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Abstract

Familial relatedness (FR) and population structure (PS) are two major sources for genetic

correlation. In human population, both FR and PS can further breakdown into additive

and dominance components to account for potential additive and dominance genetic effects.

In this study, besides the classical additive genomic relationship matrix, a dominance ge-

nomic relationship matrix is introduced. A link between the additive/dominance genomic

relationship matrices and the cocancestry (or kinship)/double coancestry coefficients is also

established. In addition, a way to separate the FR and PS correlations based on the estimates

of coancestry and double coancestry coefficients from the genomic relationship matrices is

developed. A unified linear mixed model is also proposed, which can account for both the

additive and dominance effects of FR and PS correlations as well as their possible random

interactions. Finally, this unified linear mixed model is applied to analyze a real data set

from UK Biobank.

KEYWORDS

Linear mixed model, familial relatedness, population structure, coancestry coefficient, vari-

ance components, random interactions
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1 Introduction

There are two broad sources for genetic correlation: the familial relatedness (FR) and pop-

ulation structure (PS). Appropriate modeling and adjustment of FR and PS correlation is

crucial in family based genetic association studies. The FR correlation comes from the fact

that two family members may share certain alleles or genomic regions in identity-by-descent

(IBD); i.e., which are inherited from a founder (e.g., a parent or grand parent) of the family.

The PS correlation may arise when two individuals share certain alleles in IBD from some

common ancestors. Similar to FR, PS can be treated as FR under a much larger space and

time scale. When a study sample consists of family data with heterogeneous racial or ethnic

background, both FR and PS correlations need to be accounted for in order to appropriately

control for the false positive rate at a nominal level.

In human population, both FR and PS can further breakdown into additive and dom-

inance components to account for potential additive and dominance genetic effects. For a

continuous disease phenotype, the linear mixed model (LMM) has been proposed to adjust

for the additive FR and PS correlations simultaneously (Yu et al., 2006; Kang et al., 2008,

2010; Hoffman, 2013). But the possible FR and PS correlations from the dominance effects

are often ignored. There has been a lack of knowledge on how to separate the FR and PS

correlations from the observed genomic relationship matrices. There is also no discussion on

how to model possible random interactions between FR and PS.

In this study, besides the classical additive genomic relationship matrix, a dominance

genomic relationship matrix is introduced. A link between the additive/dominance genomic

relationship matrices and the coancestry (or kinship)/double coancestry coefficients is estab-

lished. A separation of the FR and PS correlations based on the estimates of coancestry and

double coancestry coefficients from the genomic relationship matrices is also developed. In

addition, a unified linear mixed model is proposed which can account for both the additive

and dominance effects of FR and PS correlations as well as their possible random interac-

tions. Strategies on fitting this type of LMM is discussed. This unified linear mixed model

is further applied to analyze a real data set from UK Biobank in Britain.
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2 Interpretation of the genomic relationship matrices

In population genetics, the kinship (or coancestry) and double coancestry coefficients are

well known parameters for describing the genetic relatedness among individuals (Falconer

and Mackay, 1996; Weir, 1996; Lynch and Walsh, 1998). For two relatives, their kinship

coefficient is defined as the probability that a paternal or maternal allele at a putative locus

from one individual is IBD with a paternal or maternal allele at the same locus from the

other individual. Their coancestry coefficient is 2 times the kinship coefficient. Their double

coancestry coefficient is the probability that both the paternal and maternal alleles at a pu-

tative locus from one individual are IBD with the paternal and maternal alleles at the same

locus from the other individual. Consider a collected sample of family data with n individ-

uals. When the family structures are known, the expected kinship and double coancestry

coefficients from FR can be calculated using the classical Melecot or Wright methods (Fal-

coner and Mackay, 1996). The kinship and double coancestry coefficients from the joint

FR and PS can also be estimated from the genome-wide single nucleotide polymorphisms

(SNPs) (Sun et al., 2016; Dou et al., 2017). Assume that there are m biallelic SNPs. Let Aj

(and aj) denote the minor (common) allele at locus j with minor allele frequencies (MAF)

pj = P (Aj) and qj = P (aj) = 1 − pj for j = 1, · · · ,m. Following the Fisherian modeling

strategy (see Zeng et al., 2005; Wang and Zeng, 2009), the following indicator variables can

be introduced to describe the inheritance of the two parental alleles for each individual i at

the j-th locus

z1ij =

 1, the inherited paternal allele is Aj

0, the inherited paternal allele is aj

z2ij =

 1, the inherited maternal allele is Aj

0, the inherited maternal allele is aj

Then the following centered (or mean-corrected) index variables can be defined

z̃1ij =

 1− pj, the inherited paternal allele is Aj

−pj, the inherited paternal allele is aj

z̃2ij =

 1− pj, the inherited maternal allele is Aj

−pj, the inherited maternal allele is aj
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As the parental origins (i.e., phases) of the alleles are usually unknown in the observed

genotypes of SNPs, the above indicator and index variables are not identifiable. However,

the following mean-corrected genotype coding variables are well defined (Wang and Zeng,

2009)

wij = z̃1ij + z̃2ij =


2(1− pj), if gij = AjAj

1− 2pj, if gij = Ajaj

−2pj, if gij = ajaj

vij = z̃1ij z̃2ij =


(1− pj)2, if gij = AjAj

−pj(1− pj), if gij = Ajaj

p2j , if gij = ajaj

where gij denotes the phase-unknown genotype of individual i at the j-th SNP for j =

1, · · · ,m.

Consider a random sample from a study population. Then the indicator (or index) and

genotype coding variables defined above can be treated as random variables. Let f j
i denote

the probability that the paternal and maternal alleles of an individual i at locus j are IBD

(i.e., the inbreeding coefficient at locus j for individual i). By assuming that non-IBD alleles

are inherited independently, it can be shown that

Var(wij) = 2(1 + f j
i )pjqj (1)

Var(vij) = [1− 4f j
i − (f j

i )2](pjqj)
2 + f j

i pjqj (2)

When f j
i = 0, then Var(wij) = 2pjqj and Var(vij) = (pjqj)

2. An approximated normalization

on the mean-corrected genotype coding variables can be made through the following

w∗ij = wij/
√

2pjqj, v∗ij = vij/pjqj (3)

for i = 1, · · · , n and j = 1, . . . ,m.

The variables w∗ij and v∗ij are referred as the mean-corrected additive and dominance

genotype coding variables, respectively. Based on these variables, the additive and domi-

nance design (or standardized genotype coding) matrices of the genotypes can be defined

as W = (w∗ij)n×m and V = (v∗ij)n×m, respectively. The additive and dominance genomic

relationship matrices are defined as Σ = WW T/m and ∆ = V V T/m, respectively. The

same additive genomic relationship matrix Σ has been proposed previously to model the
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subject-by-subject genetic correlation (Kang et al., 2008, 2010; Hoffman, 2013). This addi-

tive genomic matrix Σ is also the same as the genomic relationship matrix used in GCTA

(see Yang et al., 2011). However, the dominance genomic matrix introduced in this study is

new and has not been used before.

In the following, we construct a link between the additive and dominance genomic rela-

tionship matrices and the coancestry (or kinship) and double coancestry coefficients. Con-

sider two individuals i, i′ (i 6= i′) within a family. Let rf,ji1i′1
be the probability that two

paternal alleles Aj carried by individuals i, i′ at locus j are IBD due to the FR (i.e., the two

alleles come from the same founder allele within a family), and rp,ji1i′1
be the probability that

two paternal alleles Aj carried by individuals i, i′ at locus j are IBD due to PS (i.e., the two

alleles come from two different founder alleles within the family but they share IBD owing

to the PS). Note that the IBD from PS refers to the origin of alleles, while the IBD from FR

comes from different familial relationships. Given a familial relationship, the IBD probabili-

ties from FR are mainly driven by Mendel’s law of segregation in cell meiosis, which should

not depend on the origin of the alleles (i.e., PS) in most of the genomic regions. Assuming

that the IBD probabilities from FR are independent of PS and non-IBD alleles are inherited

independently at locus j, then

E(z1ijz1i′j) = rf,ji1i′1
· pj + (1− rf,ji1i′1

)[rp,ji1i′1
· pj + (1− rp,ji1i′1

)p2j ]

= (rf,ji1i′1
+ rp,ji1i′1

− rf,ji1i′1
rp,ji1i′1

)pjqj + p2j

and

Corr(z1ij, z1i′j) = rf,ji1i′1
+ rp,ji1i′1

− rf,ji1i′1
rp,ji1i′1

, rji1i′1
(4)

where rji1i′1
is the probability that two paternal alleles Aj carried by individuals i, i′ at locus j

are IBD due to either FR or PS; i.e., the kinship coefficient between the two paternal alleles

for individuals i, i′ at locus j. Therefore, the kinship coefficient rji1i′1
can be interpreted

as the correlation coefficient between z1ij and z1i′j. From the above equation, it is also

interesting to see that the IBD probabilities rjii′ , r
f,j
ii′ and rp,jii′ have the relationship (1−rjii′) =

(1− rf,jii′ )(1− rp,jii′ ).

Suppose that the kinship coefficients are the same for both paternal and maternal alleles

carried by individuals i and i′; i.e., rji1i′1
= rji1i′2

= rji2i′1
= rji2i′2

, rjii′ . Then Cov(wij, wi′j) =

4rjii′pjqj, where rjii′ is the kinship coefficient between individuals i, i′ at locus j. The nor-
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malization (3) on wij leads to 2rjii′ = Cov(w∗ij, w
∗
i′j) = Corr(wij, wi′j). By further assuming

that the kinship coefficients are the same across all the marker loci, then the (i, i′) element

of matrix Σ can be interpreted as an estimator of the coancestry coefficient 2rii′ (or 2 times

the kinship coefficient rii′) between two individuals i and i′; i.e., 2r̂ii′ =
∑m

j=1w
∗
ijw
∗
i′j/m.

When i = i′, from equation (1), the diagonal element (i, i) of the matrix Σ is an estima-

tor of (1 + fi). There has been inconsistency on whether normalization on the genotype

coding variables wij is needed. Patterson et al. (2006) showed that the normalization can

improve simulation results and make population structure clearer in some real data. Here a

link between the normalized wij and the coancestry coefficient is established, which further

rationalizes the normalization method.

For the additive correlation between two individuals, the genetic correlation between

two parental alleles within each individual (i.e., inbreeding) is not involved. However, the

inbreeding can affect the correlation between the additive and dominance or among the

dominance genotype coding variables. For example, the probability (or inbreeding coefficient)

that the parental and maternal alleles at locus j carried by individual i are IBD is f j
i = E(v∗ij).

Thus, to examine the dominance genomic relationship matrix, a more detailed description

of the IBD status is needed. Based on the extended 15 IBD states and probabilities (see

Cockerham, 1971; Weir et al., 2006), then

Cov(vij, vi′j) = E(z̃1ij z̃2ij z̃1i′j z̃2i′j)− E(z̃1ij z̃2ij)E(z̃1i′j z̃2i′j)

= δji1i2i′1i′2
[E(z̃41ij)− E(z̃21ij)E(z̃21i′j)] + (δji1i′1,i2i′2

+ δji1i′2,i2i′1
)E(z̃21ij)

2

= δji1i2i′1i′2
pjqj(pj − qj)2 + (δji1i′1,i2i′2

+ δji1i′2,i2i′1
)p2jq

2
j

where δji1i2i′1i′2
is the probability that all four alleles carried by individuals i, i′ at locus j are

IBD; δji1i′1,i2i′2
is the probability that the parental and maternal alleles carried by individual i

are IBD with the parental and maternal alleles carried by individual i′ at locus j, respectively;

and δji1i′2,i2i′1
is the probability that the parental and maternal alleles carried by individual i

are IBD with the maternal and paternal alleles carried by individual i′ at locus j, respectively.

Note that δjii′ = (δji1i′1,i2i′2
+ δji1i′2,i2i′1

) is the probability that the two parental alleles carried

by individuals i′ are double IBD with the two parental alleles carried by individuals i′ (i.e.,

double coancestry coefficient) from either FR or PS. Thus,

Cov(v∗ij, v
∗
i′j) = δjii′ + δji1i2i′1i′2

(pj − qj)2/(pjqj) (5)

7



As there is no inbreeding between close relatives in human population, the IBD probability

δji1i2i′1i′2
mainly originates from PS, which is usually much weaker than FR. By ignoring this

higher order IBD probability, then Cov(v∗ij, v
∗
i′j) ≈ δjii′ . If we further assume that the IBD

probabilities δjii′ are the same across all the marker loci, then the (i, i′) element of matrix ∆

can be treated as an estimator of the double coancestry coefficient δii′ between individuals

i and i′; i.e., δ̂ii′ =
∑m

j=1 v
∗
ijv
∗
i′j/m. When i = i′, from equation (2) and (3), Cov(v∗ij, v

∗
ij) =

[1−4f j
i −(f j

i )2]+f j
i /(pjqj), which depends on the allele frequencies. Therefore, the diagonal

elements of the matrix ∆ have no simple interpretation except that these diagonal elements

should be close to 1 when inbreeding level is low across all loci.

In the above, we clarified that each off-diagonal element (i, i′) of the additive genomic

matrix Σ can provide an estimator of the coancestry coefficient 2rii′ . Also, each off-diagonal

element (i, i′) of the dominance genomic matrix ∆ can be treated as an estimate of the

double coancestry coefficient δii′ between two individuals i and i′ under certain assumptions.

Besides, the coancestry or double coancestry coefficients can be interpreted as correlations

of alleles. As pointed out in Weir and Goudet (2017), by taking into account the correlation

across different populations, the correlations of alleles could also be negative. However,

the additive and dominance genomic matrices cannot be directly interpreted as correlation

matrices because their diagonal elements could exceed or below one.

In the above derivation, it was assumed that the IBD probabilities from FR are inde-

pendent of PS. If the inheritance of SNP alleles at certain genomic region really depends on

the origin of alleles (e.g., the ancestral informative SNPs), these ancestral related SNP may

need special care and should be excluded from this analysis. In practice, another potential

problem in using the additive and dominance genomic matrices is that the allele frequencies

in a study population are often estimated using sample allele frequencies. The deviation

of sample allele frequencies from the true allele probabilities could bias the estimates of

the coancestry and double coancestry coefficients. To reduce this bias, SNPs with rare al-

leles should be excluded. The allele frequencies should also be estimated using unrelated

individuals from the sample.

3 A separation of FR and PS correlations

The additive and dominance genomic matrices provide estimates of the kinship and dou-

ble coancestry coefficients from the combined FR and PS. In order to assess FR and PS
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separately, one need to consider the correlation from FR and PS individually. Let rfii′ and

δfii′ be the expected kinship and double coancestry coefficients from FR, and rpii′ and δpii′ be

the kinship and double coancestry coefficients from PS. By assuming that the IBD prob-

abilities from FR are independent of PS and the kinship coefficients are the same across

all the marker loci, then from equation (4) the kinship coefficients have the relationship

rii′ = rfii′ + rpii′ − rfii′r
p
ii′ . Or, equivalently, (1 − rii′) = (1 − rfii′)(1 − rpii′). For the double

coancestry coefficients, assume that the IBD probabilities from FR are independent of PS

and the double coancestry coefficients are the same across all the marker loci. It can be

shown similarly that (1 − δii′) = (1 − δfii′)(1 − δ
p
ii′). It should be pointed out that a similar

relationship was previously established for Wright’s F-statistics (see Wright, 1950; Holsinger

and Weir, 2009). Here the relationship is extended to FR and PS correlations based on the

IBD probabilities.

The above relationship between FR and PS correlations provides a way to construct

separate genetic correlation matrices for PS and FR. From using the genome-wide genetic

markers such as single nucleotide polymorphisms (i.e., SNPs), one can first estimate the joint

kinship and double coancestry coefficients as r̂ii′ and δ̂ii′ from the combined FR and PS. For

family members with known family structures, by assuming that no genetic correlation or

inbreeding among founders, their expected kinship and double coancestry coefficients rfii′ and

δfii′ from FR can usually be derived from the classical Malecot or Wright methods (Falconer

and Mackay, 1996). Note that the rfii′ and δfii′ are defined as the IBD probabilities raised by

FR only, while the inbreeding and genetic correlation among founders come from PS. So the

assumption of no genetic correlation and inbreeding among founders for Malecot or Wright

methods holds well.

When the family structures are unknown, the expected familiar correlations can also be

extracted from the rii′ and δii′ estimates. As the PS correlation is usually much weaker than

FR correlation, one way to distinguish the FR from PS is to choose a cut-off threshold of the

coancestry coefficients for identification of the family members and determination of the FR

correlation. For some common familial relationships, the expected coancestry usually follow

certain patterns (see “https://en.wikipedia.org/wiki/ Coefficient of relationship”).

Typically, the expected coancestry from FR can take values 1 for monozygotic twins, 1/2

for parent-child or full sibs, 1/4 for half-sibs or grand parents and grand children, 1/8 for

great grand parents and children, 1/16 for half-grandaunt/uncle or grandniece/nephew, etc.

Similarly, the expected double coancestry from FR can take values 1 for monozygotic twins,
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1/2 for full sibs, 0 for parent-child, etc. (Falconer and Mackay, 1996). If one use, say, a

threshold of 1/32 = 0.03125 to define family members. It can probably account for most of

the common FR from the recent 1 ∼ 3 generations. The expected coancestry and double

coancestry coefficients from FR can then be extracted from the rii′ and δii′ estimates by

equating them being 0, 1/32, 1/16, 1/8, 1/4, 1/2 or 1, whichever is the closest. After that,

the kinship and double coancestry coefficients rPS
ii′ and δPS

ii′ from PS can be calculated as rpii′ = (r̂ii′ − rfii′)/(1− r
f
ii′)

δpii′ = (δ̂ii′ − δfii′)/(1− δ
f
ii′)

If rfii′ = 1 (or δfii′ = 1), one can set 2rpii′ = 0 (or δpii′ = 0). When i = i′, note that the coancestry

and double coancestry coefficents 2rfii, δ
f
ii can be treated as correlation coefficients. Therefore,

one can set 2rfii = 1, δfii = 1, 2rpii = 2r̂ii and δpii = δ̂ii.

In the above, it was implicitly assumed that the genetic correlation comes from either FR

or PS. One critical issue to separate FR from PS is how to choose a cut-off threshold of the

coancestry coefficients for identification of the family members. From the definition of PS

and FR, the distinction between FR and PS really depends on the time scale. If we refer PS

as the genetic correlation from different ancestral populations or races and the rest as FR,

then FR would include familiar correlation from tens or even hundreds of generations. On

the other hand, if we define FR as the familial correlation from several recent generations

and the rest as PS, then the PS correlation would include the familial correlation before

the recent generations. As the PS correlation is supposedly to be much weaker than FR

correlation, one may intend to choose a small cut-off threshold of the coancestry coefficients

for identification of the FR correlation. In practice, however, a small cut-off threshold will

lead to a weak PS correlation. To have the effect of PS correlation detectable, the cut-off

threshold should not be too small.

4 A unified linear mixed model

Consider a random sample of s families from a study population with ni individuals in

the i-th family for i = 1, · · · , s and n =
∑s

i=1 ni. Let yi, i = 1, · · · , n, denote the observed

quantitative values for a disease phenotype. The disease phenotype can usually be modeled as

yi = xTi β+ai+di+εi, where xi is a vector of the fixed covariates, ai (or di) denote the random

additive (or dominance) genetic effect, and εi is the residual error. Let ã = (a1, · · · , an) and
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d̃ = (d1, · · · , dn). From quantitative genetics (see Falconer and Mackay, 1996; Lynch and

Walsh, 1998), when PS is ignored, it has been well known that the genetic covariances can

be expressed as Cov(ã) = 2Φfσ
2
a,f and Cov(d̃) = ∆fσ

2
d,f , where σ2

a,f and σ2
d,f denote the

additive and dominance genetic variance components of FR, respectively; and Φf = (rfii′)n×n

and ∆f = (δfii′)n×n with rfii′ and δfii′ being the kinship and double coancestry coefficients

from FR between individuals i and i′, respectively. Similarly, when FR is ignored, one

would have Cov(ã) = 2Φpσ
2
a,p and Cov(d̃) = ∆pσ

2
d,p, where σ2

a,p and σ2
d,p denote the additive

and dominance genetic variance components of PS, respectively; and Φp = (rpii′)n×n and

∆p = (δpii′)n×n with rpii′ and δpii′ being the kinship and double coancestry coefficients from PS

between individuals i and i′, respectively.

In general, when both FR and PS are present, the FR and PS correlations need to be

accounted for simultaneously. One naive way is to estimate rii′ and δii′ from the genetic

markers, and then assume that Cov(ã) = (2rii′)n×nσ
2
a and Cov(d̃) = (δii′)n×nσ

2
d. However,

this modeling strategy basically assumes that the FR and PS correlations contribute similar

effects on the phenotypic covariance. It also cannot assess the effects of FR and PS correla-

tions separately. Alternatively, the FR and PS can be treated as two independent random

sources. Separate additive and dominance effects for FR and PS can be introduced in the

model. In addition, noting that the FR and PS as two independent factors could be crossed

in complicated ways in human population, the interactions between FR and PS can also be

included in the joint model if needed.

Let ãf = (a1f , · · · , anf ) and ãp = (a1p, · · · , anp) represent the additive effects from FR and

PS, respectively. Following the classical strategy in generating interaction terms, the additive

random effects ã can be partitioned into three components: ã = ãf + ãp +αãf � ãp, where �
denotes the element-by-element Hadamard product of vectors or matrices, ãf � ãp represents

the interaction variables between FR and PS, and α is a scalar which quantifies the effect

of the interaction variables. The covariance matrices of ãf and ãp are given by Cov(ãf ) =

(2rfii′)n×nσ
2
a,f and Cov(ãp) = (2rpii′)n×nσ

2
a,p, respectively. To derive the covariance matrix of

ãf � ãp, consider two individuals i and i′ with Cov(aif , ai′f ) = 2rfii′σ
2
a,f and Cov(aip, ai′p) =

2rpii′σ
2
a,p. Assuming that the additive effects {aif , ai′f} of FR are independent of the ad-

ditive effects {aip, ai′p} of PS, it can be shown that the covariance Cov(aifaip, ai′fai′p) =

4rfii′r
p
ii′σ

2
a,fσ

2
a,p. Therefore, the correlation Corr(aifaip, ai′fai′p) = 4rfii′r

p
ii′ and the correlation

matrix Corr(ãf � ãp) = 4Φf � Φp. The additive random effect ã can be re-expressed as

ã = ãf + ãp + ãf � ãp, where ãf � ãp ∼ N(0, 4Φf � Φpσ
2
aa,fp) and σ2

aa,fp = α2σ2
a,fσ

2
a,p. It can
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also be shown that the covariance matrices Cov(ãf , ãf � ãp) = Cov(ãp, ãf � ãp) = 0. Thus,

there is an orthogonal partition Cov(ã) = Cov(ãf ) + Cov(ãp) + Cov(ãf � ãp).
Similarly, the dominance effects d̃ can be partitioned into three components: d̃ = d̃f +

d̃p + d̃f � d̃p, where d̃f � d̃p represents the dominance by dominance interactions between

FR and PS with Corr(d̃f � d̃p) = ∆f � ∆p. In addition, the FR and PS interactions may

also include the additive by dominance interaction ãf � d̃p and the dominance by additive

interaction ãp� d̃f with Corr(ãf � d̃p) = 2Φf �∆p and Corr(ãp� d̃f ) = 2Φp�∆f . A unified

LMM to account for both the additive and dominance effects of FR and PS as well as their

possible interactions is then given by

Y = Xβ + ãf + ãp + d̃f + d̃p + ãf � ãp + ãf � d̃p + ãp � d̃f + d̃f � d̃p + Jef + ε (6)

where Y = (y1, · · · , yn)T , X = (x1, · · · , xn)T is a n × p design matrix for the fixed effects

β including an intercept, ãf ∼ N(0, 2Φfσ
2
a,f ), ãp ∼ N(0, 2Φpσ

2
a,p), d̃f ∼ N(0,∆fσ

2
d,f ), d̃p ∼

N(0,∆pσ
2
d,p), ãf � ãp ∼ N(0, 4Φf � Φpσ

2
aa,fp), ãf � d̃p ∼ N(0, 2Φf � ∆pσ

2
ad,fp), ãp � d̃f ∼

N(0, 2Φp�∆fσ
2
da,fp), d̃f � d̃p ∼ N(0,∆f �∆pσ

2
dd,fp), and ε = (ε1, · · · , εn)T ∼ N(0, σ2In) is a

vector of model residuals. Note that here ef = (e1, · · · , es)T ∼ N(0, σ2
sIs) denotes the family

shared random effects with each element ei being shared by all the members in the i-th

family, while J is a n× s design matrix for ef with elements of 0’s or 1’s. In a prospective

or retrospective cohort with family data, without genetic marker information, this random

vector is usually added to account for some unobserved genetic and environmental factors

shared by the family members. With the genetic marker information, the family shared

genetic effects can be separated from the family shared environmental effects. Besides, the

genetic correlation among family members can vary depending on the coancestry or double

coancestry coefficients. By including the FR correlations, the vector ef in the above model

mainly represents the unobserved environmental factors shared by the family members.

In model (6), we assumed that the additive and dominance random effects of FR and

PS are independent. Note that this assumption is different from that the IBD probabilities

from FR are independent of PS in the previous Sections. Here the assumption that the

additive and dominance random effects of FR and PS are independent refers to a situation

where the additive and dominance FR correlation structures stay similar under different PS,

which may not always hold in practice. But this assumption is not necessary for modeling

the additive and dominance effects of FR and PS and their interactions. When effects of
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FR and PS are dependent, however, we may not have the nice covariance structures such

as Corr(ãf � ãp) = 4Φf � Φp, Corr(ãf � d̃p) = 2Φf � ∆p, Corr(ãp � d̃f ) = 2Φp � ∆f or

Corr(d̃f � d̃p) = ∆f �∆p. When the random effects of FR and PS are indeed independent,

then an orthogonal partition of the covariance Cov(Y |X) is given by

Cov(Y |X) = 2Φfσ
2
a,f + 2Φpσ

2
a,p + ∆fσ

2
d,f + ∆pσ

2
d,p + 4Φf � Φpσ

2
aa,fp

+ 2Φf �∆pσ
2
ad,fp + 2Φp �∆fσ

2
da,fp + ∆f �∆pσ

2
dd,fp + JJ ′σ2

s + Inσ
2

Model (6) can assess both the additive and dominance effects of FR and PS as well as

their interactions. The interaction presents when certain family members are genetically

related via not only FR but also PS. Meanwhile, these family members preserve a stronger

or weaker phenotypic covariance than just an addition of the separate covariances from FR

and PS. In practice, however, it is usually difficult to detect the interactions due to limited

information in the study samples. By ignoring the interaction terms, model (6) reduces to

a LMM including only the additive and dominance effects of FR and PS. When no family

data are involved, model (6) can also be used to fit a sample with only the additive and

dominance effects of PS. This unified LMM (6) provides a general framework which includes

all these scenarios as special cases.

In order to fit a LMM (6), it is more convenient to re-formulate it into a standard LMM

in which all the random vectors have their elements being independent and identically dis-

tributed (i.i.d.). This can be achieved by applying a spectral decomposition on the covariance

matrices (see Hoffman, 2013; Wang et al., 2015). Suppose that Af , Ap, Df , Dp, Laa, Lad, Lda

and Ldd are the square roots of matrices 2Φf , 2Φp,∆f ,∆p, 4Φf �Φp, 2Φf �∆p, 2Φp�∆f and

∆f �∆p, respectively. Then model (6) can be re-written as the following

Y = Xβ + Afaf + Apap +Dfdf +Dpdp + Laa(aa)fp

+Lad(ad)fp + Lda(da)fp + Ldd(dd)fp + Jef + ε (7)

where af ∼ N(0, σ2
a,f In), ap ∼ N(0, σ2

a,pIn), df ∼ N(0, σ2
d,f In), dp ∼ N(0, σ2

d,pIn), (aa)fp ∼
N(0, σ2

aa,fpIn), (ad)fp ∼ N(0, σ2
ad,fpIn), (da)fp ∼ N(0, σ2

da,fpIn), and (dd)fp ∼ N(0, σ2
dd,fpIn).

It is easy to see that model (7) can provide the same covariance structure for the phenotype

Y as model (6).

Comparing to the classical LMM, one challenge in fitting model (7) is that the dimensions
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of some random vectors could be as large as n. One way to simplify the model fitting is to

treat PS and its interactions with FR as fixed effects and apply the classical principal com-

ponent approach. Typically, the principle components (PCs) can be constructed by applying

the singular value decomposition (SVD) on the standardized genotype coding matrices W

and V (Patterson et al., 2006). By applying SVD on W and V, then

W = U1S1C
T
1 , V = U2S2C

T
2 (8)

where Uj are n×n orthogonal matrices (i.e., UT
j Uj = In), Cj are m×m orthogonal matrices

(i.e., CT
j Cj = Im) for j = 1, 2, S1 (or S2) is a n×m matrix with singular values λ11 ≥ · · · ≥

λ1r > 0 (or λ21 ≥ · · · ≥ λ2s > 0) plus zeros as diagonal elements and zeros as off-diagonal

elements, and rank(S1) = rank(W ) = r and rank(S2) = rank(V ) = s. From (8), one

can see that each column vector of matrix U1 (or U2) is a linear combination of the column

vectors of the standardized genotype coding matrices W (or V ). So the column vectors

of U1 and U2 can be referred as the PCs of the matrix W and V , respectively. Note that

2Φ = WW T = U1S
2
1U

T
1 and ∆ = V V T = U2S

2
2U

T
2 . Thus, the PCs can also be constructed

via direct spectral decompositions on 2Φ and ∆.

Following the same strategy, one can construct PCs for PS by applying the spectral

decomposition on 2Φp and ∆p, respectively. Suppose that 2Φp = U1S
2
1U

T
1 and ∆p = U2S

2
2U

T
2 .

Then, the square root matrices Ap = U1S1U
T
1 and Dp = U2S2U

T
2 . Note that one could also

take Ap = U1S1 and Dp = U2S2 as the design matrices in model (7). Unlike the previous

square root matrices, the latter ones are no longer symmetric matrices. But they can still

provide the same covariance matrices Cov(Apap) = ApA
T
p σ

2
a,p = 2Φpσ

2
a,p and Cov(Dpdp) =

DpD
T
p σ

2
d,p = ∆pσ

2
d,p. When ap, dp in model (7) are treated as fixed effects, it is simpler to just

take Ap = U1 andDp = U2. This is equivalent to treat the PCs as fixed covariates. As pointed

out in Hoffman (2013), the eigen-spectrum of PS correlation decays quickly. Therefore, only

a few major PCs corresponding to the leading eigenvalues of {λ1r} and {λ2s} are usually

needed to adjust for the PS effects. The correlation matrices for FR and PS interactions can

be handled similarly.

Unlike PS, the correlation matrices 2Φf or ∆f of FR can have their eigenvalues persist

above certain positive level. The re-formulation method proposed in Wang et al. (2015) can

be used here to deal with the FR correlction. After excluding PS, the correlation matrices

2Φf and ∆f for FR are usually block diagonal matrices with the diagonal sub-matrices

14



2Φi
f and ∆i

f for FR correlation within the i-th family (i = 1, · · · , s). Separate Cholesky

decompositions can be applied to obtain 2Φi
f = AiA

T
i and ∆i

f = DiD
T
i for each family i.

The matrices Ai and Di can be expanded to have their number of columns all equal the

maximum family size r = max1≤i≤s {ni} by adding extra columns of 0’s if needed. After

that, the matrices Ai and Di can be concatenated vertically to construct the n × r design

matrices Af and Df in model (7). Then model (7) can be fitted using PROC NLMIXED

or PROC GLIMMIX procedures in SAS software (SAS Institute Inc, Cary, NC) or Bayesian

approach by treating different families as independent clusters (see details in Wang et al.,

2015).

5 Example

We applied the proposed LMM (7) to a real data set from UK Biobank (Sudlow et al., 2015).

The data set consists of n=5,820 Caucasian from European population who were reported

to be related to each other. The counts of white blood CD4+ T cells were considered as an

outcome. Three covariates include: age, gender and BMI. For a simple interpretation, the

‘age’, which ranges from 40 to 70, is discretized into 6 groups: 40-45, 46-50, 51-55, 56-60,

60-65, and above 65. Similarly, the BMI is categorized into 5 groups: ≤ 20; (20-25], (25,30],

(30,35] and greater than 35.

To construct the additive and dominance genomic matrices, the following criteria were

applied to filtering the SNPs: 1) exclude SNPs with minor allele frequencies (MAF) < 5%; 2)

exclude SNPs with missingness > 1.5%; 3) LD pruning to exclude SNPs which have r2 > 0.1

with another tagged SNP; 4) remove C/G and A/T SNPs; and 5) exclude SNPs in regions

with long-range LD. These were the same criteria used in Astle et al. (2016), which left us

with approximately 270k SNPs.

The additive and dominance genomic relationship matrices W and V are constructed

based on these SNPs. Then a threshold of 1/25 = 0.03125 is used to determine the family

members based on the additive genomic matrix Σ. That is if two individuals have their

coancestry coefficient estimate greater or equal than 0.03125, then they are classified as

familial relatives. After this clustering, only familial relatives can share a coancestry coeffi-

cient of 0.03125 or above. Members from different families have their coancestry coefficient

estimates less than 0.03125. From the coancestry estimates, we identified 179 independent

individuals, 2732 paired family members, 5 families with 3 individuals each, 35 families with
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4 individuals each, 2 families with 6 individuals each, and one family with 10 individuals.

The total number of estimated families is s = 2, 955.

Within each family, we extract the expected FR correlations from Σ = WW T/m and

∆ = V V T/m by equating the expected coancestry and double coancestry coefficients being

0, 1/32, 1/16, 1/8, 1/4, 1/2 or 1, whichever is the closest. Then the PS correlation matrices

are calculated using the formulae in the previous Section 3. Based on the FR correlation

pattern from the coancestry and double coancestry coefficients, we can further identify some

common familiar relationships. For examples, among the 2732 paired family members, there

were 12 monozygotic twin pairs (rfii′ = 0.5, δfii′ = 1), 422 parent-child pairs (rfii′ = 0.25

and δfii′ = 0), 1452 sib-pairs (rfii′ = 0.25 and δfii′ = 0.25), 657 grandparent and child pairs

(rfii′ = 0.125 and δfii′ = 0), 129 pairs with rfii′ = 0.25 and δfii′ = 0.125, and the rest 60 pairs

with other types of familial relatedness. Among the 5 families with 3 individuals, it appears

that 4 families include 2 siblings. Among the 35 families with 4 individuals, 23 families

include at least two siblings.

First, a LMM without adjustment for FR and PS is fitted. It shows that both age (overall

P=0.0024) and BMI (overall P< 0.0001) are significantly associated with the outcome, while

gender is not (P=0.57). Individuals of age greater than 65 have higher CD4 counts than

individuals of 50 < age ≤ 65. Among the 5 BMI groups, the two groups of patients with

BMI≥ 25 have bigger means of CD4 cell counts than that of group BMI≤ 20. All the 4 BMI

groups with BMI> 20 have their means of CD4 cell counts differ from each other.

For PS effects, we extract 10 leading PCs from the PS correlation matrices 2Φp and

∆p separately. For FR and PS interactions, we also extract 10 leading eigenvectors from

4Φf � Φp, 2Φf �∆p, 2Φp �∆f and ∆f �∆p each. We treat all these eigenvectors as fixed

covariates and apply a stepwise forward selection procedure with a threshold of P< 0.05 for

both entry and stay in the model. Two PCs from PS (the 2nd leading one from 2Φp and the

5th leading one from ∆p) are identified to be associated with the outcome but no significant

interactions of FR and PS are detected. This is probably expected as the interactions are

often difficult to uncover and this UK Biobank data set mainly consists of Caucasian from

European population.

To test for the FR correlation, we fit several LMM to the data set using PROC GLIMMIX

and PROC NLMIXED procedures in SAS. All these LMM include age, gender, BMI and the

two PCs from PS as fixed covariates. The results show that there is a strong additive FR

correlation (σ̂2
a,f = 0.025, P< 0.0001) but the dominance FR correlation is not significant.
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Without adjusting for FR correlations, the family shared correlation is significant (σ̂2
s=0.011,

P< 0.0001). After adjusting for the additive FR correlation, the family shared correlation is

no longer significant (σ̂2
s=0.0048, P=0.010). This indicates that the family shared correlation

is mainly reflected by the familial genetic correlation from the additive FR, while the family

shared environmental correlation is weaker. After adjusting for the additive FR effect, the

overall P=0.050 for age, the overall P< .0001 for BMI, and P=0.57 for gender. Meanwhile,

the PC from 2Φp has P=0.017 and the PC from ∆p has P=0.013, which indicate that both

the additive and dominance PS correlations may play a role on affecting the outcome after

adjusting for the additive FR correlation.

6 Discussion

In human genomics, with two parental alleles at each locus, possible allelic interactions or so-

called dominance effects between the paternal and maternal alleles may present within a gene

locus in addition to the additive allelic effects. This feature can also lead to various allelic

interactions between different loci when more than one gene or genomic locus are involved.

Similarly, the FR or PS correlation can breakdown into additive and dominance components

in order to account for potential additive and dominance genetic effects. Besides, possible

random interactions between FR and PS could also arise. This makes the genetic modeling

for FR and PS correlation more complicated than it appears.

In this study, a unified LMM is proposed which can assess both the additive and domi-

nance effects of FR and PS correlations as well as their possible random interactions. Unlike

the modeling for fixed genetic effects, the random effects of FR, PS and their random inter-

actions could presumably affect the covariance structure of the phenotypes rather than the

phenotypic means. In practice, it is usually difficult to really detect the interactions due to

limited information in the study samples. This unified LMM provides a general framework

under which one can at least test for the additive and dominance effects of FR and PS or

their possible interactions.

The extension of the unified LMM to categorical or survival outcomes is plausible. For

example, under the generalized linear mixed model (GLMM) framework, both the additive

and dominance effects of FR and PS as well as their interaction can be incorporated into

the GLMM as discussed in Wang et al. (2015). When the link function g is non-linear, the

variance components represent the unspecified additive allelic effects or allelic interactions

17



from FR or PS that contribute to the covariance structure of the g-transformed phenotypic

means.

The unified LMM (6) or (7) include multiple variance components and high dimensional

random vectors, which makes the model fitting difficult. One way to simplify the model

fitting is to treat PS and its interactions with FR as fixed effects. The PS effects can then

be assessed via an overall effect of its PCs. Its interactions with FR can also be assessed

via the PCs from each random component. The method proposed in Wang et al. (2015) is

suitable for family data with moderate family sizes. But when the data set includes large

pedigrees, how to fit the LMM to this type of family data using existing software is still a

challenge and need further exploration.
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