 (−10) 254 (−4) 285 (+7) 252 (−5) 259 (−2) 249 (−6) 243 (−8)
Kai Or 2013 558 484 484 (−13) 448 (−20) 598 (+7) 529 (−5) 484 (−13) 517 (−7) 530 (−5) 482 (−14)
Hao W 2004 288 271 252 (−13) 248 (−14) 273 (−5) 284 (−1) 252 (−13) 255 (−12) 257 (−11) 243 (−16)

overall cumul 7082 7308 7330 7030 7699 8612 7330 7509 7085 6894
overall relative bias

vs. measurements (%) - 3 4 −1 9 22 4 6 0 −3

overall relative bias
vs. SPARSE (%) −3 - 0 −4 5 18 0 3 −3 −6
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