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Abstract: Anthocyanins are extensively studied for their health-related properties, including antibacterial
activity against urinary tract infections (UTI). Among common fruits, blueberries, with their
remarkable antioxidant capacity, are one of the richest sources. Anthocyanin-rich extracts were
obtained from four varieties: Snowchaser, Star, Stella Blue and Cristina Blue, grown in the hot climate
of Southern Spain. Their total anthocyanins contents (TAC) were determined spectrophotometrically,
and the anthocyanin profile by ultra high performance liquid chromatography—tandem mass
spectrometer (UHPLC-MS/MS). Their antioxidant activity was assessed by oxygen radical absorbance
capacity (ORAC) assay, while antibacterial activity against strains isolated from UTI patients was
assessed in vitro, helping to select the varieties with the highest bioactive potential. Star showed
the highest TAC and antioxidant activity (1663 ± 159 mg of cyanidin-3-O-glucoside (cy-3-O-glu)
equivalents/100 g fresh weight (FW), 6345 ± 601 µmol Trolox equivalents (TE)/100 g FW, respectively),
followed by Cristina Blue, Stella Blue and Snowchaser. As far as we know, this is the first time
that cyanidin-3-rutinoside has been identified in blueberries. The extracts inhibited all the tested
strains, MICs ranging from 0.4 mg/mL (for Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL
(for all extracts against UTI K. pneumoniae ssp. pneumoniae). This is the first study that assessed
in vitro the antibacterial activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and
Micrococcus spp. strains isolated from UTI.

Keywords: antibacterial activity; Escherichia coli; Klebsiella pneumoniae; Pseudomonas aeruginosa;
Providencia stuartii; Micrococcus; cyanidin-3-rutinoside; ORAC; UHPLC-MS/MS Orbitrap
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1. Introduction

Berries contain high amounts of polyphenols, including flavonoids, and are widely consumed
globally. Due to their healthful properties in a broad number of biological functions [1], anthocyanin
pigments, considered to be the most abundant flavonoids in berries, have been extensively studied.
There are currently more than 600 different anthocyanins described in the plant kingdom [2–7].
Their reported healthy effects are mainly related to their antioxidant and anti-inflammatory activity
in the prevention of some metabolic disorders [8]. Recent studies have shown that an increase in
anthocyanin dietary intake (from 3 to 24 mg/day) is significantly associated with a 12–32% [9–11]
reduction in the risk of coronary heart disease. Cassidy et al. [9] have shown that, for every 15 mg
increase in anthocyanin consumption, the relative risk of myocardial infarction decreases by 17%.
Notably, berries are the main food source of anthocyanins in Europe (11%) [12]. The consumption
of three servings per week (approximately 225 g) of strawberries or blueberries has been associated
with a significant decrease in the risk of myocardial infarction [9] and overall cardiovascular risk [13].
Additionally, berries of the Vaccinium genus have shown potential for use in urinary tract infections
(UTI). Anthocyanins extracted from cranberries are widely known as an adjuvant in preventing or
treating UTI [14–18]. Blueberries (Vaccinium corymbosum L.) present a significantly higher concentration
(32–407 mg/100 g fresh weight (FW)) and diversity of anthocyanins (10–23) compared to other berry
fruits, such as strawberries, grapes and raspberries (27–48 mg/100 g FW; seven to seventeen different
compounds) [19–27]. Among common fruits, blueberries, therefore, are one of the richest sources
of anthocyanins, making them extremely interesting fruits in terms of bioactive potential, with a
remarkable antioxidant capacity [28,29].

It is not surprising that blueberry cultivation is currently booming. Southern Spain is the leading
blueberry producer in Europe and fourth in the world. Blueberry production is rapidly increasing
because of its excellent productivity, adaptability to different environments and pest resistance [30]. It is
worth noting that both the anthocyanin profile and their respective concentrations vary significantly
among the different varieties, growing areas and also intra- and inter-harvests [20,31–34]. Most of
the varieties grown in Andalusia, a region located in Southern Spain, Cielo, Katiblue, Rockinoee,
Star, Stella Blue, Terrapin, Emerald, Jewel, Snowchaser, Rocío, etc., have been adapted to the warm
climate of southern Europe, taking advantage of an earlier January–June maturing season than the rest
of Europe.

To date, most studies carried out on the anthocyanin profile of blueberries have focused on varieties
grown in countries such as the USA, Chile, Germany, Italy or Canada (V. corymbosum var. Nui, Darrow,
Reka, Puru, Bluegold, Berkeley, Legacy, Sampson, Elliott, Pamlico) [20,22,25,31,35–37]. The genotype
(variety) has a significant impact on the concentration and anthocyanin profile of blueberries,
determining not only their overall concentration but also the major anthocyanins [20,21,31–34,38].
Those anthocyanins most characteristic of blueberries are glycosides (glucosides, galactosides and
arabinosides) and, in a smaller proportion, acetylated derivatives of cyanidin, delphinidin, malvidin,
peonidin and petunidin. The varieties that have shown the highest concentration of total anthocyanins
were Elliott and Pamlico (407 and 384 mg/100 g FW, respectively) [22,38].

Furthermore, it has been shown that the cultivation area also plays a key role in both
the anthocyanin profile and total concentration. For the Legacy variety, total anthocyanins are
significantly higher when cultivated in the warm climate of North Carolina (USA) (261 mg/100 g
FW), as compared with the continental climate of North-East Romania (189 mg/100 g FW) [31,38].
Blueberry cultivation enables fruits to be collected as many as eight times from the same bush per
season. Furthermore, the concentration and profile also vary significantly within and between harvests,
due to changes in environmental conditions such as temperature and rainfall. Therefore, anthocyanin
concentrations are higher in fruits collected in hotter (30–33 ◦C) months and years with a lower rainfall
(7–47 mm) [20]. In conclusion, a warm climate and high temperatures yield fruits with a higher
anthocyanin concentration.
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The United States is the world’s largest producer of blueberries [39]. More recently, Andalusia,
Spain, has become an important producer and is at present the largest producer in Europe (51.569 tonnes
in 2019) [40]. Nevertheless, only one study has evaluated the anthocyanin profile of three different
Andalusian varieties: Rocío and two other experimental varieties (V2 and V3). They contained
glycosides and acetylated derivatives of delphinidin, petunidin, cyanidin and malvidin (not peonidin),
with malvidin 3-hexoside being the major anthocyanin [41]. The authors also demonstrated that the
bush’s genotype has a significant effect on the anthocyanin profile, and that their concentrations vary
between harvests. It is worth noting that some varieties currently under cultivation in Andalusia,
such as Snowchaser, Emerald and Jewel, accumulated total anthocyanins ranging from 63–101 mg/100 g
in other blueberry-producing regions [42,43].

Many studies have reported the antibacterial activity of anthocyanins extracted from blueberries
against various Gram-positive (Listeria monocytogenes, Staphylococcus aureus and Clostridium perfringens)
and Gram-negative (Salmonella enterica, E. coli and Campylobacter spp.) foodborne pathogens [44–54].
However, many of these studies were performed with complex extracts, obtained using different
methods. It is not entirely clear which particular compounds are responsible for the antibacterial
activity observed [55].

Similar to cranberries, blueberries are rich in anthocyanins, but their efficacy as an adjuvant in
preventing or treating UTI is still in doubt and unclear [18,56]. Only a few in vitro studies have tested
their effect against uropathogenic E. coli strains isolated from the urine of human patients diagnosed
with UTI, and only one against Pseudomonas aeruginosa [50,57,58]. Although these findings appear
promising, researchers have yet to find the array of susceptible pathogens. It is, therefore, currently of
interest to evaluate the antibacterial activity of blueberry anthocyanins, not only against foodborne
pathogens, but also against bacteria strains associated with UTI infections. Moreover, similar promising
results were obtained in the case of other berries different to cranberries such as Aronia melanocarpa [59].

Anthocyanins extracts might be attractive adjuvants and/or alternatives to synthetic antibiotics,
because they contain dynamic combinations of bioactive phytochemicals that might combat resistance
on various complementary levels [47]. Current results show that complex mixtures of blueberry
extracts show a better antibacterial efficacy against Salmonella and Campylobacter compared to
individual compounds [60], most likely because of the synergy among the phytochemicals [60–62].
Thus, investigating complex anthocyanin mixtures instead of the purified compounds would
appear justifiable.

Since substantial differences have been found in terms of anthocyanins concentration and diversity
in blueberries grown in countries with different climatic conditions, their bioactive properties may
thus vary, due to changes in their anthocyanin profiles. In order, therefore, to select those varieties that
show an optimum anthocyanin profile and potent bioactive properties, identifying and quantifying
the anthocyanins of blueberries grown in Andalusia is of great importance.

The aim of the present study is to evaluate the total anthocyanins content (TAC) and the
anthocyanins profile of four blueberry varieties: Snowchaser, Star, Stella Blue and Cristina Blue,
which are grown in Andalusia, in order to determine which variety presents the highest TAC, and to
discriminate them based on their anthocyanins composition. Simultaneously, we intend to assess
the antioxidant activity and the in vitro antibacterial activity of the extracted anthocyanins against
standard pathogenic strains and bacteria isolated from patients suffering from UTI. This would enable
those varieties with the greatest bioactive potential to be selected.

To the best of our knowledge, not only is this the first attempt to evaluate the TAC and anthocyanins
profile of Snowchaser, Star, Stella Blue and Cristina Blue grown in Andalusia, but it is also the first
evaluation of the in vitro effect of blueberry anthocyanins on potential uropathogenic bacteria strains,
such as: Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp.



Antioxidants 2020, 9, 478 4 of 22

2. Materials and Methods

2.1. Reagents

Amberlite XAD7HP, AAPH (2,2′-diazo-bis-amidinepropane-dihydrochloride) and Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic) were purchased from Sigma (Munich, Germany).
Fluorescein was provided by Fluka. Methanol for liquid chromatography and acetic acid 99.8%
were purchased from Merck (Munich, Germany) and VWR CHEMICALS (Radnor, PA, United States),
respectively. Malvidin-3-glucoside, cyanidin-3-glucoside, cyanidin-3-galactoside, peonidin-3-glucoside
and delphinidin-3-glucoside were purchased from Extrasynthese (Genay, France).

2.2. Samples

Four different varieties of highbush blueberry (Vaccinum corymbosum) were analysed: Snowchaser,
Star, Stella Blue and Cristina Blue. They were all grown in the hot climate of Huelva, Southern Spain,
in the towns of Palos de la Frontera and Almonte. Blueberries at commercial ripening were sampled
from February to March 2019, depending on when the harvest of each variety commenced.

2.3. Extraction of Anthocyanin Fraction

Once collected, the whole blueberries (200 g FW) were immediately frozen at−80 ◦C for at least 24 h
and subsequently freeze-dried. The resultant dry samples were independently mixed with 200 mL of
acidified methanol (0.5% acetic acid) using a homogeniser [20,21,38], before being centrifuged at 3452 g
for 10 min at 20 ◦C, and the supernatant fraction then being collected. Re-extraction was performed until
the pellet was colourless. The supernatant of each variety was filtered, concentrated under vacuum
at 35 ◦C to remove methanol, and then diluted 1:1 with water. The purification of the anthocyanins
fraction of each variety was performed as previously described in the literature [6,20,21,23,63], using an
Amberlite XAD-7 column (30 × 1.5 cm) previously activated with methanol, and then 300 mL of water.
Samples were loaded onto the column and cleaned with 450 mL of water, in order to remove free
sugars, pectin, and organic acid, among other polar compounds. The anthocyanin fraction was eluted
with methanol/acetic acid solution (19:1, v/v) at 1 drop/s flow, concentrated under vacuum, frozen at
−80 ◦C and freeze-dried to obtain the anthocyanin extract (Table 1).

Table 1. Ratio of anthocyanin extract obtained from each blueberry variety.

Variety Ratio
(mg Anthocyanin Extract/100 g FW)

Star 704.9
Snowchaser 253.8
Cristina Blue 431.7

Stella Blue 439.1

2.4. Total Anthocyanin Content (TAC)

Total monomeric anthocyanin content was determined by the pH differential method [64].
Solutions used were potassium chloride buffer (KCl) at pH = 1.0 (0.025 M) and sodium acetate
buffer (C2H3NaO2) at pH = 4.5 (0.8 M). The anthocyanin extract of each variety was prepared twice:
once with potassium chloride buffer (pH 1.0) and then with sodium acetate buffer (pH 4.5). They were
settled for 15 min before their absorbances were measured in the spectrophotometer. Absorbance
(A) was measured at 500 nm and 700 nm for each sample in both buffers. Samples were analysed in
triplicate (duplicates of three different days). The following formulae were applied to estimate the
total anthocyanin content:

A = (A500 − A700) pH 1.0 − (A500 − A700) pH 4.5 (1)
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TAC (mg/100g FW) = (A ×MW × 1000)/(ε × 1) (2)

where MW is the molecular weight of cyanidin-3-O-glucoside (cy-3-O-glu) (MW = 449.2 g/moL),
and ε its molar absorptivity (26,900 L cm−1 mol−1). Total anthocyanin content (TAC) is expressed as
mg cy-3-O-gluc/100 g of FW.

2.5. Oxygen Radical Absorbance Capacity (ORAC)

The antioxidant capacity was measured by oxygen radical absorbance capacity (ORAC),
as described in Ou et al. [65]. A total of 50 µL of the extracts or Trolox (0.5–15 µM) were mixed with
100 µL of fluorescein (90 nM) and 50 µL AAPH (15 nM) in black 96-well plate. Phosphate buffer and
fluorescein controls were also included. A total of 50 µL of phosphate buffer, 100 µL of fluorescein and
50 µL of AAPH were used as blank. The analysis was performed at 37 ◦C. Fluorescence at excitation
and emission wavelengths of 485 nm and 528 nm, respectively, was recorded every 5 min for 60 min
using a multi-detection microplate reader (Synergy HT, Biotek, Winooski, VT, United States). Samples
were analysed in triplicate (triplicates on three different days).

The ORAC values were calculated using the differences between the blank and the sample areas
under the fluorescein decay curve. Results are expressed as µmol Trolox equivalents (TE)/100 g of FW.

2.6. Identification of Anthocyanins: UHPLC-MS/MS Orbitrap

Identification of the blueberries’ anthocyanins was performed by a UHPLC-MS/MS (ultra-high-
performance liquid chromatography) coupled to a hybrid quadrupole-orbitrap mass spectrometry
system (Qexactive, Thermo Fisher, Waltham, Massachusetts, United States) with electrospray ionisation
(HESI-II). The analytical conditions were previously described by Hornedo-Ortega et al. [63]. Separation
was carried out using a reverse-phase ZORBAX SB-C18 rapid resolution HD (2.1 × 100 mm, 1.8 µm)
column (Agilent, Santa Clara, CA, United States). The injected volume was 1 µL (extract dissolved
in mobile phase A) and the flow was 0.4 mL/min. The mobile phase (A: water/formic acid 95:5, v/v;
B: acetonitrile/formic acid 95:5, v/v) gradient was as follows: 0–2 min 5% B, 2–12 min from 5% to
100% B, 12–13 min from 100 to 5% B, and 5% B for 15 min. Analyses were carried out using full
MS scan from 100–1500 m/z, and high collision energy dissociation (HCD). The MS/MS parameters
were as follows: positive ionisation mode, resolution of 35000, 20 eV per cell, 3.5 kV of voltage,
50 V in the lens of the channel, capillary temperature 320 ◦C, 12.5 and 50 (arbitrary units) flux of
the auxiliary gas (N2) and gas boosting. Xcalibur Software (version 3.0.63, Waltham, Massachusetts,
United States) was used to analyse the data. Identification was performed according to their accurate
molecular mass, molecular formula, calculated mass, characteristic fragmentation and retention time.
The following anthocyanin standards were used for identification purposes: malvidin-3-glucoside,
cyanidin-3-glucoside, cyanidin-3-galactoside, peonidin-3-glucoside and delphinidin-3-glucoside.

2.7. Bacterial Strains

2.7.1. Standard Strains

Standard strains, Escherichia coli ATCC (American Type Culture Collection) 25922, Salmonella
Enteritidis ATCC 13076, Listeria monocytogenes ATCC 19114 were tested as controls. They were grown
in a test tube containing 10 mL sterile nutrient broth (Oxoid Ltd., Basingstoke, Hampshire, England)
at 37 ◦C for 24 h. A loopful of inoculum was transferred onto selective media: TBX agar for E. coli,
XLD agar for Salmonella Enteritidis (Oxoid Ltd., Basingstoke, Hampshire, England) and Palcam
agar base supplemented with Listeria Palcam antimicrobic supplement (Oxoid Ltd., Basingstoke,
Hampshire, England) for Listeria monocytogenes. Plates were incubated for 24 h at 37 ◦C. Bacterial
morphology was confirmed by optical microscopy.
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2.7.2. Uropathogenic Bacteria Isolated from UTI Patients

Urine was collected from 6 human patients who had given their written consent, in accordance
with the ethics protocol of the collecting hospital, the County Emergency Hospital Cluj-Napoca,
Romania (SCJU). The inclusion criteria were age above 18 years and the presence of clear clinical signs
of UTI: hypogastric pain or/and dysuria or/and pollakiuria or/and disturbed urine or/and renal colic [66].
The exclusion criteria were antibiotic treatments 48 h previous to sampling and absence of leucocytes
and/or of nitrites on dipstick analysis [66]. The selected patients were instructed on how to collect the
samples. Their clean catch mid-stream urine samples were collected using the provided wide mouth 50
mL sterile universal containers, according to the current widely accepted Danish recommendations [66].
The secure-closed containers, each containing at least 20 mL of urine, were sent for microbiology
testing. Each urine specimen was cultured within 30 min of sample collection as follows: 50 µL of urine
was vortexed and then inoculated on glucose agar plates using a sterile loop and incubated in aerobic
conditions at 37 ◦C for 18–24 h. For the plates where bacterial growth was observed, the bacteria were
identified by the conventional morphological and standard culture-based methods and by biochemical
characteristics using the Vitek 2 system [67,68]. The colonies’ genus and species were identified by
microscopic examination of the Gram-stained smear to assess the morphology of the cells’ shape,
size and the presence of pigments. The strains were also biochemically characterised using the Vitek
2 system, according to the manufacturer’s instructions. In the end, 6 bacteria of UTI importance were
isolated and identified, 4 Gram-negative: Escherichia coli β-Haemolytic, Providencia stuartii, Klebsiella
pneumoniae ssp. pneumoniae, Pseudomonas aeruginosa and 1 Gram-positive Micrococcus spp.

2.7.3. Preparation of Bacterial Strains

Several colonies of standard and UTI bacteria cultivated on Mueller-Hinton agar (Oxoid Ltd.,
Basingstoke, Hampshire, England) were transferred into sterile saline solution (8.5 g/L) and adjusted
to match the turbidity of McFarland 0.5 standard (1.5 × 108 CFU/mL). Then, a bacterial suspension of
1.5 × 106 CFU/mL was prepared for addition to each microplate well.

2.8. Determination of the Minimum Inhibitory Concentration (MIC)

The MIC was determined using the resazurin microtiter plate-based antibacterial assay [69,70].
Fresh stock methanolic solutions of the blueberry anthocyanin-rich extracts were prepared each
experimental day at concentration of 20 mg/mL of 70% methanol. One hundred microliters of sterile
nutrient broth (Oxoid Ltd., Basingstoke, Hampshire, England) were added in the wells of a 96-well
microplate. Then 100 µL of stock solutions were added in the first wells of each row and serial
11-fold dilutions were performed in the subsequent wells of each row by transferring 100 µL from
well to well. The surplus 100 µL in the last well of the row was discarded. Then, 10 µL of inoculum
(1.5 × 106 CFU/mL) was added to all wells. The actual tested concentrations of the methanolic
solutions of the anthocyanin-rich extracts were: 9.520 mg/mL; 4.530 mg/mL; 2.182 mg/mL; 1.038 mg/mL;
0.494 mg/mL; 0.235 mg/mL; 0.112 mg/mL; 0.053 mg/mL; 0.025 mg/mL; 0.012 mg/mL; 0.006 mg/mL;
0.003 mg/mL. Gentamicin (0.04 mg/mL in saline solution) was the positive control, and 70% methanol
was the negative control.

The microplates were incubated for 20–22 h at 37 ◦C and, then 20 µL of 0.2 mg/mL resazurin
aqueous solution was added to all wells. The microplates were incubated for another 2 h at 37 ◦C.
After this period of incubation, resazurin (a blue non-fluorescent dye) was oxidised to resorufin
(fluorescent pink) wherever the wells contained viable bacterial cells. The concentration in last blue
well on each row was considered the lowest that completely inhibited bacterial growth, thus the MIC.
Three replicates were performed for each bacterium and each stock methanolic solutions.
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2.9. Determination of the Minimum Bactericidal Concentration (MBC)

MBC was determined by plating 10 µL from the last 4 blue wells on each row (the 4 lowest
concentrations that showed inhibition of bacterial growth) in the MIC testing on Mueller-Hinton solid
culture medium (Oxoid Ltd., Basingstoke, Hampshire, England) [69]. The plates were incubated for
24 h at 37 ◦C. The lowest concentration that prevented bacteria growth (no colonies on the plate) was
considered to be the MBC. Three different biological replicates were performed for each plate and all
experiments were performed in duplicate.

2.10. Statistical Analysis

The results were statistically analysed using Graphpad Prism software (GraphPad Software, Inc.,
San Diego, CA, USA) and XLSTAT software (Addinsoft, New York, New York, USA, XLSTAT
2020.1.3.65245) [71]. Student’s t-test was used to analyse the obtained data from TAC and ORAC,
with differences at p < 0.01 considered significant. A one-way ANOVA (p < 0.05) within samples
was used to compare the 4 blueberry varieties and their antibacterial effect against the tested bacteria.
Fisher pairwise comparisons (LSD, p < 0.05) were made whenever ANOVA indicated a significant
difference. Pearson correlational analyses were performed to examine the TAC/ORAC relationship
and antibacterial activity. Whenever a correlation was confirmed, a linear regression was performed
with a 95% confidence interval, a tolerance of 0.0001 and a model selection based on best model by R2,
to establish and quantify the effect of TAC and antioxidant activity (ORAC) on the antibacterial activity.

3. Results and Discussion

3.1. Total Anthocyanins Content (TAC)

Figure 1 shows that Star was the variety with the significant highest anthocyanin concentration
(1663 ± 159 mg cy-3-O-glu/100 g FW), followed by Cristina Blue (733.4 ± 30.9 mg cy-3-O-glu/100 g FW),
Stella Blue (682.6 ± 14.7 mg cy-3-O-glu/100 g FW) and Snowchaser (384.8 ± 4.4 mg cy-3-O-glu/100 g FW).
The TAC of Snowchaser has previously been reported for fruits cultivated in the South of Brazil
(62.36 mg cy-3-O-glu/100g FW) [42]. Despite the fact that both the South of Brazil and Spain share a
hot climate, total Snowchaser anthocyanin was six times higher when cultivated in Spain. TAC values
ranging 31.54–406.9 mg cy-3-O-glu/100 g FW have been reported for Agropaine, Arlen, Berkley,
Blomidom, Bluecrop, Bluegold, Bluejay, Brigitta, Chipava, Darrow, Duke, Elliott, Hannah’s Choice,
Legacy, Lenoir, Nelson, North Country, Northblue, Northland, Nui, O’Neal, Pamlico, Sampson,
Toro, Jersey, Croatan, Rancocas and Rubel varieties [22,25,31,36,38,72,73]. All of the above were
grown in the USA, Romania, Slovenia, Korea and Chile, but not in Spain. Our results show that Star,
Cristina Blue and Stella Blue varieties cultivated in Southern Spain exhibited higher TAC values than
previously published. Interestingly, Star presents four times higher anthocyanin content than the
richest variety in anthocyanins (Elliott) so far reported [22].

Our results show that Star, Cristina Blue, Stella Blue and Snowchaser blueberries contain higher
anthocyanin concentrations compared with other edible fruits, such as strawberry (21.2–41.7 mg
cy-3-O-glu/100g FW), plum (56.0–124.5 mg/100g FW), red grape (48.0–121.1 mg/100g FW), cherry
(32.0–122.0 mg/100g FW), blackberry (100.0–300.5 mg/100g FW) and cranberry (140 mg/100g FW).
However, their anthocyanin content is in the range of blackcurrant (476 mg/100g FW), elderberry
(1375 mg/100g FW), chokeberry (1480 mg/100g FW) and black raspberry (687 mg/100g FW) [19,28].

Considering a serving size of 150 g of blueberry, the anthocyanin content of the blueberry varieties
under study would range from 577.2 to 2494.5 mg cy-3-O-glu/serving.
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Figure 1. Total anthocyanin concentration (a) and antioxidant activity (b) of the different blueberry
varieties. Total anthocyanin content (TAC) results are expressed as mg of cy-3-O-gluc/100 g fresh weight
(FW) and oxygen radical absorbance capacity (ORAC) values as µmol of Trolox equivalents/100 g FW.
Values represent mean ± SD of three replicates (n = 3). Different letters mean significant differences
between the four varieties at a level p < 0.01 (Student’s t-test).

3.2. Antioxidant Capacity: ORAC Assay

The antioxidant capacity of the analysed blueberry anthocyanin-rich extracts is presented in
Figure 1, expressed as µmol TE/100 g FW. Antioxidant activity followed similar trend to TAC. The Star
showed the highest value (6345 ± 601 µmol of TE/100 g FW), 2.8-fold higher than Snowchaser,
which presented the lowest (2231 ± 131 µmol of TE/100 g FW). Cristina Blue and Stella Blue
(5513 ± 580 and 5251 ± 534 µmol of TE/100 g FW, respectively) displayed intermediate values
with no significant differences.

Kalt et al. [74] determined the antioxidant capacity of 20 blueberry varieties (Bluecrop, Duke,
Brigitta, Bluejay, Legacy and Sampson, among others), whose average antioxidant activity was
4900 µmol of TE/100 g FW. Bunea et al. [31] reported ORAC values for Bluegold, Nui, Darrow, Legacy,
Nelson, Hanna’s Choice and Toro varieties between 2036–3458 µmol TE/100 g FW, with Hanna’s Choice
standing out for having the lowest antioxidant activity, and Toro the highest (Table 2). Wang et al. [73]
estimated the ORAC value for 14 different varieties between 2627 and 6747 µmol TE/100 g FW,
with Northland standing out as the variety with the highest antioxidant capacity, and Berkley with the
lowest (Table 2). The present study showed that Snowchaser’s antioxidant value is within the range
previously described for Berkeley, Brie G Kobita, Bluegold, Nui, Darrow and Hanna’s Choice varieties,
whereas Star is similar to North Country (Figure 1 and Table 2). Stella Blue and Cristina Blue values
agree with the Blomidom, Chipava and Send a Blow varieties.

Star, Cristina Blue and Stella Blue ORAC values were in the range of other edible fruits such
as blackberry (6250–8550 µmol TE/100 g FW), honeyberry (5200–6800 µmol TE/100 g FW) and red
grape (3700–13,500 µmol TE/100 g FW) [75,76]. Other berries, such as cranberry and elderberry,
showed higher ORAC values (7000 and 20,500 µmol TE/100 g FW, respectively) [56].

The antioxidant capacity of the four blueberry anthocyanin-rich extracts was positively correlated
with the TAC (r = 0.72; p < 0.0001), as assessed by the ORAC assay, agreeing with other reports [62,75,77].
This shows that the high antioxidant activity of the extracts can, in fact, be attributed to the TAC.
Thus, a subsequent linear regression analysis was performed to evaluate the effect of the TAC in the
tested blueberries on their antioxidant activity, obtaining the model in Equation (1):

ORAC = 3006.64 + 2.23 × TAC (3)

The model had an average fit—only R2 = 0.52—showing that about half of the variability in
the data is explained by other variables. However, both the model and the TAC model parameters
were statistically significant (p < 0.0001). Borges et al. [78] reported that the anthocyanins are
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indeed the major contributor to blueberries’ antioxidant activity (84%). They showed that a broad
spectrum of anthocyanins (15 major contributors) are responsible: delphinidin-3-Ogalactoside (≈20%),
cyanidin-3-O-galactoside and delphinidin-3-O-arabinoside (≈15%), petunidin-3-Ogalactoside (≈12%),
malvidin-3-O-galactoside (≈12%), malvidin-3-O-arabinoside (≈9%).

Table 2. Antioxidant activity of different blueberry extracts (V. corymbosum).

Variety ORAC
(µmol TE/100g FW) Cropfile References

Blomidom 5538 ± 388 USA [73]
Northland 6747 ± 121 USA [73]
Northblue 4976 ± 722 USA [73]

North Country 6265 ± 699 USA [73]
Chipava 5856 ±165 USA [73]

Elliott 4098 ± 436 USA [73]
Darrow 3994 ± 522 USA [73]

Bluecrop 4491 ± 190 USA [73]
Primary Operation Blue 3649 ± 473 USA [73]

Send a Blow 5070 ± 179 USA [73]
Berkley 2627 ± 364 USA [73]
JK-M7 4114 ± 344 USA [73]

Brie G Kobita 2737 ± 394 USA [73]
Duke 3145 ± 263 USA [73]

Bluegold 2121 ± 326 Romania [31]
Nui 2235 ± 677 Romania [31]

Darrow 2543 ± 219 Romania [31]
Legacy 2899 ± 531 Romania [31]
Nelson 3027 ± 474 Romania [31]

Hanna’s Choice 2036 ± 223 Romania [31]
Toro 3458 ± 325 Romania [31]

3.3. Anthocyanin Profile

A total of 25 different anthocyanin compounds were identified by UHPLC-MS/MS in the
four blueberry varieties (Table 3). Star and Stella Blue presented the highest diversity on the
anthocyanin profile (22 and 23 different compounds, respectively). Nineteen different anthocyanins
were described for Cristina Blue and Snowchaser. The previously described anthocyanin profiles
vary between 10–23 different compounds, depending on the variety, with Brigitta having the highest
number [21,31,38,41,76,79]. Therefore, the varieties analysed in the present study are among the
blueberry varieties with highest diversity of anthocyanin compounds.

Star, Stella blue, Snowchaser and Cristina blue presented five out of the six most frequently
naturally occurring anthocyanidins on their profile (cyanidin, delphinidin, peonidin, petunidin and
malvidin), showing a great diversity (Table 3). Most of the varieties previously reported present
these anthocyanidins, except for Bluegold, Brigitta and Legacy cultivated in Chile; Rocio and the
two experimental varieties (V2 and V3) grown in Spain and Bluecrop cultivated in USA, which did
not contain peonidin [36,41,80]. Anthocyanins present in the varieties studied were the glucoside,
arabinoside, rutinoside, acetyl and malonyl forms (Table 3). Additionally, xyloside, p-coumaroyl and
caffeoyl forms had been previously identified in Brigitta and Bluecrop grown in Chile and Macedonia,
respectively [31,79]. However, in the hot climate of Spain the acetylated forms of anthocyanins had
been found in experimental cultivars, V2 and V3, only [41].
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Table 3. Tentative identification of different anthocyanins in the blueberry varieties analysed.

Retention Time
(min) Compounds Molecular Formula

(M+)
Calculated
Mass (m/z)

Accurate
Mass (m/z)

Error
(ppm) MS/MS Fragments Variety

4.03 Delphinidin-3-O-galactoside C21H21O12 465.1028 465.1023 −1.0441 303.0501 A; B; C; D
4.30 Delphinidin-3-O-glucoside * C21H21O12 465.1028 465.1025 −0.4535 303.0502 A; B; C; D
4.44 Cyanidin-3-galactoside * C21H21O11 449.1078 449.1073 −1.1349 287.0552 A; B; C; D
4.47 Delphinidin-3-O-arabinoside C20H19O11 435.0922 435.0918 −0.8334 303.0501 A; B; C; D
4.60 Cyanidin-3-O-glucoside * C21H21O11 449.1078 449.1073 −1.1349 287.0543 A; B; C; D
4.65 Petunidin-3-O-galactoside C22H23O12 479.1184 479.1180 −0.9383 317.0658 A; B; C; D
4.68 Cyanidin-3-O-rutinoside C27H31O15 595.1658 595.1650 −1.1945 449.10784/ 287.05501 D
4.73 Cyanidin-3-O-arabinoside C20H19O10 419.0973 419.0968 −1.1173 287.0550 A; B; C; D
4.76 Petunidin-3-O-glucoside C22H23O12 479.1184 479.1179 −1.1346 317.0645 A; B; C; D
7.77 Petunidin-3-O-rutinoside C28H33O16 625.1763 625.1766 0.4215 479.1180 D
4.89 Peonidin-3-O-galactoside C22H23O11 463.1235 463.1230 −1.1500 301.0708 A; B; C; D
4.89 Petunidin-3-O-arabinoside C21H21O11 449.1078 449.1073 −1.1300 317.0656 A; B; C; D
4.99 Malvidin-3-O-galactoside C23H25O12 493.1341 493.1335 −1.0913 331.0812 A; B; C; D
4.99 Peonidin-3-O-glucoside * C22H23O11 463.1235 463.1231 −0.7546 301.0694 A; B; C; D
5.04 Peonidin-3-O-rutinoside C28H33O15 609.1814 609.1804 −1.7904 301.0691 A; B; C; D
5.10 Malvidin-3-O-glucoside * C23H25O12 493.1341 493.1336 −0.8437 331.0802 A; B; C; D
5.19 Cyanidin-3-(6′′-acetyl) galactoside C23H23O12 491.1184 491.1181 −0.6047 287.0551 A; C
5.22 Malvidin-3-O-arabinoside C22H23O11 463.1235 463.1231 −0.9568 331.0813 A; B; C; D
5.33 Delphinidin-3-(6′′-acetyl) glucoside C23H23O13 507.1133 507.1133 −0.7986 303.0497 A
5.33 Petunidin-3-(6′′-acetyl) galactoside C24H25O13 521.1290 521.1236 −1.1710 317.0657 A; B; D
5.39 Cyanidin-3-(6-acetyl) glucoside C23H23O12 491.1184 491.1182 −0.3561 287.0551 A; C; D
5.47 Malvidin-3-(6′′-acetyl) galactoside C25H27O13 535.1145 535.1441 −0.9590 331.0801 D
5.48 Petunidin-3-(6′′-acetyl) glucoside C24H25O13 521.1290 521.1289 −0.2340 317.0651 A; B; C; D
5.53 Peonidin-3-(6′′-acetyl) glucoside C24H25O12 505.1341 505.1343 0.4501 301.0707 A; B; C; D
5.58 Delphinidin-3-(6′′-malonyl) glucoside C24H23O15 551.1032 551.1034 0.4419 303.0501 A; B; D

* Identified with pure standards; A: Star; B: Snowchaser; C: Cristina Blue and D: Stella Blue.
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Most of the anthocyanin compounds were present in all four varieties under study (Table 3).
However, cyanidin-3-rutinoside, petunidin-3-rutinoside and malvidin-3-(6′′-acetyl) galactoside were
only identified in Stella blue (Table 3). As far as we know, this is the first time that cyanidin-3-rutinoside
has been identified in blueberry. It could be proposed as a marker of the Stella Blue variety.
This compound had been previously identified in strawberry, blackberry, sweet berry, Chilean guava
(Ugni molinae) and plum [21,23,81]. Petunidin-3-rutinoside was previously described in Brigitta
blueberry variety, while malvidin-3-(6′′-acetyl) galactoside was also identified in the Arlen, Legacy,
Lenoir, O’Neal, Pamlico, Sampson, Toro and Bluecrop varieties [21,38,79].

Delphinidin-3-(6′′-acetyl) glucoside was only identified in Star (Table 3), although it had previously
been detected in varieties, such as Brigitta, Arlen, Legacy, Lenoir, O’Neal, Pamlico, Sampson,
Bluecrop, and Ozarkblue [21,38,76]. Cyanidin-3-(6′′-acetyl) galactoside was detected in Star and
Cristina Blue (Table 3). As far as we know, this compound had only been detected previously in
a non-declared blueberry variety cultivated in USA [81]. Petunidin-3-(6′′-acetyl) galactoside was
identified in Star, Snowchaser and Stella Blue (Table 3), and it was only previously reported in
a non-declared blueberry variety grown in Slovenia [82]. Similarly, delphinidin-3-(6′′-malonyl)
glucoside was also determined in Star, Snowchaser and Stella Blue (Table 3). Conversely, it
was only reported in the abovementioned non-declared blueberry variety cultivated in USA [81].
Although peonidin-3-O-glucoside and peonidin-3-O-rutinoside were identified in the four varieties
studied, they were only reported in the abovementioned blueberry varieties grown in USA
and Slovenia, and in Brigitta, respectively [81,82]. Peonidin glycosides usually reported in
blueberries are galactoside and arabinoside [21,31,38,76,79,81,83]. Therefore, we could propose
Cyanidin-3-(6′′-acetyl) galactoside as a marker for Star and Cristina Blue; petunidin-3-(6′′-acetyl)
galactoside and delphinidin-3-(6′′-malonyl) glucoside as markers for Star, Snowchaser and Stella Blue,
and peonidin-3-O-glucoside and peonidin-3-O-rutinoside markers for Star, Snowchaser, Cristina Blue
and Stella Blue, including the previously-reported Brigitta for the latter compound.

3.4. Antibacterial Activity

Table 4 presents the minimum inhibitory concentration (MIC) of the anthocyanin-rich extracts
from the four varieties of blueberries against the strains isolated from urinary tract infections (UTI) and
standard strains. All varieties significantly inhibited the growth of the eight strains (five UTI strains
and three standard strains) when compared with the negative control (70% methanol), with MICs
ranging from 0.4 mg/mL (in the case of Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL (in
the case of all extracts against UTI K. pneumoniae ssp. pneumoniae) (Table 4).

Our results show that the 4 anthocyanin-rich extracts were most effective against P. aeruginosa
among the bacteria isolated from UTI patients. This is surprising, because P. aeruginosa was the strain
most resistant to the positive control general wide-spectrum antibiotic Gentamicin. This finding
suggests the need to further explore the potential of anthocyanins from blueberries as a novel approach
to controlling some antibiotic resistant UTI strains, especially since we are currently facing the problem
of the emergence and spread of antibiotic-resistant strains. UTI can, however, be caused by many
pathogens, with uropathogenic E. coli as the main culprit identified in about 80% of the clinical cases [84].
In this respect, the four anthocyanin-rich extracts were less effective against K. pneumoniae UTI (the
most resistant strain), followed by E. coli UTI and ATCC strains. These results were later confirmed by
minimum bactericidal concentration (MBC) testing (Table 5).

The MBC ranged from 1.0 mg/mL (in the case of extracts against UTI P. aeruginosa and Stella Blue
against UTI Micrococcus spp.) to 9.5 mg/mL (in the case of all extracts against UTI K. pneumoniae ssp.
pneumoniae, Star against UTI E. coli; Stella Blue against ATCC E. coli and Star against L. monocytogenes)
(Table 5). The blueberry anthocyanin-rich extracts had a statistically similar effect to the synthetic
generic antibiotic (0.4 mg/mL Gentamicin) used as positive control against all five UTI strains tested,
and only against E. coli from the standard ATCC strains. The effect was weaker than the positive
control against S. Enteritidis and L. monocytogenes, but significant, nonetheless. Hence, the extracts
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were the most effective against P. aeruginosa (MBC = 1.0 mg/mL), while the smallest effect was against
K. pneumoniae (MBC = 9.5 mg/mL). Similarly, K. pneumoniae showed to be resistant to anthocyanins-rich
pomegranate extracts [85].

The effect of the four anthocyanin-rich extracts against the UTI strains tested as a group was
compared with the ATCC strains (data not shown). The results suggested that each of the four extracts
are approximately 3-fold less effective against UTI Gram-negatives than against ATCC Gram-negatives.
The same remark could be made when considering the anthocyanin-rich extracts as one group only,
supporting all the observations made within this study. However, this can be seen only in the case of
Cristina Blue for Gram-positives, and not at all for anthocyanin-rich extracts as a whole. The differences
were also evaluated between the tested Gram-negatives and Gram-positives. The effect of the four
blueberry varieties did not vary between the two groups. However, the extracts were 3-fold less
effective against the UTI than the ATCC within the Gram-negatives group, consistent with the prior
observation. This observation is in line with the reports of Dorneanu et al. [59] that show a greater
resistance of Gram-negative UTI strains to Aronia melanocarpa anthocyanin extracts compared to
Gram-positives. Even though the Gram-negative UTI strains appear to be consistently more resistant
to the anthocyanins from blueberries, the main limitation of this study is that only one Gram-positive
strain was isolated from the UTI compared to four Gram-negatives. Thus, the data on Gram-positives is
rather limited. This could open future research paradigms for the antibacterial activity of anthocyanins.

Table 6 shows the Pearson correlation between the antibacterial activity of the four anthocyanin-rich
extracts and the TAC and ORAC. Although positive correlations between the MIC, MBC and the
TAC were obtained, it reached statistical significance in the case of the UTI β-Haemolytic E. coli MBC
only. Interestingly, the MIC of S. Enteritidis showed an inverse relation with the TAC; although
high, it was not significant. No correlation was observed between the antibacterial and antioxidant
activity. This agrees with other studies [55], although other authors have found a significant correlation
between antibacterial activity and polyphenolic content in berries [32]. Linear regression analysis was
performed following the results of the Pearson correlation. The model equations and the goodness of
fit parameters are presented in Table 7.

The mechanism of bacterial inhibition by berry compounds is an accumulation of direct and
indirect effects [86]. The direct action is the interference of phytochemicals with the bacterial cell
membrane that leads to the inactivation of crucial enzymes. The indirect effect, on the other hand,
is related to the nutrient availability or genomic expression, both impairing the metabolism and the
normal functioning of the bacteria. Blueberry anthocyanins act mainly by inhibiting gene transcription,
disrupting the cell membrane structure and energy transport, thus inhibiting their growth and
reproduction [51,52,60,87]. Blueberry extracts were observed to affect the transcription of up to seven
genes in the bacterial cell [51,60]. These genes had critical roles in the internal and external channels
of cell membranes. Among these was the TolC porin protein that controls the outer membrane
channel. It also has a central role in pumping out antibacterial agents such as antibiotics and detergents.
Other studies showed that blueberry anthocyanins distorted the membrane morphology and caused
aggregation and leakage of cellular contents of E. coli, S. Typhimurium, S. Enteritidis, L. monocytogenes
and P. aeruginosa [46,52,60,87]. The anthocyanins from blueberries might also interfere with the activity
of several enzymes regulating the bacterial cell’s metabolic functions [45,52]. They could inactivate
the alkaline phosphatase (AKP), thus preventing cell differentiation, and they may affect the Ca2+

metabolism as well. Additionally, blueberry anthocyanins might lower the levels of ATPase, increasing
the efflux of ATP from the cytoplasm of pathogens, thus inhibiting respiratory metabolism and affecting
the energy supply.
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Table 4. Minimum inhibitory concentration (MIC) of anthocyanin-rich extracts from the four varieties of blueberries, expressed in mg/mL.

Type of Strain UTI Strains ATCC Standard Strains

Gram staining
of the strains Gram-negative Gram-positive Gram-negative Gram-positive

Sample

Strains Klebsiella pneumoniae
ssp. pneumoniae

Providencia
stuartii

Escherichia coli
β-Haemolytic

Pseudomonas
aeruginosa Micrococcus spp. Escherichia coli

ATCC 25922
Salmonella Enteritidis

ATCC 13076
Listeria monocytogenes

ATCC 19114

Cristina Blue 9.52 ± 0 Ac 1.78 ± 0.65 A,a 3.74 ± 1.372 A,b 0.85 ± 0.31 A,a 1.41 ± 0.65 A,a 3.74 ± 1.37 A,b 2.16 ± 0 C,a 4.54 ± 0 D,b

Star 9.52 ± 0 Ad 1.78 ± 0.65 A,a,b 3.74 ± 1.372 A,c 0.49 ± 0 A,a 2.57 ± 1.79 A,b,c 3.74 ± 1.37 A,c 1.03 ± 0 B,a,b 2.16 ± 0 C,a,b,c

Snowchaser 9.52 ± 0 Ad 1.78 ± 0.65 A,a,b 3.74 ± 1.372 A,c 0.58 ± 0.41 A,a 1.78 ± 0.65 A,a,b 3.74 ± 1.37 A,c 1.78 ± 0.65 C,a,b 2.16 ± 0 C,b

Stella Blue 9.52 ± 0 Ad 1.78 ± 0.65 A,a,b 3.74 ± 1.372 A,c 0.40 ± 0.15 A,a 0.76 ± 0.46 A,a,b 3.74 ± 1.37 A,c 2.16 ± 0 C,b 1.41 ± 0.653 B,a,b

Positive control
(µg/mL) 0.28 ± 0.20 Aa 1.45 ± 0.67 A,b 0.12 ± 0.11 A,a 3.85 ± 1.41 A,c 0.02 ± 0 A,a 0.05 ± 0.05 A,a 0.69 ± 0.32 A,a,b 0.02±0 A,b

Note: The data are presented as mean ± SD, n = 3. Different uppercase letters indicate statistically significant differences on the columns, and therefore differences among the samples,
while the different lowercase indicate statistically significant differences on the rows, therefore differences among the different strains (Fisher LSD, p < 0.05). The negative control was 70%
methanol, the solvent used for the dilution of the lyophilised anthocyanins, while the positive control was Gentamicin (with the initial concentration of stock solution of 0.4 mg/mL).

Table 5. Minimum bactericidal concentration (MBC) of anthocyanin-rich extracts from the four varieties of blueberries, expressed in mg/mL.

Type of Strain UTI Strains ATCC Standard Strains

Gram staining
of the strains Gram-negative Gram-positive Gram-negative Gram-positive

Sample

Strains Klebsiella pneumoniae
ssp. pneumoniae

Providencia
stuartii

Escherichia coli
β-Haemolytic

Pseudomonas
aeruginosa

Micrococcus
spp.

Escherichia coli
ATCC 25922

Salmonella Enteritidis
ATCC 13076

Listeria monocytogenes
ATCC 19114

Cristina Blue 9.52 4.54 4.54 1.03 2.16 4.54 2.16 4.54
Star 9.52 4.54 9.52 1.03 4.54 4.54 4.54 9.52

Snowchaser 9.52 2.16 4.54 1.03 2.16 4.54 4.54 4.54
Stella Blue 9.52 2.16 4.54 1.03 1.03 9.52 2.16 2.16
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Table 6. Pearson correlation matrix of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), with the total anthocyanin
content (TAC) of the four varieties of blueberries and the antioxidant capacity, as assessed by the ORAC.

Type of strain UTI Strains ATCC Standard Strains

Gram staining
of the strains Gram-negative Gram-positive Gram-negative Gram-positive

Sample

Strains Klebsiella pneumoniae
ssp. pneumoniae

Providencia
stuartii

Escherichia coli
β-Haemolytic

Pseudomonas
aeruginosa

Micrococcus
spp.

Escherichia coli
ATCC 25922

Salmonella Enteritidis
ATCC 13076

Listeria monocytogenes
ATCC 19114

TAC 0.69 −0.24 −0.81 −0.08 0.86 0.69 0.96 −0.22
ORAC 0.13 −0.04 −0.25 0.18 0.39 0.70 0.56 0.15

Values in bold are different to 0 with a significance level of α = 0.05.



Antioxidants 2020, 9, 478 15 of 22

Table 7. Regression of antibacterial activity (MIC and MBC) variables and the total anthocyanin content
(TAC) of the four varieties of blueberries, and the antioxidant capacity, as assessed by the ORAC.

Linear Regression Equations Goodness of Fit,
R2

Statistical Significance of the Model,
p

MIC S. ATCC = 1.74 − 1.46 × 10−3
× TAC + 2.69 × 10−4

× ORAC 1.00 0.002
MBC E. UTI = 3.64 + 5.83 × 10−3

× TAC − 6.00 × 10−4
× ORAC 0.99 0.023

MBC S. ATCC = 5.64 + 3.62 × 10−3
− 1.12 × 10−3

× ORAC 0.99 0.033
MBC E. UTI = 2.03 + 4.33 × 10−3

× TAC 0.92 0.039

Where: The first letter in the abbreviation stands for the variable correlated: MIC—minimum inhibitory concentration;
MBC = minimum bactericidal concentration; the letters afterwards show the strain tested: E.—Escherichia coli;
S.—Salmonella Enteritidis; while the type of isolation is last: UTI—strain isolated from urinary tract infection;
ATCC—standard strain.

Furthermore, sublethal concentrations of blueberry pomace extracts significantly affected
other factors related to the virulence and pathogenicity of pathogens. They decreased the cell
surface hydrophobicity of S. Typhimurium, together with its auto-aggregation, cellular motility,
colonisation and invasion capabilities [87]. Similarly, compounds in purified proanthocyanins from
cranberry extracts inhibited the agglutination of E. coli and K. pneumoniae [88]. However, this effect
was strain- specific and dose-dependent [53,88]. Blueberry extracts affected the growth of E.
coli and P. aeruginosa, and they were able to significantly inhibit their biofilm formation and
bacterial adhesion [50]—both important factors in their surface colonisation and infection [54].
Low concentrations of blueberry extracts proved to be more effective in inhibiting the biofilm formation,
because a higher anthocyanin concentration could increase the production of exopolysaccharides in the
presence of environmental stress, enhancing the protection of bacteria [50]. The specific mechanism of
blueberry anthocyanins needs, therefore, to be further explored and qualified. Similar significant results
were reported for anthocyanins from blueberries in general against E. coli [47,50,89] and L. monocytogenes
foodborne pathogens [47,52], and for UTI pathogens E. coli [50,57,58] and P. aeruginosa [50].

Comparing our results with others already reported, a lower inhibition of blueberry anthocyanins
was observed for E. coli O157:H7 (MIC = 173.08 mg/mL) [46]; of various blueberry cultivars
(Highbush and Rabbiteye) extracts for E. coli (MIC = 20–35 mg/mL) [32] and of blueberry fruit
infusion for E. coli (MIC = 50 mg/mL) [89]. Additionally, Sun et al. [52] obtained lower MICs and MBCs
of L. monocytogenes and S. Enteritidis (MIC=0.27 mg/mL; MBC = 0.53) for blueberry anthocyanins.
Other studies dealing with blueberry extracts presented MIC of L. monocytogenes ranging from 100 to
300 mg/mL and an MBC of 100 to 450 mg/mL, while for S. Enteritidis, a MIC of 100 to 450 mg/mL and an
MBC of 100 to 600 mg/mL [49,53]. However, Zhou et al. [53] also suggested that L. monocytogenes might
be more resistant than S. Enteritidis. Other studies, on the contrary, showed that blueberry peel extracts
were most effective against Gram-negative bacteria, and mainly against E. coli [90]. Zhou et al. [53]
also observed a higher inhibition of Gram-negative S. Enteritidis compared to the Gram-positive
L. monocytogenes by blueberry extracts, including anthocyanins and proanthocyanidins. This effect,
however, was not observed in the present study.

Not only, therefore, do the results vary, depending how the berries are processed prior to
extraction and the type of extraction solvent used [86,91], but also on their variety and the pedo-climatic
conditions in which they were cultivated [44,47–49,53,86]. Additionally, many phenolic compounds
from blueberries, anthocyanins included, do not only directly inhibit the growth and survival of
bacteria, but they do affect their virulence factor and their antibiotic resistance [47,51,52]. This makes
their antibacterial activity also dependent on the strain tested.

Both cranberries and blueberries share a similar anthocyanin profile [31,44,91,92]. It appears
that the monoglycoside anthocyanins (such as: delphinidin-3-O-glucoside, petunidin-3-O-glucoside,
cyanidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-glucoside), abundant in blueberries,
might be the compounds with the highest antibacterial effect against S. Enteritidis and
L. monocytogenes [44,48]. A mixture of anthocyanins may therefore be needed in order to inhibit
pathogens successfully [60–62]. In addition, the anthocyanins may exert an antibacterial activity,
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because they have the double ability to donate protons, causing the hyper acidification of the plasma
membrane, and to sequester electrons from the respiration process [47].

Blueberry extracts showed better antibacterial activities than those of raspberry and strawberry,
but were generally lower than cranberry extracts [45]. However, anthocyanins and proanthocyanidins
from black chokeberries and pure cyanidin-3-O-galactoside proved to be ineffective against standard
strains of E. coli, S. enterica, L. monocytogenes nor P. aeruginosa [55]. This shows the importance of not
only the berries’ anthocyanin profile, but also of having a broad spectrum of active compounds that
could act synergistically [61,62]. Results highly comparable to the present study were obtained in a
parallel study on the effect of Aronia melanocarpa on a broad spectrum of UTI clinical isolates strains,
including E. coli, P. aeruginosa and K. pneumoniae [59]. The MIC for the strains of interest ranged from
2.5 mg/mL to 10 mg/mL.

The role of anthocyanins from berries (mostly cranberries and blueberries) in UTI prevention
and/or treatment still remains unclear. They interfere in vitro with the most prevalent and important
virulence factor—the adhesion—of uropathogenic E. coli [46,50,58]. To the best of our knowledge,
there are no in vivo studies relevant to the antibacterial activity of anthocyanins from blueberries.
However, Ibrahim et al. [93] showed that cranberry anthocyanin extracts (200 mg/kg b.w aqueous and
methanol extracts) were effective in treating UTI caused by E. coli O157:H7 in infected rats. Although the
anthocyanin profiles are not exactly the same in blueberries and cranberries, we might expect a similar
behaviour. Nevertheless, further in vitro and in vivo studies would be needed, to ascertain not only
the inactivation mechanism, but also that the in vitro effects can be transferred to in vivo.

It appears that the concentration and type of anthocyanins reaching the urine of UTI patients might
be insufficient to exert a quantifiable effect [88]. In this sense, Cochrane meta-analyses, including clinical
studies, showed a lack of positive trials [16,18], while the Spanish Urological Association concluded
that there are no significant benefits compared with placebo, except for a very small effect in certain
population subgroups [94]. However, the positive results in this and other in vitro studies [50,57,58]
seem to point out that the actual optimal extraction procedures, mixture formulations, dosage and
bioavailability are not yet clear [88]. Moreover, anthocyanins in blueberries might target each individual
uropathogenic strain in the wider spectrum of UTI pathogens differently, varying their response to
treatment [88]. It becomes, therefore, important first to verify that the correct bacteria are targeted
before randomised clinical testing, an objective addressed by this study. However, based on in vitro
data alone no recommendation for clinical practice could possibly be formulated. Further studies
are needed to understand properly the pharmacokinetics of anthocyanins from blueberries and to
establish properly the correct doses, in order to achieve a preventive and/or therapeutic concentration
in the urinary tract [88].

4. Conclusions

Our results show that Star, Cristina Blue and Stella Blue blueberry varieties cultivated in the
hot climate of Southern Spain exhibited significantly higher TAC values than the richest variety in
anthocyanins so far reported. Star showed the highest antioxidant activity value, followed by Cristina
Blue, Stella Blue and Snowchaser. As far as we know, this is the first time that cyanidin-3-rutinoside has
been identified in blueberry. We could propose cyanidin-3-(6′′-acetyl) galactoside as a marker for Star
and Cristina Blue; petunidin-3-(6′′-acetyl) galactoside and delphinidin-3-(6′′-malonyl) glucoside as
markers for Star, Snowchaser and Stella Blue; and peonidin-3-O-glucoside and peonidin-3-O-rutinoside
markers for Star, Snowchaser, Cristina Blue and Stella Blue, including the previously-reported Brigitta
for the latter compound. The anthocyanin-rich extracts from the four varieties effectively inhibited all
the tested UTI and standard strains, with MICs ranging from 0.4 mg/mL (in the case of Stella Blue
extract against UTI P. aeruginosa) to 9.5 mg/mL (in the case of all extracts against UTI K. pneumoniae ssp.
pneumoniae). They were surprisingly effective against the P. aeruginosa UTI strain, showing a possible
new approach in the endeavour to seek new measures for controlling some antibiotic resistant UTI
strains. To the best of our knowledge, this is the first study that has tested in vitro the antibacterial
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activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp. strains
isolated from UTI. Therefore, we have shown that the principal potential uropathogenic bacteria are in
fact targeted by the anthocyanin-rich extracts from blueberries. Our results offered a first tentative
insight into the potential spectrum of UTI pathogens affected by the anthocyanins in blueberries,
highlighting the strain-specificity of the antibacterial effect.
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