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Background and Purpose: The analysis of human faecal metabolites can provide an

insight into metabolic interactions between gut microbiota and the host organism.

The creation of metabolic profiles in faeces has received little attention until now,

and reference values, especially in the context of dietary and therapeutic interven-

tions, are missing. Exposure to xenobiotics significantly affects the physiology of the

microbiome, and microbiota manipulation and short-chain fatty acid administration

have been proposed as treatment targets for several diseases. The aim of the present

study is to give concomitant concentration ranges of faecal sterol species, bile acids

and short-chain fatty acids, based on a large cohort.

Experimental Approach: Sterol species, bile acids and short-chain fatty acids in

human faeces from 165 study participants were quantified by LC–MS/MS. For

standardization, we refer all values to dry weight of faeces. Based on the individual

intestinal sterol conversion, we classified participants into low and high converters

according to their coprostanol/cholesterol ratio.

Abbreviations: BMI, body mass index; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; DFH, diluted faeces homogenate; LCA, lithocholic acid; LOQ, limit of quantification;

SCFAs, short-chain fatty acids; UDCA, ursodeoxycholic acid.
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Key Results: Low converters excrete more straight-chain fatty acids and bile acids

than high converters; 5th and 95th percentile and median of bile acids and short-

chain fatty acids were calculated for both groups.

Conclusion and Implications: We give concentration ranges for 16 faecal metabolites

that can serve as reference values. Patient stratification into high or low sterol

converter groups is associated with significant differences in faecal metabolites with

biological activities. Such stratification should then allow better assessment of faecal

metabolites before therapeutic interventions.

LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong

Health and Therapeutics. To view the other articles in this section visit http://

onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc

K E YWORD S

bile acids, faecal short chain fatty acids, sterols

1 | INTRODUCTION

Metabolites in human faeces can be seen as attractive surrogate

markers to track changes of the metabolic activity of the microbiota

induced by diet or disease. Of particular interest, faeces are easily

accessible and provide a non-invasive window to study the outcome

of the gut microbiota–host interaction through the analysis of

metabolic end products. It is particularly relevant that exposure to

xenobiotics markedly affects the physiology, structure and gene

expression of the active microbiome (Maurice et al., 2013). However,

not only the effects of antibiotics (Vrieze et al., 2014) have been

studied in recent years, as anti-diabetic drugs such as metformin

(Napolitano et al., 2014) or GLP-1 receptor agonists and dipeptidyl

peptidase-4 (DPP-4) inhibitors (Smits et al., 2016) have complex

effects on intestinal bile acid metabolism due to gut-based

pharmacology. Moreover, microbiota manipulation and short-chain

fatty acid (SCFA) administration have been proposed as treatment

targets for several diseases including gastrointestinal and neurological

diseases (Bliss & Whiteside, 2018; Gill et al., 2018; Russo et al., 2018;

Soldavini & Kaunitz, 2013; Stilling et al., 2016). Treatment with

butyrate, by a possible interaction with bile acids, even for hepatic

inflammation, has recently been suggested, based on a mouse model

(Sheng et al., 2017). Nonetheless, there is an enormous number of

studies dealing with effects of microbiota-targeted interventions such

as prebiotics, probiotics and diet on intestinally produced signalling

molecules (see Dalile et al. (2019), Koh et al. (2016), Verbeke

et al., 2015). Even in oncology, faecal SCFAs have gained interest and

are associated with the effects of programmed cell death-1 (PD-1,

CD279) inhibitors (Nomura et al., 2020).

Until now, reference values in faecal samples are lacking, especially

in various physiological and physiopathological contexts of health and

disease. Because faecal samples contain a complex mixture of metabo-

lites, there is a need for establishing clear guidelines for faecal sample

collection, preparation and analysis. The first aim of this study was to

provide an overview of concentration ranges of sterol species including

cholesterol and bile acids and SCFAs in human faeces.

The second aim of this study was to investigate the relation

between cholesterol–coprostanol conversion status and faecal

excretion of metabolites (SCFAs and bile acids). Studies from as early

as the 1930s have indicated that the microbiome mediates the

conversion of sterols to stanols (Schoenheimer, 1931). Several

studies and reviews have shown that the distribution of microbial

cholesterol-to-coprostanol conversion in human populations is

bimodal, with a majority of high converters (almost complete choles-

terol conversion) and a minority of low converters (Benno et al., 2005;

What is already known

• Cholesterol is converted to coprostanol by the gut

microbiota.

What does this study add

• Low converters excrete more straight short-chain fatty

acids and bile acids than high converters.

• Concentration ranges of faecal short-chain fatty acids,

bile acids and sterols based on dry weight.

What is the clinical significance

• Patients should be stratified into high or low converter

groups to assess therapeutic interventions correctly.

• Concentration ranges provided here may be used as

reference values.
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Eneroth et al., 1964; Korpela & Adlercreutz, 1985; Lichtenstein, 1990;

Wilkins & Hackman, 1974).

There are numerous studies and reviews indicating that SCFAs

play an important role in the maintenance of gut and metabolic health

(Blaak et al., 2020). SCFAs are mainly produced in the large intestine

from indigestible carbohydrates and to a minor extent from several

amino acids (Blachier et al., 2017; Koh et al., 2016). However, the

major limitation concerning SCFAs is the inability to measure SCFA

production in vivo. Assessment of in vivo production and absorption

kinetics of SCFAs is challenging due to the inaccessibility of the colon

and rapid absorption by the colonocytes. To complicate matters, the

SCFAs are rapidly metabolized in the liver, and small proportions enter

the peripheral circulation resulting in large variations in plasma with

very low concentrations. Nevertheless, in many studies, faecal SCFAs

were used as a proxy of gut-derived SCFA production. Keeping this in

mind, interpretation of faecal concentrations is difficult, but most

authors also agree that more information on actual SCFA fluxes and

kinetic studies on SCFA metabolism are urgently needed (Blaak

et al., 2020; Canfora et al., 2019; Gill et al., 2018; McOrist et al., 2011;

Müller et al., 2019; Sakata, 2019). Intervention studies are quite often

difficult to interpret implying that there may be responders and non-

responders to interventions, depending on the initial metabolic profile

(Blaak et al., 2020). Our laboratory has wide experience with the anal-

ysis and interpretation of sterol species (Matysik et al., 2011, 2012;

Matysik & Schmitz, 2013; Pataj et al., 2016; Schott et al., 2018), and it

is well-accepted that classification as a sterol converter or a non-

converter depends on the abundance of cholesterol-converting

bacteria in the intestine. The question is, can the SCFA values be clas-

sified and thus allow better interpretation, if they are correlated with

the cholesterol conversion status, which is a very individual

parameter.

Second, there seems to be a link between bile acids and SCFAs in

faeces caused by the group of microbes that remove the major

metabolic end product, hydrogen. Bile acids are amphipathic end

products of cholesterol metabolism with multiple physiological

functions. In the colon, 7α-dehydroxylation of primary bile acids,

leading to deoxycholic acid (DCA) and lithocholic acid (LCA), is the

most quantitatively important and the most physiologically significant

conversion of bile acids in humans (Hamilton et al., 2007). These

secondary bile acids can exert deleterious cytotoxic effects on the

intestinal epithelium when present in excess (Ajouz et al., 2014;

Duboc et al., 2013). There is published evidence that, during high-

fibre diets, there is an increase of butyrogenesis and suppression of

secondary bile acid synthesis within a few days and switching to a

high-fat, low-fibre diet reversed these changes. One explanation of

these effects is the level of removal of hydrogen. If hydrogen is

allowed to accumulate, it inhibits the fermentation process and thus

butyrogenesis. The level of hydrogen in the gut depends on the level

of those microbes that remove hydrogen, namely the methanogens,

sulfate reducers and acetogens (Katsidzira et al., 2019; O'Keefe

et al., 2015). This raises the question of a potential crosstalk between

bile acids and SCFAs that may depend on the composition of

individual colonic microbiomes.

In that context, our study proposes concentrations of metabolites

that can be used as reference values under special consideration of

the cholesterol conversion.

2 | METHODS

2.1 | Subjects

Human faeces samples were obtained from participants of four

different European studies under the EU project MyNewGut. Here,

only data from time point 0 were analysed, before any intervention

or therapy was started. Due to study design, the participants did not

define their diets at study entry, before any intervention started. For

each subgroup, there was a different approach (AXOS, PUFAs,

protein, maltodextrin, etc.) so that we could not collect enough

meaningful data to draw conclusions based on special diet

intervention.

• Thirty overweight and obese individuals (body mass index [BMI] of

25 to 40 kg�m�2) with markers of the metabolic syndrome were

recruited in a Danish study, conducted at the University of

Copenhagen, Department of Nutrition, Exercise and Sports

(Denmark) from August 2014 to June 2015. Study details are

described elsewhere (Kjolbaek et al., 2020). Complete data set was

obtained for 24 participants.

• Forty-two healthy male and female participants were recruited

from September 2014 to May 2015 at Avicenne Hospital (Bobigny,

France). Inclusion criteria were age 18–45 years and overweight

(25 < BMI < 30) (Beaumont et al., 2017). Complete data set was

obtained for 36 participants.

• Twenty-four subjects with metabolic syndrome from a Dutch

study (age 51–70, BMI 30–41) received faecal microbiota

transplantation (data submitted but not published until yet).

Samples were taken before transplantation.

• Forty obese women with diagnosed low food addiction, 40 obese

women with diagnosed high food addiction and 40 healthy normal

weight women were recruited at the Endocrinology Unit of the

S. Orsola-Malpighi University Hospital of Bologna, Italy (Guzzardi

et al., 2018). Complete data set was obtained for 81 participants.

The local ethics committees (see references above) approved all

the studies.

2.2 | Sample collection

Stool samples were mostly collected at participants' homes and kept

in portable freezers until they were delivered to the study centres.

There was a standard operating procedure for collection and transport

of faeces in the whole project. For reasons of comparability and safe

transport, we decided from the beginning of the study to relate all

values to dry weight (dw). It was not possible for the study centres to
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determine an exact wet weight of the stool sample. Study centres

were asked to prepare a raw faeces homogenate by adding 500-μl

methanol to stop residual enzymic activity to approximately 500-mg

fresh faeces and store this homogenate at �70�C or lower. These

samples were transported on dry ice to our laboratory.

We added 2.5 ml of 70% isopropanol and homogenized in a

gentleMACS dissociator (Miltenyi Biotec GmbH, Bergisch Gladbach,

Germany). Between preparation steps, samples were kept on ice.

The dry weight of this raw faeces homogenate was determined by

overnight drying of exactly 1.0 ml of this mixture in a vacuum cen-

trifuge. For further analysis, the raw faeces homogenate was diluted

to a final concentration of 2.0-mg dry weight�ml�1 (diluted faeces

homogenate [DFH]). Sufficient homogenization was evaluated by

repeated determination of dry weight in a former report (Schott

et al., 2018). The DFH was used for extraction of sterol and bile

acid analysis. For analysis of SCFAs, an aliquot of the DFH was cen-

trifuged, and 50 μl of the clear supernatant was subjected to

derivatization.

2.3 | Biochemical analysis

The SCFAs - acetate, propionate, butyrate and isobutyrate - were mea-

sured by LC–MS/MS after derivatization to 3-nitrophenylhydrazones

(Liebisch et al., 2019). Sterols and stanols (coprostanol, 5α-cholestanol,

sitosterol, 5α-sitostanol, 5β-sitostanol, campesterol and 5α-

campestanol) were quantified by LC–high-resolution MS (LC–MS/

HRMS) after derivatization to N,N-dimethylglycine esters (Schott

et al., 2018). Faecal bile acids were quantified by LC–MS/MS using

stable isotope dilution analysis with a modified method for serum

(Krautbauer et al., 2016; Scherer et al., 2009). We quantified the free

bile acids ursodeoxycholic acid (UDCA), chenodeoxycholic acid

(CDCA), cholic acid (CA), deoxycholic acid (DCA) and lithocholic acid

(LCA), as well as their glycine (G) and taurine (T) conjugated species.

The study centres provided the anthropometric data including sex, age

and BMI.

2.4 | Data and statistical analysis

The data and statistical analysis comply with the recommendations of

the British Journal of Pharmacology on experimental design and

analysis in pharmacology (Curtis et al., 2018). Data were analysed

using SPSS v. 25. The Mann–Whitney U-test and Kruskal–Wallis

H test were used for non-normally distributed variables. The level of

significance was set to P < .05.

2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOLOGY

(http://www.guidetopharmacology.org) and are permanently archived

in the Concise Guide to PHARMACOLOGY 2019/20 (Alexander,

Christopoulos, et al., 2019; Alexander, Fabbro et al., 2019).

3 | RESULTS

Full data sets of bile acids, sterols and SCFAs were obtained for

165 participants. Table 1 reflects the distribution regarding sex, age

and BMI. The relatively small number of participants with BMI < 25

and the predominance of women are due to the original study

designs. All studies were designed to reveal effects of dietary

interventions or any weight loss strategies with respect to overweight

and obese people. We show in Table S1 the basic characteristics of

the four single cohorts.

3.1 | SCFAs

Table 2 shows the range (5th and 95th percentile) of faecal acetate,

propionate, butyrate and isobutyrate. There were no significant

differences in terms of sex, age or BMI (data not shown).

3.2 | Bile acids

Table 3 shows the range of the most abundant faecal bile

acids UDCA, CDCA, DCA and LCA, whereas CA and glycine- and

taurine-conjugated bile acids were mostly below the limit of quantifi-

cation (LOQ). There is no significant difference of all free bile acids

with regard to sex and age. However, a positive association was

TABLE 1 Characteristics of the study participants

n

Sex Age (years) BMI

Female Male <20 21–35 36–50 51–65 >65 <25 25–30 30.1–35 >35

165 133 32 1 74 55 28 7 34 64 48 19

Abbreviation: BMI, body mass index.

TABLE 2 Concentration ranges of SCFA in faeces (μmol�g�1)

SCFA Range (median)

Acetate 53.2–518 (194)

Propionate 19.1–200 (75)

Butyrate 13.5–199 (58)

Isobutyrate 3.6–20.0 (9.6)

Abbreviation: SCFA, short-chain fatty acid. Ranges shown are the

5th–95th percentiles with (medians).
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observed between faecal bile acids and BMI. Figure 1 shows box and

whisker plots for total faecal bile acids and the major bile acid species,

DCA. Study participants with BMI > 30 have significantly higher

excretion of total bile acids, compared with those with BMI < 30 and

BMI < 25.

3.3 | Sterols and stanols

It has been established that cholesterol is mainly converted into

coprostanol, and this conversion occurs in a part of the human

population only. Following previous studies, we divided the study

participants in high and low converters based on the intestinal choles-

terol conversion. Therefore, we calculated the ratio of coprostanol to

the sum of all cholesterol species, that is, cholesterol, coprostanol and

5α-cholestanol. As shown in Table 4. The following statistical analysis

was applied only to study participants with a coprostanol/sum

cholesterol ratio <40%, classed as low converters and to study

participants with a coprostanol/sum cholesterol ratio >60% classed as

high converters. Table 5 shows the range (5th and 95th percentile) of

faecal cholesterol, coprostanol, 5α-cholestanol, sitosterol, 5α-sitostanol,

TABLE 3 Concentration ranges of major bile acids in faeces
(nmol�g�1)

Faecal bile acid Range (median)

UDCA <LOQ—241 (25)

CDCA 4.9–853 (27)

DCA 97.4–3190 (756)

LCA 132–1311 (425)

Abbreviations: CDCA, chenodeoxycholic acid; DCA, deoxycholic acid;

LCA, lithocholic acid; LOQ, limit of quantitation; UDCA, ursodeoxycholic

acid. Ranges shown are the 5th–95th percentiles with (median); the LOQ

for UDCA was 10 nmol�g�1.

F IGURE 1 Total faecal bile acids and the major bile acid species
deoxycholic acid (DCA), related to levels of body mass index (BMI).
Data are shown as box (25th and 75th percentiles) and whisker
(5th and 95th percentiles) plots, with the median shown as a bar
within the box. *P < .05, significantly different from BMI<25

TABLE 4 Distribution in low and high converters of cholesterol

Coprostanol/sum cholesterol species (%) n

<20 40

20–40 11

41–60 14

61–80 42

>80 58

TABLE 5 Concentration ranges of sterol and stanol species in
faeces (μmol�g�1)

Low converter High converter

Coprostanol/sum
cholesterol <40%

Coprostanol/sum
cholesterol >60%

Compound n = 51 n = 100

Cholesterol 27.6–96.3 (49.5) 1.7–18.2 (5.9)

Coprostanol <LOQ—28.4 (0.5) 17.2–78.8 (39.6)

5α-Cholestanol 0.43–1.40 (0.67) 0.45–1.70 (0.98)

Sitosterol 6.9–16.6 (10.8) 0.6–5.3 (1.9)

5β-Sitostanol <LOQ—9.7 (0.48) 4.8–28.9 (13.7)

5α-Sitostanol 0.28–1.60 (0.75) 0.32–1.63 (0.77)

Campesterol 1.4–5.5 (2.57) 0.13–1.79 (0.48)

5α-Campestanol 0.2–1.21 (0.64) 0.2–1.24 (0.54)

Abbreviation: LOQ, limit of quantitation. Data shown are the 5th–95th
percentiles with (medians); the LOQ for coprostanol was 0.3 μmol�g�1;

LOQ for 5β-sitostanol was 0.11 μmol�g�1.
bLimit of quantitation (LOQ) coprostanol 0.3 μmol�g�1; LOQ 5β-sitostanol
0.11 μmol�g�1.
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5β-sitostanol, campesterol and 5α-campestanol for low and high

converters. There were no differences in BMI and sex, regarding these

groups. However, the low converters were significantly younger.

3.4 | SCFAs and bile acids in faeces of high and
low converters

There is a significant difference in the faecal SCFAs found in samples

from high and low converters with higher values of acetate,

propionate and butyrate in faeces of low converters, than those in

faeces from high converters (Figure 2). In addition, we show in

Figure 2 those participants with cholesterol conversion <20% and

those with cholesterol conversion >80%. The differences of SCFAs

are even more marked. In other words, the lower the cholesterol

conversion, the higher the SCFA production. In Table 6, we present

the 5th and 95th percentile of SCFAs and bile acids for low and high

converters. Free bile acid excretion shows the same relationship

(see Figure 2), whereas the levels of LCA do not show this association

(Table 6). A statistical analysis was not carried out for CA species due

to many missing values, that is, values below the LOQ. Nevertheless,

it is noteworthy that those participants with very high CDCA values

also have high CA values. These 5–8 participants belong to different

studies and have at first view nothing in common.

4 | DISCUSSION

One aim of the report here was to give an overview of the range of

faecal values from an adequately high number of individuals when

consuming their normal habitual diet, that is, without special dietary

intervention. The samples result from four different European studies.

F IGURE 2 Faecal short-chain fatty acids
(SCFAs) (acetate, propionate, butyrate and
isobutyrate) and bile acids (BAs)
(ursodeoxycholic acid [UDCA],
chenodeoxycholic acid [CDCA], cholic acid
[CA], deoxycholic acid [DCA] and lithocholic
acid [LCA]), related to levels of intestinal
cholesterol conversion; four groups of
conversion - <20%, <40%, >60% and >80% -
were used. *P < .05, significantly different as
indicated
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All values were measured in our laboratory at the same time to avoid

batch effects. For this report, only values at study entry were

analysed. To enable comparability among our and other studies, we

calculated all values relative to the dry weight of stool. The results

confirmed that there is a wide range of faecal SCFAs, cholesterol,

plant sterols and their 5α/β-derivative species as well as bile acids,

with an up to 10-fold or 100-fold difference for SCFAs and bile

acids, respectively, between the highest and lowest levels. We

confirmed the typical ratio of faecal SCFA concentrations to be

roughly 3:1:1 for acetate to propionate to butyrate, which fits with

the SCFA level detected in the large intestine (Cummings et al., 1987).

Our data indicate that BMI and the classification into low and

high sterol converters are significant contributors to this inter-

individual variation. Consistent with published data, we found one

third of our samples were low converters and the remainder (two

thirds) were high sterol converters (Gerard, 2013). This distribution is

also reflected in the 5β-sitosterol fraction. Due to missing standards,

5β-campesterol could, however, not be quantified.

An important result is that low converters have much higher

amounts of straight SCFAs in faeces than high converters (Table 6).

Branched SCFAs , such as isobutyrate, that are produced by the

microbiota from amino acids (Blachier et al., 2007) do not show this

distribution. In contrast to straight SCFAs, which are generally consid-

ered as beneficial for the colon and rectum mucosa notably for their

role of energy substrate in absorptive colonic epithelial cells (Wong

et al., 2006), these branched-chain short-chain fatty acids are associ-

ated with both beneficial effects (Boudry et al., 2013) and harmful

effects on colonic mucosa and metabolic health (Canfora et al., 2019).

Thus, the relevance of these branched-chain SCFAs to the health of

the host has not yet been determined.

Although cholesterol metabolism by the gut microbiota has been

known for many years, the genes and enzymes involved in the

conversion of cholesterol to coprostanol are still largely unknown.

Only a few coprostanoligenic bacteria have been isolated so far, and

very few cholesterol-metabolizing strains are available. Most of the

cholesterol-reducing bacteria isolated and characterized are

members of the genus Eubacterium, except for Bacteroides sp. strain

D8 (Gérard et al., 2007). Strains of Bifidobacterium, Lactobacillus and

Peptostreptococcus were also reported to reduce cholesterol to

coprostanol (Lye et al., 2010). Recently, new bacterial phylotypes

belonging to the Lachnospiraceae and Ruminococcaceae families have

been associated with high cholesterol conversion (Antharam

et al., 2016). Whether or not those strains are involved in SCFA

production at all is still unclear. Our data suggest an inverse associa-

tion is more likely. Basically, the human intestine absorbs coprostanol

poorly, in contrast to its absorption of cholesterol. There is one report

about an inverse relationship between plasma cholesterol levels and

the ratio of cholesterol-to-coprostanol conversion in the faeces

(Sekimoto et al., 1983). In addition, in animal models, a high-efficiency

conversion of cholesterol to coprostanol was linked to lower serum

cholesterol levels (Li et al., 1995, 1998). Therefore, one hypothesis of

a relationship between low cholesterol conversion and higher faecal

bile acids could be that in low converters, the higher level of plasma

cholesterol is leading to a higher level of total bile acids. In our studies,

this is speculative because due to the study design, we did not have

plasma values for all participants.

Another hypothesis is that a higher cholesterol concentration in

the colon might be exploited for additional functionality by patho-

genic microbes (Antharam et al., 2016). Whether the entrapment

and incorporation of free cholesterol into bacterial membranes plays a

role remains speculative as mechanisms are still unknown (Kriaa

et al., 2019). However, distinct strains of both Lactobacillus and

Bifidobacterium were suggested to perform such activity in vitro,

and several bacterial genera, including Clostridium, Bifidobacterium and

Lactobacillus, exert bile salt hydrolase (BSH) activity (Ridlon

et al., 2006) producing higher amounts of free bile acids.

An explanation about the causal relationship of the inverse

correlation between cholesterol conversion and SCFAs is not straight-

forward. For that reason, we show in Table S2 the distribution into

three groups (non-converters [<5%] and low [5–40%] and high

[>40%] converters), as proposed by Benno et al., (2005). Here, the

differences of higher SCFA and bile acid values of non-converters/

low converters compared with high converters are also highly

significant. Furthermore, we demonstrated that our findings are also

valid in two of the four single cohorts (Table S3). For the other two

cohorts, there was an imbalance of too few low converters (n = 1

and n = 2, respectively), and statistics was therefore not possible.

Assuming that faecal SCFAs might reflect the net result of production

TABLE 6 Concentration ranges of
faecal SCFA (μmol�g�1) and bile acids
(nmol�g�1) of low and high cholesterol
converters

Compound Low converter (n = 51) High converter (n = 100) P value

Acetate 61–628 (274) 53–404 (166) 1.36 � 10�5

Propionate 27–237 (96) 17–153 (63) 1.42 � 10�5

Butyrate 25–269 (94) 6.4–162 (53) 7.74 � 10�5

Isobutyrate 2.6–21 (11.2) 3.9–18 (9.4) 0.22

UDCA <LOQ—370 (45) <LOQ—53 (22) 2.19 � 10�8

CDCA 17–1568 (49) <LOQ—90 (21) 1.70 � 10�10

DCA 52–4467 (1025) 101–3036 (687) 0.004

LCA 39–1302 (397) 190–1336 (427) 0.40

Abbreviations: CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA, lithocholic acid; LOQ, limit of

quantitation, SCFA, short-chain fatty acid; UDCA, ursodeoxycholic acid. Data shown are the 5th–95th
percentiles with (medians); the LOQ for UDCA was 10 nmol�g�1; the LOQ for CDCA was 4.0 nmol�g�1.
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and absorption, a first hypothesis could be that the colonic micro-

biome composition for non-converters and low converters favours a

higher abundance of phylogenetic groups of bacteria responsible for

SCFA production. Unfortunately, we have no data from microbiologi-

cal investigations in all these studies.

A second hypothesis could be that the elevated bile acids in non-

converters and low converters inhibit an uptake of SCFAs as shown

for butyrate uptake in tumour and non-tumour intestinal epithelial

cells with an inhibitory effect of CDCA (Gonçalves et al., 2012). In

other words, in the presence of high levels of bile acids, lower

amounts of SCFAs are absorbed and more are excreted.

On the other hand, increased SCFA levels could lower pH through

direct acidification (McOrist et al., 2011) when fermentation is pro-

moted. A more acid environment may stabilize the protonated form of

the bile acid. This is as more pronounced as higher the acidity of the

molecule - CA > CDCA > DCA. CA and CDCA are more acidic and

thus exhibit more extreme values as seen in Figure 2. LCA is, however,

an exception that does not follow this general trend. LCA has only

one hydroxyl group and is the most hydrophobic species among the

bile acids. The effects of pH on LCA might not be as marked as on

the others.

The subdivision into high and low sterol converters enables a new

assessment of faecal SCFA values. We know that the microbial

function of cholesterol converting once established is essentially

stable over time. This is supported by our studies (Kunz &

Matysik, 2019) and by those of others (Benno et al., 2005; Midtvedt

& Midtvedt, 1993; Wilkins & Hackman, 1974). Thus, the status of a

low or high converter is not dependent on diet. An exception is during

antibiotic treatment (Midtvedt et al., 1990), which was an exclusion

criterion in our studies. That non-converters and low converters

excrete significantly more SCFAs seems therefore to not depend on a

special diet or lifestyle. A limitation is that we have no data about

intestinal transit times. There is, however, also no published evidence

that cholesterol conversion is dependent on transit time.

The level of bile acids, in contrast to SCFAs, was in our study

positively associated with BMI. Study participants with high BMI had a

significantly higher excretion of bile acids. This is an important finding

because high levels of DCA in blood, bile and in faeces have been cor-

related with an increased risk of cholesterol gallstone disease and colon

cancer, two relatively frequent diseases in Western societies.

We did not test for significant differences between the different

four countries/study sites because of the inhomogeneity of the partic-

ipants. As mentioned in section 2, each study centre had different

study designs; for example, one study was focused on women only

and another one to people with very high BMI.

4.1 | Concordance with previous studies

Our SCFA data agree well with published data on SCFAs in faeces

either for values based on dry weight or for values based on wet

weight assuming faecal moisture from 61% to 85% (Han et al., 2015;

McOrist et al., 2008; Verbeke et al., 2015). The concentrations of

sterols reported here are in concordance with results described in our

studies and those of others (Batta et al., 2002; Keller & Jahreis, 2004;

Korpela & Adlercreutz, 1985; Reddy et al., 1977; Schott et al., 2018;

Weststrate et al., 1999; Wilkins & Hackman, 1974). The advantage

here is the high number of samples (n = 165), which enables us to

classify the participants into low and high converter groups

without losing statistical power due to too small sample size. For a

correct quantification of faecal bile acids, we decided to modify our

LC–MS/MS method (Scherer et al., 2009) in such a way that we had a

linear calibration for DCA and LCA, at the expense of minor species

like CA and CDCA. DCA and LCA are the dominant species in faeces,

and a correct quantification is necessary for any meta-analysis.

Therefore, primary bile acids are sometimes below LOQ. At the time

of measurement, we could not quantify oxo-bile acids representing up

to 35% of the faecal pool (Franco et al., 2019). This might be a

drawback of our study. As conjugated bile acids must first be

de-conjugated by bacterial BSHs to be metabolized into secondary

bile acids (Long et al., 2017; Thomas et al., 2008), almost no

conjugated secondary bile acids were present in the intestinal

content. Consequently, conjugated compounds are mostly below the

LOQ. There are a few studies reporting glycine conjugated bile acids

in faeces (Breuninger et al., 2019; Mitry et al., 2019). But these were

metabolomic approaches, and bile acid species were not confirmed by

authentic standards and not quantified.

It is interesting to note that there were no associations between

faecal SCFAs and BMI, although there are reports on the relationship

between faecal SCFAs and obesity. Some reports recorded positive

associations of SCFAs and BMI including a recently published meta-

analysis of seven different studies (de la Cuesta-Zuluaga et al., 2018;

Kim et al., 2019; McOrist et al., 2011). In contrast, for example, the

analysis of a large cohort of 160 participants with a wide range of

BMI values did not reveal significant associations to faecal SCFAs, but

interestingly, there was an inverse relation to circulating SCFAs

(Müller et al., 2019). One explanation could be that we had no data of

waist-to-hip ratio, which is known to be a better predictor of obesity

or metabolic syndrome than BMI (Björntorp, 1991; Kissebah, 1996).

4.2 | Limitations of our study

The major limitation of our study is the imbalance between women

and men, with the predominance of women. Another is that, due to

the study design, we had many overweight and obese participants.

However, our results are still applicable to a significant proportion of

the global population as the number of overweight individuals

continues to increase (WHO, 2016). For example, nationally

representative data for Germany collected in 2008–2011 show that

67.1% of men and 53.0% of women aged 18–79 years were

overweight (based on measured height and weight). The proportion of

men and women that were obese was 23.3% and 23.9%, respectively

(Mensink et al., 2013).

Another limitation is the fact that participants collected a faecal

sample only once at each time point. Hence, we have no data about
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individual variations. Moreover, we have no information about water

content of faeces, intestinal transit times, pH values, because we

decided from the beginning of the study to relate all values to the dry

weight of the faecal samples.

In conclusion, based on a large number of study participants

(165 with complete data), we have been able to give a general

quantitative overview of several metabolites in human faeces that can

used as reference values. The intestinal cholesterol conversion is a

distinctive feature to evaluate SCFA and bile acid concentrations. A

stratification into low and high converters could then allow assessing

faecal metabolites more appropriately, before therapeutic or dietary

interventions. A subdivision based on <20 and >80% cholesterol

conversion results in a wider difference of SCFAs and bile acids. We

did not present, however, values according to such grading because

of a limited number of participants in those groups. The strength

of our calculation is that our database on (i) a large cohort; (ii) an

uncontrolled diet, which should reflect the behaviour of the normal

population; and (iii) a comprehensive data set from various countries

in Europe.
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