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Abstract: We provide an evolutionary explanation for the well-established evidence of the
existence of in-group favoritism in intergroup con�ict. Using a model of group contest for
a (local) public good, we show that the larger the number of groups competing against one
another, or the larger the degree of complementarity between individual e¤orts, the more
likely are group members altruistic towards their teammates under preference evolution.
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1 Introduction

Since ancient times, various economic, social, and political activities involve groups that op-
pose one another. Thus, intergroup con�icts have been extensively studied within di¤erent
disciplines, and especially, in social psychology. In particular, the social identity theory orig-
inally formulated by Tajfel and Turner (1979) emphasizes that individuals have a tendency
to discriminate between "in-group" and "out-group" members, although "groups" are not
formed according to some intrinsic characteristics or preferences but by random assignment
(see Turner et al., 1979). More recently, social psychologists have conducted experimental
studies in the laboratory, which con�rm that inter-group competition tends to improve intra-
group coordination in simple team games (see, e.g., Bornstein et al., 2002; Bornstein, 2003).
As for the economic literature, the analysis of group con�icts is principally based on contest
or rent-seeking games between groups (see Katz et al. 1990; Nitzan, 1991; and Konrad,
2009, for a review). Several relatively recent experimental studies aim at testing this type
of game, and generally conclude that subjects over-contribute to group e¤ort relative to the
predictions of the Homo economicus model, thus, re�ecting some form of cooperative be-
havior within groups (see, e.g., Abbink et al., 2010, 2012; Ahn et al., 2011; and Sheremeta,
2018, for a review).
In this study, we provide an evolutionary and theoretical analysis of the emergence and

stability of in-group favoritism in intergroup con�ict using a model of group contest. We
consider a large population of players who are randomly matched into several groups of two
members that compete against each other for an exogenous prize. Each group�s probability
of winning the contest is given by a contest success function, which depends on the group
members�e¤orts relative to those of competing groups. The contested prize has the char-
acteristics of a public good, and thus, there exists a "free-rider" problem in collective e¤ort
within groups.
An important feature of this present analysis is that, in contrast to most studies on

group contests that use a "summation technology" for aggregating group members�e¤orts, we
consider that the e¤ective level of group e¤ort �its impact function �is given by a technology
featuring a varying degree of complementarity between individual e¤orts. Indeed, as �rst
noted by Alchian and Demsetz (1972), team or group production exists to the extent that
it can exploit complementarities of inputs, and this might be especially true in intergroup
con�icts (see, also, Kolmar and Rommeswinkel, 2013; Brookins et al., 2015).
Another crucial feature of this analysis is that each player has other-regarding preferences

that depend not only on her own material payo¤but also on the material payo¤ of her team-
mate. We �rst remain agnostic whether this concern is altruistic or spiteful, that is, if each
member puts a positive or negative weight on the payo¤ of her teammate when deciding her
contribution to collective e¤ort. We then characterize the (pure strategy) Nash equilibria
of this group contest game when group members have heterogeneous other-regarding prefer-
ences within and across groups. Next, we use the indirect evolutionary approach pioneered
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by Güth and Yaari (1992) to endogenize players�preferences (see, also, Bester and Güth,
1998; Sethi and Somanathan, 2001). This means that evolution does not play directly at the
level of strategies as in standard evolutionary game theory (see Maynard Smith, 1982) but
indirectly at the level of preferences, while players act rationally. In other words, preferences
determine the players�actions, which in turn determine their material payo¤s �or �tness
�and ultimately, the evolutionary survival of certain preference types. Thus, applying the
concept of evolutionary stability (Maynard Smith and Price, 1973) to preferences �rather
than to strategies �allows us to endogenize the (other-regarding) preference parameters.
We suppose that preferences are observable, and thus, agents with "biased" preferences,

such as altruism or spite, can be more successful in terms of material payo¤. This is because a
change in the preference type, and therefore, in the optimal choice of one player has strategic
e¤ects, in that it implies di¤erent optimal replies for all other players.1 The di¢ culty in this
present analysis stems from the dual level of strategic interactions between players. The
�rst one occurs within groups. Each group member decides on her contribution to group
e¤ort according to her preferences, given the preference type, and the resulting action of her
teammate. The second level of strategic interactions occurs across groups. A change in the
preference type of one or both members of the same group is passed on group e¤ort. This in
turn leads to di¤erent e¤ort choices by all members of the competing groups, thus, changing
the winning probabilities of all groups. The evolutionary success of a certain preference type
is the product of this dual level of strategic interactions.
Using a notion of local evolutionary stability (Alger and Weibull, 2010), we can demon-

strate the existence of a unique evolutionarily stable preference parameter, and determine
the evolutionarily stable degree to which a group member cares about the material payo¤
of her teammate. Clearly, a given group would be more successful in the group contest with
more in-group altruism. However, in the process of evolution, is a certain degree of altruism
within groups immune against mutant members with lower degrees of altruism? In fact, we
show that in-group altruism and in-group spite can be both (locally) evolutionarily stable
under preference evolution. In the �rst case, players exert more e¤ort than if they were max-
imizing their material payo¤s only, while they exert less e¤ort in the second case. Yet, we
show that the larger the degree of complementarity between individual e¤orts or the larger
the number of opponents, the more likely that group members are altruistic towards each
other. Also, a further increase in the degree of complementarity between partners�e¤orts or
in the intensity of competition usually tends to reinforce group cohesion, in that it increases

1Heiftez et al. (2007a, 2007b) show that in a large class of games, agents with "biased" preferences may
actually be more successful in terms of material payo¤, although agents�preferences are not fully observable.
However, if preferences are completely unobservable, payo¤-maximization is generally evolutionarily stable
(Ok and Vega-Redondo, 2001; Dekel et al., 2007). More recently, Alger and Weibull (2013) show that, under
incomplete information, sel�shness will indeed prevail if there is no assortative matching at all; however, with
some degree of assortativity, preference evolution leads to a certain degree of Kantian morality. For a recent
review of the literature on preference evolution, with a particular emphasis on the role of the informational
structure and of the matching rule, see Alger and Weibull (2019).
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(locally) evolutionarily stable in-group altruism.
Despite several evolutionary analysis of contests between single players,2 very few theo-

retical analysis apply the (direct or indirect) evolutionary approach to group contests. The
�rst is Eaton et al. (2011), who consider a production and con�ict model with a large
population of players. In each period, players are randomly matched to form two groups of
two members that compete for a common access resource. After appropriating some of the
common resource, the members of each group can spend some processing e¤orts to produce
a consumption good. While the model is speci�c, they have to rely on numerical simulations
for endogenizing the preference parameters. The numerical results show that the evolution-
arily stable weight on the payo¤of one�s teammate is positive �featuring in-group altruism �
while that on the payo¤s of the out-group members is negative �featuring out-group spite.3

Another theoretical analysis is by Konrad and Morath (2012). They consider a contest
game with two groups of equal size �ghting for an exogenous prize, and where group e¤ort
is given by the sum of individual e¤orts. Each player cannot observe the preference types of
other players, and thus, Konrad and Morath (2012) introduce the concept of robust beliefs,
such that any player with a certain preference type believes that all other players are of
the same type (and have the same robust beliefs). This assumption greatly simpli�es the
analysis, as it eliminates all strategic e¤ects on the behaviors of a change in preference types,
that is, a change in the weights attributed to others�payo¤s. The authors then characterize
the set of evolutionarily stable preferences, which involve a linear combination of in-group
favoritism and out-group spite with the two traits being perfect substitutes. Consequently,
the players always exert more e¤ort in the evolutionarily stable equilibrium than if they were
endowed with sel�sh preferences.
There is also a large literature in evolutionary biology that studies the evolution of al-

truism and spite. These behavioral traits have been explained by kin selection and inclusive
�tness (Hamilton, 1964), reciprocity with repeated interactions (Trivers, 1971; Axelrod and
Hamilton, 1981)4, or "haystack models" of group selection (Maynard Smith, 1964).5 More

2The evolutionary analysis of contests between single players started with Scha¤er (1988), who adapted
the notion of an Evolutionarily Stable Strategy (ESS) by Maynard Smith and Price (1973) to a �nite
population of players. Following Scha¤er (1988), Hehenkamp et al. (2004) compare behaviors induced by an
ESS to behaviors in Nash equilibrium, and show that an ESS involves spiteful e¤orts in the contest between
individuals. This in turn involves the overdissipation of the rent compared to Nash equilibrium. Yet, in
an in�nite population, ESS behavior coincides with Nash equilibrium behavior. Finally, Leininger (2009)
applies the indirect evolutionary approach to contests between single players, and shows that it generates
spiteful preferences that induce the same aggressive behavior than in an ESS.

3In the second part of their study, they analyze a contest game for a public prize with interdependent pref-
erences but without e¤ort complementarity within groups. Most importantly, they do not try to endogenize
the preference parameters of the players in this part of the analysis.

4In another and related study (Cheikbossian, 2012), we investigate the potential of "trigger strategies"
to induce mutual cooperation within groups in an in�nitely repeated contest between two groups. We show
that the set of parameters for which cooperation can be sustained within the larger group as a subgame
perfect outcome is as large as that for which cooperation can be sustained in the smaller group.

5Maynard Smith (1964) proposed a simple model for describing mice living and replicating during the
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closely related to this present study, several theoretical studies in human evolutionary biol-
ogy explain (often using dynamic games and simulations) how genetic relatedness can result
in parochial altruism, that is, altruistic behaviors within groups in war contexts (see, e.g.,
Choi and Bowles, 2007; Lehmann and Feldman, 2008; and Rush, 2014, for a review). Finally,
altruism or spite can result from a "gene-culture coevolutionary" process, that is, from the
interaction between genes and culture over long periods of time (see, e.g., Bowles, 2006; Gin-
tis, 2011). Similarly, Alger et al. (2020) investigate both genetic and cultural transmission
of preferences in populations structured in small groups with interactions across groups due
to (limited) migration. They distinguish between preferences at the material payo¤ level
and preferences at the �tness �or reproductive �level, and show that con�icts, by reducing
�tness interdependence, can lead to altruism towards neighbors at the material payo¤ level.
Our contribution is to demonstrate the existence of and obtain an analytical solution

for the evolutionarily stable degree of non-kin altruism or spite within groups in a complete
information game featuring strategic interactions within and across groups. Furthermore,
we show that a stronger adversity, as measured by the number of groups competing, and
a stronger within-group e¤ort complementarity go hand-in-hand to promote and reinforce
in-group altruism under preference evolution.

2 The framework

2.1 A simple group contest game

We consider an in�nitely large population of players. In each period, players are randomly
matched to pairs playing a group contest game. As in Eaton et al. (2011), we consider
that group contests are located and isolated from each other, in that each contest involves a
certain number n of groups. Thus, we consider a normal-form game that involves 2n players.
Groups compete against each other for an exogenous prize, which has the characteristics

of a (local) public good. One can think of the collective prize as the location of a public
facility (e.g. sanitation or water management infrastructures) or funding for certain group
activities (e.g. sports and cultural associations).6 The value of the prize for each member of
the winning group is normalized to 1.
Let (i; j); for i = 1; 2 and j = 1; 2; :::; n, denote member i of group j. eij 2 R+ is the

amount of e¤ort expended by player (i; j) and ej = (e1j; e2j) 2 R2+ is the vector of e¤orts in

summer within separate haystacks. At harvest time, the haystacks are cleared, and mice scramble out in the
meadow. In the next summer, the new haystacks are colonized randomly by the survivors. A crucial feature
of "haystack models" is that groups of small size are randomly formed from the in�nite population of players
(see Bergstrom, 2002, or Salomonsson, 2010, for a review). Regarding the formation of groups, our model
can be viewed as a "haystack model". However, in our analysis, there are interactions across groups.

6Thus, we ignore the source of the funds with which the "prize" can be �nanced to focus on contest
e¤orts. For "production and con�ict" (or "guns-versus-butter") models, where agents allocate their resources
between producing the collective prize and �ghting for it, see, for instance, Gar�nkel and Skaperdas (2007).
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group j: The e¤ort of group j depends on group members�e¤orts, according to an impact
function Gj : R2+ �! R+, which has, for j = 1; 2; :::; n, the CES form:

Gj (ej) =
�
e�1j + e

�
2j

� 1
� ; (1)

where � 2 (�1; 0) [ (0; 1] measures the degree of complementarity between individual
e¤orts. The elasticity of substitution is 1=(1 � �). Thus, the lower �, the lower is the
elasticity of substitution or the higher is the degree of complementarity between individual
e¤orts within groups. For � = 1, we have perfect substitutability between individual e¤orts
and Eq. (1) becomes the standard "summation technology" used in most analysis of group
contests, that is Gj (ej) =

P
i eij. For � �! �1, we have perfect complementarity, that is

Gj (ej) = Minfeijg: Finally, for � < 0 and eij = 0, the impact function of group j is not
well-de�ned. Hence, we take the limit of (1) as eij ! 0, which means Gj (ej) = 0; in this
case.7

The winning probability of each group is given by a Contest Success Function (CSF),
which has the ratio-form. This means that each group�s probability of winning the prize is
equal to the proportion of its collective e¤ort out of the sum of collective e¤orts by all groups
involved in the contest. Thus, the winning probability of group j, for j = 1; 2; :::; n, is given
by pj : R2n+ ! [0; 1] with

pj (ej; e�j) =

8>>><>>>:
Gj (ej)Pn
k=1Gk (ek)

if
Pn

k=1Gk (ek) 6= 0;

1

n
otherwise,

(2)

where e�j = ((e11; e21); :::; (e1j�1; e2j�1); (e1j+1; e2j+1); :::; (e1n; e2n)).8

We further assume that the marginal cost of individual e¤ort is constant and that the
expected material payo¤ to member (i; j), for i = 1; 2 and j = 1; 2; :::; n; is given by an
additively separable function �ij : R+ � [0; 1]! R+, that is,

�ij (ej; e�j) = pj (ej; e�j)� eij, (3)

by recalling that the value of the prize for each member of the winning group is normalized
to 1.
Collective e¤ort is a public good to the group members, and furthermore, the contested

prize is also a (local) public good. Consequently, a free-rider or collective action problem
exists. Each group member bears the full cost of his e¤ort, whereas the bene�ts are enjoyed
by the two group members if they win the contest. In other words, when choosing his

7Note that (1) is also discontinuous at � = 0. We exclude this from our analysis.
8See Munster (2009) for an axiomatization of group contest success functions. For an analysis of group

contests �but without other-regarding preferences �where the impact function is given by a CES technology,
see Kolmar and Rommeswinkel (2013), Brookins et al. (2015), and Cheikbossian and Fayat (2018).
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contribution to group e¤ort, a sel�sh member �maximizing his own material payo¤ �does
not take into account that his individual contribution confers a bene�t to his teammate
because of an increase in the group�s probability of success.9 Thus, the free-rider problem
is de�ned as the failure to internalize this positive externality, implying that group e¤ort is
suboptimally low from the perspective of the group.

2.2 Equilibrium with preference interdependence

Let us consider that each player has other-regarding preferences, or a utility, which depends
not only on her own material payo¤ but also on the material payo¤ of her teammate. The
expected utility of member (i; j), for i = 1; 2 and j = 1; 2; :::; n; is given by an additively
separable function Vij : R2+ ! R+, that is,

Vij (ej; e�j) = �ij (ej; e�j) + �ij��ij (ej; e�j), (4)

where the subscript �ij stands for the member other than i in team j: �ij 2 (�1; R], with
R � 1 and for i = 1; 2 and j = 1; 2; :::n, is the utility weight given by member i in group
j to the material payo¤ of her teammate �with positive values representing "altruism"
and negative values representing "spite".10 Let � 2 (�1; R]2n be the vector of preference
parameters in a contest that involves n groups of two members. Each group member observes
the degree of altruism/spite of her teammate as well as those of all members of opposing
groups.11

Player (i; j), for i = 1; 2 and j = 1; 2; :::; n chooses her e¤ort level eij to maximize her
utility given by (4), which can be rewritten with (3) as

Vij (ej; e�j) = (1 + �ij)pj (ej; e�j)� (eij + �ije�ij): (5)

We have the following Lemma:12

9We could equivalently consider that the prize has the characteristics of a fully private good and that it is
redistributed equally among the group members of the winning group. The crucial feature is that the prize
has the same value for the two members of the winning group, independently of their e¤orts. If, for instance,
the prize had the characteristics of a private good and was redistributed according to the relative e¤ort of
group members, then there would be no free-rider problem within groups, and the multi-group contest would
reduce to a contest between individual players (see Nitzan, 1991).
10We exclude the case �ij � �1 since then it would prevent positive levels of e¤orts. However, degrees of

altruism �ij � 1 may exist, for instance, between parents or couples.
11Observe also that, in contrast to Eaton et al. (2011) and Konrad and Morath (2012), the utility of a player

does not depend �presumably negatively �on the material payo¤s of out-group members. Here, ignoring
preferences towards out-group members can be justi�ed because players�utilities are linear in payo¤s, and
because they exert just one level of e¤ort for obtaining an exogenous prize. An increase in individual e¤ort
as a result of more in-group altruism reduces the probability of success of competing groups, and therefore,
reduces the payo¤s of out-group members. Thus, the e¤ect of in-group altruism could also be viewed as
induced by out-group spite. We leave the complete and careful examination of in-group preferences together
with out-group preferences for future research.
12We provide all the proofs in the Appendix.
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Lemma 1: (i) Given � 2 (�1; R]2n, there exists a pure-strategy Nash equilibrium. The
equilibrium e¤ort levels e�ij, i = 1; 2 and j = 1; 2; :::n, must satisfy the following set of
�rst-order conditions

(1 + �ij)
pj
�
e�j ; e

�
�j
� �
1� pj(e�j ; e��j)

�
e�1��ij

�
e��ij + e

��
�ij
� � 1; (6)

and if strict inequality holds, e�ij = 0;

(ii) In any equilibrium, a given group j is either fully active, that is e�ij > 0 for i = 1; 2 or
fully inactive, that is e�ij = 0 for i = 1; 2.

The proof consists of three steps. We �rst show that Vij (ej; e�j) is strictly concave in eij,
so that the �rst-order condition is necessary and su¢ cient for maximization of utility. The
second step is to show that there cannot exist an equilibrium in which a corner solution holds
for a member of one group, while an interior solution holds for the other member of the same
group (property (ii)). This important property allows us to reduce the group contest to a
lottery contest between individual players with heterogeneous preferences. Consequently, in
the �nal step of the proof, we can use the existence theorems of Cornes and Hartley (2005).
Notably, in our framework, there are two reasons why group j might not participate in

the contest, that is e�ij = 0 for i = 1; 2. The �rst is that the utility weights that group
members give to each other are too low, relative to other groups. The second reason is
that if � < 0 and player (i; j) chooses eij = 0, then Gj (ej) = 0, and thus, player (�i; j)
cannot do better than choosing e�ij = 0. In other words, the members of group j can
"coordinate" on participating or not participating in the group contest independently of
(�ij; ��ij) 2 (�1; R]2 when � < 0. Thus, multiple equilibria exist in this case (see also,
Kolmar and Rommeswinkel, 2013). Yet, ignoring these equilibria, the set of active groups is
uniquely determined and equilibrium is unique for a given vector of preference parameters
� 2 (�1; R]2n.
The equilibriummaterial payo¤�or �tness �of player (i; j); for i = 1; 2 and j = 1; 2; :::; n,

can be written as

��ij (�) = pj
�
e�j (�) ; e

�
�j (�)

�
� e�ij (�), (7)

where, again, � 2 (�1; R]2n is the 2n-dimensional vector of preference types of all players.
Indeed, with observed preference parameters, the equilibrium material payo¤ of each player
depends on his own preference type, and on all other players�types.

3 Evolutionarily stable preferences

To study the evolutionary stability of altruism or spite, we employ the indirect evolutionary
approach pioneered by Güth and Yaari (1992). All players choose e¤ort levels that maximize
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their utility and evolution pressure ensures the survival of preference parameters that induce
equilibrium behavior providing the highest level of material payo¤.
Initially, all players have the same preference parameter �, and the question is whether

this preference parameter is immune against invading "mutant" players with a di¤erent
preference parameter. Hence, let us suppose that, at a certain period, a "mutation" occurs
with a small share " of the total population characterized by the preference parameter
�m 6= �. Players are still randomly matched into pairs to play a group contest game between
n groups.
To simplify the exposition, let us consider the situation of player (1; 1), that is player 1 of

group 1. If this player is an incumbent player, he has a probability (1� ") of being matched
with another incumbent player and a probability " of being matched with a mutant player.
Furthermore, the members of group 1 compete against (n� 1) other groups, each of which
may have two incumbent players, or one incumbent player and one mutant player, or two
mutant players. Thus, the probability that group 1 compete against (n � 1) other groups,
with a total number of k mutant players in these other groups, is given by the following
binomial distribution with parameters 2(n� 1) and ":13

�k (") =

�
2(n� 1)

k

�
(1� ")2(n�1)�k"k: (8)

Let �1(l) 2 (�1; R]2 be the vector of preference parameters in group 1, where l = f0; 1; 2g
is the number of mutant players in this group, and let ��1(k) 2 (�1; R]2(n�1) be the
vector of preference parameters of all players, except the two players of group 1, where
k = f0; 1; 2; :::; 2(n� 1)g is the total number of mutant players in the (n � 1) remaining
groups. Thus, if player (1; 1) is an incumbent player, his expected material payo¤ is given
by

�I11(�1(l);��1(k); ") = (1� ")
X2(n�1)

k=0
�k (")�

�
11(�1(0);��1(k))

+"
X2(n�1)

k=0
�k (")�

�
11(�1(1);��1(k)): (9)

However, if player (1; 1) is a mutant player, his expected material payo¤ is given by

�M11(�1(l);��1(k); ") = (1� ")
X2(n�1)

k=0
�k (")�

�
11(�1(1);��1(k))

13Suppose, for example, that there are three groups. Then, the probability that group 1 faces two groups
with no mutant players in the two groups �that is k = 0 �is (1 � ")4. The probability that one opposing
group has one mutant player and one incumbent player, while the remaining group has two incumbent players
�that is k = 1 �is 4"(1� ")3. The probability that k = 2 is given by the probability that the two opposing
groups have one mutant player and one incumbent player �that is 4"2(1 � ")2 �plus the probability that
one opposing group has two mutant players, while the remaining group has two incumbent players �that
is 2"2(1 � ")2. The probability that k = 3; or that one opposing group has two mutant players, while the
remaining group has one mutant player and one incumbent player, is 4"3(1 � "). Finally, the probability
that the two opposing groups have two mutant players �that is k = 4 �is "4.
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+"
X2(n�1)

k=0
�k (")�

�
11(�1(2);��1(k)): (10)

Again, these expected material payo¤s show that each player of group 1; whether an incum-
bent or a mutant player, can be matched with an incumbent or a mutant player with his
group engaged in a group contest involving (n�1) other groups, each of which can have two
incumbent players, or one incumbent player and a mutant player, or two mutant players.
We now adapt Maynard Smith and Price�s (1973) notion of evolutionarily stable strategy

to preference types in our group contest game.

De�nition 1: Consider two preference parameters �m 2 (�1; R] and � 2 (�1; R], and let
�1(l) 2 (�1; R]2 and ��1(k) 2 (�1; R]2(n�1) be the vectors of players� preference types in
group 1 and in the (n� 1) other groups, where l = f0; 1; 2g and k = f1; 2; :::; 2(n� 1)g are
the numbers of �m-players. Then, � is evolutionarily stable if there exists �" > 0; such
that for any �m 6= � and for all " 2 (0; �"), we have

�I11(�1(l);��1(k); ") > �
M
11(�1(l);��1(k); "): (11)

If the population of mutants " is close to 0, then an incumbent or a mutant player in group
1 is almost surely matched with an incumbent player, and the members of group 1 compete
against (n � 1) other groups, each of them having almost surely two incumbent players.
Formally, when " tends to 0, we have

lim"!0�
I
11(�1(l);��1(k); ") = �

�
11(�1(0);��1(0));

lim"!0�
M
11(�1(l);��1(k); ") = �

�
11(�1(1);��1(0)): (12)

where �1(0) = (�; �), �1(1) = (�m; �), and ��1(0) is the 2(n � 1)-dimensional vector whose
components all equal �.
Thus, a necessary condition for (11) to be satis�ed is that for every �m 6= �, ��11(�1(0);��1(0)) �

��11(�1(1);��1(0)), and a su¢ cient condition is

��11(�1(0);��1(0)) > �
�
11(�1(1);��1(0)). (13)

To summarize, a preference parameter � is evolutionarily stable if the expected material
payo¤ of the incumbent players is strictly larger than the expected material payo¤ of the
rare mutant players with a preference parameter �m, for every �m 6= �. Furthermore, when
the proportion of mutants " is close to 0, a su¢ cient condition for � to be evolutionarily
stable reduces to (13).

3.1 Equilibrium with one mutant player

We now characterize the equilibrium of the group contest game with one mutant player.
Again, to simplify the exposition, let us consider that the mutant is player (1; 1), that is
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member 1 of group 1, with �m 2 (�1; R] being his degree of altruism/spite towards his
teammate. All other players have a common degree of altruism/spite � 2 (�1; R] towards
their teammates. These parameters are exogenous to the players.
The mutant with the preference parameter �m chooses e11 to maximize his utility given

by

V11 (e1; e�1) = (1 + �m)p1 (e1; e�1)� (e11 + �me21): (14)

Member 2 of group 1, with the preference parameter �, chooses e21 to maximize his or her
utility given by

V21 (e1; e�1) = (1 + �)p1 (e1; e�1)� (e21 + �e11). (15)

Finally, the utility of all other players are symmetric, as they all belong to a group where
the two members have the same preference parameter �. Thus, player (i; j), for i = 1; 2, and
j = 2; 3; :::; n, chooses eij to maximize his or her utility given by

Vij (ej; e�j) = (1 + �)pj (ej; e�j)� (eij + �e�ij). (16)

We have the following Proposition:

Proposition 1: Let �(�m; �) = (1 + �m)
�

1�� + (1 + �)
�

1�� , where �m 2 (�1; R] is the
preference parameter of player (1; 1), and where � 2 (�1; R] is the incumbent preference
parameter of all other players, then:

(i) There exists a unique interior pure strategy Nash equilibrium where all players exert a
strictly positive level of e¤ort if and only if�

�(�m; �)

2

� 1��
�

� (n� 2)(1 + �)
(n� 1) ; (17)

(ii) If (17) holds, the equilibrium e¤ort levels are given by

e�11 (�m; �) =
2
1��
� (n� 1)(1 + �)(1 + �m)

1
1�� [(n� 1) [� (�m; �)]

1��
� � 2 1��� (n� 2)(1 + �)]

� (�m; �) [2
1��
� (1 + �) + (n� 1) [� (�m; �)]

1��
� ]2

;(18.1)

e�21 (�m; �) =
2
1��
� (n� 1)(1 + �)

2��
1�� [(n� 1) [� (�m; �)]

1��
� � 2 1��� (n� 2)(1 + �)]

� (�m; �) [2
1��
� (1 + �) + (n� 1) [� (�m; �)]

1��
� ]2

; (18.2)

e�R (�m; �) =
2
1��
� (n� 1) (1 + �)2 [� (�m; �)]

1��
�

2[2
1��
� (1 + �) + (n� 1) [� (�m; �)]

1��
� ]2

; for i = 1; 2 and j = 2; 3; :::; n;(18.3)
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(iii) If (17) does not hold, then group 1 is fully inactive, that is, e�11 = e
�
21 = 0 in any pure

strategy Nash equilibrium.

When all players have the same preference parameter except one player �in this case player
(1; 1) �and when (17) is satis�ed, there exists a unique interior pure strategy equilibrium
with all players of all groups exerting a strictly positive level of e¤ort. In this equilibrium,
there are three distinct levels of individual e¤ort: two di¤erent levels of e¤ort for the two
members of group 1 to which player (1; 1) belongs, and a third level of e¤ort, which is the
same for all members of group 10s competitors.
If the inequality (17) is not satis�ed, then group 1 is fully inactive in any equilibrium, that

is, even if we exclude equilibria in which group members "coordinate" on not participating
when � < 0. Observe that (17) is always veri�ed for �m = �, and that its left-hand term is
increasing in �m. Therefore, the inequality is always veri�ed for �m � �. However, if given
� and n, �m is su¢ ciently small relative to �, the inequality (17) can be reversed, in which
case, group 1 is fully inactive in equilibrium. The explanation is that the total valuation of
the prize by player (1; 1), that is, his own valuation plus the valuation of the prize for his
teammate as a result of his altruism (or spite), is too low, relative to the total valuation of
the prize by competing groups, for making pro�table a positive contribution. Thus, player
(1; 1) does not participate in the contest. As mentioned, complete free-riding by the mutant
player implies that his teammate is also inactive. He or she cannot bear alone the cost of
participating in the group contest. Consequently, when (17) does not hold, the group with
the mutant player is fully inactive in equilibrium.14

It would be useful to determine how equilibrium levels of e¤ort described in Proposition
1 change with the degree of altruism/spite �m of player (1; 1). As shown by Lemma 1,
each player�s equilibrium level of e¤ort depends on the vector of all players� preference
parameters as a result of the observability of preference types. Even when all players have
the same preference parameter except one member of a given group, the resulting three
distinct equilibrium levels of e¤ort (18.1)-(18.3) described in Proposition 1 depend in a non-
monotonic way on �m.15 Therefore, in Proposition 2, we analyze the impact of a marginal
increase in the degree of altruism/spite �m on the equilibrium levels of e¤ort at the point
where all players are of the same type, that is �m = �.
We have the following Proposition:

14This result can be related to previous works on asymmetric rent-seeking contests between single players.
In particular, Hillman and Riley (1989) and Stein (2002) show that players with the lowest valuations of the
prize may stay inactive in equilibrium (in contests with more than two asymmetric players). As the proof of
Lemma 1 shows, the present model of group contest can be reduced to a lottery contest between individual
players and a low degree of in-group altruism relative to other groups can be interpreted as a relatively low
aggregate valuation of the prize. Thus, our result that group 1 is inactive if (17) does not hold aligns with
previous studies on contests between asymmetric single players.
15This is mainly, but not completely, due to the power �. For instance, with � = 0:5 and � = 0, the sign

of the derivative of e�11 (�m; �) with respect to �m can be positive or negative depending on the number of
competing groups n; and on the value of �m itself.
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Proposition 2: Suppose that (17) holds, then for n � 2, � � 1, and (�m; �) 2 (�1; R]2 :

(i)
@e�11 (�m; �)

@�m
j�m=� =

(n� 1) [n2 � n+ 2� �(n2 � 2n+ 2)]
4(1� �)n3 > 0; (20.1)

(ii)
@e�21 (�m; �)

@�m
j�m=� =

(n� 1) [(n� 1)(n� 2)� � (n2 � 2n+ 2)]
4(1� �)n3 T 0, � S ~�, (20.2)

where ~� =
(n� 1)(n� 2)
n2 � 2n+ 2 < 1; (20.3)

(iii)
@e�R (�m; �)

@�m
j�m=� = �

(n� 2)(n� 1)
4n3

� 0: (20.4)

Thus, starting from a situation where all players in all groups have the same degree of al-
truism/spite, an increase (decrease) in the mutant�s degree of altruism (spite) increases his
own equilibrium level of e¤ort (property (i) of Proposition 2). However, it can increase or
decrease the equilibrium level of e¤ort of his teammate depending on the degree of com-
plementarity between individual e¤orts (property (ii) of Proposition 2). If the degree of
e¤ort complementarity is su¢ ciently large, that is if � is lower than ~�, then an increase
(decrease) in the mutant�s degree of altruism (spite) mitigates the free-riding incentive of
his teammate by inducing him to increase his equilibrium level of e¤ort; otherwise, if � is
larger than ~�, it exacerbates the free-riding incentive of his teammate by inducing him to
decrease his contribution to group e¤ort.16 Yet, the mutant�s preference parameter has a
greater impact on his own e¤ort choice than on the e¤ort choice of his partner. We indeed
have [@(e�11 (�m; �) + e

�
21 (�m; �))=@�m)] j�m=� > 0 independently of �, and hence, a marginal

increase in the degree of altruism/spite �m � starting from �m = � � always raises the
equilibrium level of impact of the mutant�s group.17

Finally, an increase (decrease) in the mutant�s degree of altruism (spite) �starting from
�m = � �decreases the equilibrium level of e¤ort of all the members of the rival groups
(property (iii) of Proposition 2). Indeed, the increased collective impact of the mutant�s
group (due to a slight increase in �) diminishes the marginal e¤ect of the out-group members�
contributions on the probability of success of their groups. In other words, it reduces the
marginal bene�t of exerting individual e¤ort in the rival groups. The marginal cost of e¤ort
being constant, out-group members exert lower levels of e¤orts when the mutant�s degree of
altruism (slightly) increases. Overall, an increase in the mutant�s degree of altruism increases
the equilibrium probability of success of the mutant�s group to the detriment of the rival
groups.
16Observe also that ~� is increasing in the number of competing groups n and that ~� 2 [0; 1). For n = 2

and � ! 0, a change in �m (from �m = �) has no impact on the equilibrium level of e¤ort exerted by the
mutant�s teammate. Furthermore, with n = 2, a change in �m (from �m = �) does not modify either the
e¤ort choices of out-group members independently of �, as (20.4) shows.
17At the point where all players are of the same type �m = �, they exert the same level of e¤ort e�. It

follows that [@G1 (e�1) =@�m] j�m=� = 2
1��
� [@(e�11 (�m; �) + e

�
21 (�m; �))=@�m)] j�m=� > 0:
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To conclude this Section, one can also observe that, in a monomorphic population where
all players are of the same type �, the equilibrium level of individual e¤ort is �using (18) �
given by e� = (1+�)(n�1)=2n2. This equilibrium e¤ort level is decreasing in the number n of
competing groups, as an increased number of contenders decreases each group�s probability
of success for any level of individual and group e¤ort. Note also that e� does not depend on
the degree of complementarity between individual e¤orts, as measured by �. This is because
each group�s impact function has constant returns to scale, and that the contest success
function is homogeneous of degree 0. Yet, the level of within-group e¤ort complementarity
does have an important role in the evolution of preferences, as we shall now see.

3.2 Local evolutionary stability

We are now prepared to analyze the evolutionary stability of in-group altruism/spite. Un-
fortunately, we are unable to obtain results on globally stable preferences, which would have
necessitated that the inequality (13) holds for all �m 6= �. Hence, following Alger andWeibull
(2010), we use the concept of local evolutionary stability.

De�nition 2: � 2 (�1; R] is locally evolutionarily stable if (13) holds for �m 6= � in some
neighborhood of �:

The requirement of local stability is reasonable in an evolutionary context, where mutants
enter the �eld with a similar �but slightly deviant �preference parameter relative to the
incumbent preference parameter of the whole population.
When the preference parameter of the mutant player �m is in a neighborhood of �,

inequality (17) holds, and all players exert a strictly positive level of e¤ort. The equilibrium
material payo¤ of the mutant player is

��11 (�m; �) = p1 (e
�
1 (�m; �) ; e

�
R (�m; �))� e�11 (�m; �) ; (21)

where e�1 (�m; �) = (e�11 (�m; �) ; e
�
21 (�m; �)), with e

�
11 (�m; �) and e

�
21 (�m; �) given by (18.1)

and (18.2), and where e�R (�m; �) is the 2(n � 1)-dimensional vector whose components all
equal to e�R (�m; �) given by (18-3).
Thus, we obtain a Proposition similar to Proposition (15) in Alger and Weibull (2010).

Proposition 3: A necessary and su¢ cient condition for a degree of altruism/spite � 2
(�1; R] to be locally evolutionarily stable is (i)-(ii), where

(i)
@��11 (�m; �)

@�m
j�m=� = 0;

(ii)
@2��11 (�m; �)

@�2m
j�m=� < 0.
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In other words, � is locally evolutionarily stable if and only if ��11 (�m; �), given by (21), has
a strict local maximum at �m = �.
We can then obtain the following Proposition:

Proposition 4: There exists a unique locally evolutionarily stable preference parameter �� 2
(�1; R] if and only if � < ��, where

�� =
(n2 � 2)(1� �)� n

(n2 + 2)(1� �)� n(1� 2�) ; (22:1)

and

�� =
2n3 + 3n2 � 6n+ 4� n

p
4n3(n� 1) + 17n2 � 20n+ 12

4(n� 1)2 < 1: (22:2)

Recall that the lower �, the greater is the complementarity between group members�con-
tributions. Thus, according to Proposition 4, a necessary and su¢ cient condition for the
existence of a locally evolutionarily stable preference parameter is that group members�ef-
forts are su¢ ciently complementary. It is useful to carry out a comparative-statics analysis
of the threshold value ��, and to compare it with the threshold value ~� given by (20.3) in
Proposition 2. We have the following Proposition:

Proposition 5: For any n � 2 : (i) �� given by (22.2) is increasing in n, with �� jn=2 =
5� 3

p
2 � 0:76 and limn!1�� = 1; (ii) �� > ~�, where ~� is given by (20.3).

Thus, according to property (i) of Proposition 5, the minimum degree of complementarity
that is required for the existence of locally evolutionarily stable preferences becomes less
stringent as the number of competing groups increases. Furthermore, according to property
(ii) of Proposition 5, the threshold value �� is strictly larger than the threshold value ~�,
above which an increase in the mutant�s degree of altruism induces the mutant�s teammate
to decrease her contribution to group e¤ort. Therefore, the increased free-rider problem due
to the other�s altruism, when � � ~�, does not prevent the existence of locally evolutionarily
stable preferences. However, if group members�e¤orts are too substitutable, an equilibrium
in evolutionarily stable preferences fails to exist, even using the weaker concept of local
stability.
Before explaining these results in more detail, we investigate whether locally evolution-

arily stable preferences exhibit altruism or spite within groups, that is, whether �� given by
(22.1) is positive or negative. We have the following Proposition:

Proposition 6: Let � < �� and n � 2, then

�� T 0, � S �̂; where (23:1)

�̂ =
n2 � n� 2
n2 � 2 < ��. (23:2)
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This Proposition states that the locally evolutionarily stable preference parameter �� can
di¤er from zero, depending on the degree of complementarity between individual e¤orts,
and on the number of competing groups. In other words, "biased" preferences can be evo-
lutionarily stable, with positive values of �� corresponding to in-group altruism, and with
negative values of �� corresponding to in-group spite. "Biased" preferences can be pro�table
in terms of material payo¤s because a change in a player�s type can modify other players�
equilibrium actions.18 In other words, type observability has strategic implications within
and across groups. A change in the optimal choice of one player as a result of a change in
his own preference induces not only a di¤erent optimal reply for his teammate but also for
all members of competing groups. In turn, it changes the winning probabilities of all groups
involved in the group contest, and hence, the player�s �tness. Consequently, altruistic or
spiteful preferences can be evolutionarily stable.19

Now, let us explain the sign of ��, according to whether the degree of complementarity
between individual e¤orts � is larger or lower than the threshold value �̂, given by (23.2)
in Proposition 6. Consider a population where all players are sel�sh and a mutation occurs
with one player being (slightly) altruistic towards his partner. Then, this mutant player
exerts a higher level of e¤ort (property (i) of Proposition 2), while all members of competing
groups exert a lower level of e¤ort (property (iii) of Proposition 2). As for the impact of
the mutation on the equilibrium level of e¤ort of the mutant�s teammate, it depends on
whether the degree of complementarity between individual e¤orts, for a given number of
competing groups, is larger or lower than the threshold value ~� given by (20.3) (property (ii)
of Proposition 2). When � is larger than ~�, a positive degree of altruism leads the mutant�s
teammate to reduce his e¤ort level, increasing it when � is lower than ~�. Therefore, it is
instructive to compare the threshold value �̂, which determines the sign of ��, with ~�. The
following Proposition provides such a comparison together with a comparative-static analysis
of �̂:

Proposition 7: For any n � 2 : (i) �̂ given by (23.2) is increasing in n, with �̂ jn=2 = 0
18As stated in Footnote 16, a change in �m (from �m = �) does not modify the e¤ort choices of out-group

members when n = 2. If, in addition, � ! 0, it does not modify either the equilibrium level of e¤ort exerted
by the mutant�s teammate. Consequently, with n = 2 and � ! 0, sel�shness �that is �� = 0 �is (locally)
evolutionarily stable. It con�rms that a necessary condition for "biased" preferences to be evolutionarily
stable is that a change in a player�s type has strategic implications by modifying other players�e¤ort choices
(within and across groups). Yet, in the present analysis, sel�shness can also be locally evolutionarily stable,
although a change in a player�s type induces strategic e¤ects. It happens in the speci�c case where, given
the number of competing groups, the degree of e¤ort complementarity within groups is precisely equal to �̂
given by (23.2) in Proposition 6.
19In general, the nature of strategic interactions between players, that is, strategic substitutes versus

strategic complements in the sense of Bulow et al., (1985), is not decisive for determining the "sign" of other-
regarding preferences parameters, that is, altruism versus spite. For instance, Possajennikov (2000) shows
in a simple two-player game that strategic complementarity in e¤ort choices can lead to an evolutionarily
stable utility weight on the other�s payo¤, which is either positive (altruism) or negative (spite), according
to "the degree of [positive] interdependence between players�strategies".
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and limn!1�̂ = 1; (ii) �̂ 2 [~�; ��), where ~� and �� are given by (20.3) and (22.2), respectively.

Let us �rst explain property (ii) of Proposition 7. It implies that one can have � � ~� and
� � �̂ < ��, in which case, in-group altruism is locally evolutionarily stable (Proposition
6), although mutating towards in-group altruism exacerbates the free-riding incentive of
the mutant�s teammate (Proposition 2). Group e¤ort, nevertheless, slightly increases, and
more importantly, the mutation induces all members of opposing groups to exert a lower
level of e¤ort. This results in the probability of success of the group with the altruistic
mutant player increasing to the detriment of all other groups. Overall, the increase in the
probability of success is su¢ ciently large for overcoming the �tness cost of exerting a higher
level of e¤ort than that corresponding to sel�sh behavior, thus, making in-group altruism
locally evolutionarily stable. This is even more so when the mutation towards in-group
altruism mitigates the free-riding incentive of the mutant�s teammate by inducing him to
increase his individual contribution to group e¤ort, that is when � � ~� � �̂.
When the degree of complementarity between individual e¤orts is rather low (but not too

low), that is when � 2 [�̂; ��), there still exists a locally evolutionarily stable preference para-
meter; however, in this case, it is negative, thus, featuring in-group spite. In other words, if
individual e¤orts are quite substitutable, the increased free-riding by the other group mem-
ber in response to the mutant�s altruism is too strong for making in-group altruism pro�table
in terms of material payo¤. On the contrary, a mutant player who is (slightly) spiteful to-
wards his teammate can invade a population of sel�sh players. It leads his teammate and all
members of competing groups to increase their e¤orts. Ultimately, the probability of success
of the group with the mutant player decreases but the �tness bene�t of exerting a lower level
of e¤ort (because of spite) more than compensates the (slight) decrease in the probability of
success. It follows that in-group spite is locally evolutionarily stable when individual e¤orts
are quite substitutable, that is when � 2 [�̂; ��). Finally, if group members�e¤orts are too
substitutable �if � � �� �preference evolution leads to ever more spite within groups, which
in turn prevents the existence of locally evolutionarily stable preferences (Proposition 4).20

Finally, according to property (i) of Proposition 7, the requirement about the minimum
degree of e¤ort complementarity, for making in-group altruism locally evolutionarily stable,
becomes less stringent as the number of competing groups increases. In particular, if the
number of competing groups becomes very large, in-group altruism is locally evolutionarily
stable for any � < 1 (recall that �� also converges to 1 in this case). We shall return to the
impact of the number of competing groups on preference evolution in detail later.

20Observe that in the extreme case of perfect substitutability, that is when � = 1, the only candidate
for a locally evolutionarily stable preference parameter would be � = �1. In this case, no player would
exert a positive level of e¤ort, and thus, each player�s material payo¤ would be equal to 1=n (as each group
would win the public prize of value 1 with a probability 1=n: see Eq. (2)). Clearly, it cannot be a (local)
equilibrium in evolutionarily stable preferences because an individual player could make his own group win
the prize with certainty (and could enjoy the prize of value 1 with certainty) by investing an arbitrarily small
amount because of an arbitrarily smaller degree of spite than � = �1.
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The above discussion suggests a monotonicity result for the impact of the degree of
complementarity between individual e¤orts on the locally evolutionarily stable degree of
altruism/spite. The derivative of �� with respect to � is indeed given by

@��

@�
= � 2n2(n� 1)

[(n2 + 2)(1� �)� n(1� 2�)]2
: (24)

Thus, we have the following Proposition.

Proposition 8: Let n � 2 be given and � < ��. Then, the higher the degree of comple-
mentarity between individual e¤orts � the lower the � � the higher (lower) is the locally
evolutionarily stable degree of altruism (spite), that is, the higher is ��.

Thus, an increase in the degree of complementarity between partners�e¤orts always reinforces
group cohesion, in that it decreases spite or increases altruism towards one�s teammate. If
starting with a monomorphic population of altruistic (spiteful) players, one player becomes
slightly more altruistic (less spiteful), then the mutant player exerts a higher level of e¤ort,
and all members of opposing groups decrease their e¤orts. When the degree of complemen-
tarity is relatively low, that is when � � ~�, it also leads the mutant�s teammate to decrease
his contribution to the collective e¤ort; however, the extent of free-riding on the (additional)
e¤ort exerted by the mutant becomes less severe as the degree of complementarity increases.
If this last is already relatively large, that is if � � ~�, then the mutant�s teammate also ex-
erts a higher level of e¤ort, all the more so as the degree of e¤ort complementarity increases,
that is, as � decreases. Formally, the derivative of [@e�21 (�m; �) =@�m] j�m=� given by (20.2)
with respect to � is always negative.21 As already stated, an increase in �m also leads the
members of opposing groups to decrease their e¤ort; however, the extent of this strategic
e¤ect is independent of the degree of e¤ort complementarity (as (20.4) shows).
In sum, the marginal �tness bene�t of mutating towards a higher (lower) degree of

altruism (spite) always increases with the degree of complementarity between individual
e¤orts, independently of the number of competing groups. The explanation is as follows: in
general, higher degrees of complementarity discourage free-riding because it makes collective
e¤ort more sensitive to each of the individual contributions.22 In intergroup con�ict, stronger
complementarity implies that one�s level of e¤ort has a greater impact on the probability
of success of the group, and consequently, on one�s individual �tness. Consequently, the
mutant�s teammate free-rides to a smaller extent if � � ~�, or increases even more his e¤ort
level if � � ~�, when the mutant exerts more e¤ort because of stronger in-group altruism.

21We indeed have @ ([@e�21 (�m; �) =@�m] j�m=� ) =@� = �(n� 1)= [2n(1� �)]
2
< 0.

22The idea that complementarity between individual e¤orts can help solve the collective action problem
goes back to Hirshleifer (1983). In the private provision of public goods model, he showed that "underpro-
vision of the public good tends to considerably moderated" with perfect complementarity between players�
contributions. Cornes and Hartley (2007) have generalized his analysis, considering a CES function for
aggregating individual contributions.
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Thus, a larger degree of complementarity between group members� e¤ort strengthens in-
group altruism under preference evolution.
Do a larger number of competing groups increase the degree of in-group altruism (or

decrease the degree of in-group spite)? Calculating the derivative of �� with respect to n,
we obtain,

@��

@n
=
2(1� �) [2(2n� 1) + �(n2 � 4n+ 2)]

[(n2 + 2)(1� �)� n(1� 2�)]2
: (25)

We have the following Proposition:

Proposition 9: Let � < �� be given and n � 2.

(i) If � 2 (0; ��), then the locally evolutionarily stable preference parameter �� is increasing in
n and is negative for n � bn̂c and positive for n � dn̂e, where n̂ = [1+

p
9� 8�(2� �)]= [2(1� �)] >

2:

(ii) If � 2 (�1; 0), then the locally evolutionarily stable preference parameter �� is always
positive and is �rst increasing in n for n � bnc, and then decreasing in n for n � dne, where
n = �[2(1� �) +

p
2(1� �)(2� �)]=� > 2:

Similar to an increase in the degree of e¤ort complementarity, an increase in the number
of competing groups changes the extent of the strategic impact of higher altruism on the
e¤ort choice exerted by the mutant�s teammate. Again, depending on whether the degree of
e¤ort complementarity is relatively low or large, the mutation induces the mutant�s team-
mate to either contribute more or less to group e¤ort. Yet, as the number of competing
groups increases, the mutant�s teammate decreases her e¤ort less strongly or increases it
more strongly in response to the mutant�s increased altruism. Formally, the derivative of
[@e�21 (�m; �) =@�m] j�m=� , given by (20.2), with respect to n is always positive.23 In isolation,
this e¤ect increases the marginal bene�t of increased altruism.
The mutation also causes all members of competing groups to decrease their e¤ort levels

and the extent of this strategic e¤ect depends on the number of competing groups. Formally,
the derivative of [@e�R (�m; �) =@�m] j�m=� , given by (20.4), with respect to n; is �rst negative,
and becomes rapidly positive.24 This latter e¤ect contributes in reducing the marginal bene�t
of increased altruism. Thus, when mutating towards higher degrees of in-group altruism, an
increase in the number of competing groups has in general, a positive impact on the extent
of the strategic e¤ect within the group, and a negative impact on the extent of the strategic
e¤ect across groups.
Moreover, in contrast to the degree of within-group e¤ort complementarity, the num-

ber of competing groups directly a¤ects the equilibrium level of individual e¤ort for any

23We indeed have @ ([@e�21 (�m; �) =@�m] j�m=� ) =@n =
�
2(2n2 � 5n+ 3)� �(3n2 � 8n+ 6)

�
=
�
4(1� �)n4

�
,

which is strictly positive for any � < �� < 1.
24The derivative of [@e�R (�m; �) =@�m] j�m=� with respect to n becomes positive from n � 5.
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monomorphic population of players with a common preference parameter �. Indeed, all
players�equilibrium e¤orts decrease with the number of competing groups, because of the
lower equilibrium probability of victory, and because of the �xed-prize value. All these fea-
tures can explain why the locally evolutionarily stable degree of in-group altruism/spite is
not (always) monotonous in the number of competing groups, according to whether � is
positive or negative.
If the degree of complementarity between individual e¤orts is relatively low, that is if �

is positive, the (locally) evolutionarily stable degree of in-group altruism (spite) is increasing
(decreasing) in the number of competing groups. In this case, preference evolution can lead
to in-group spite if few groups compete against each other. However, as the number of groups
increases, it leads to the emergence of in-group altruism, and this preference trait becomes
increasingly strong as the number of competing groups keeps increasing (property (i) of
Proposition 9). When the degree of e¤ort complementarity is relatively large, that is when
� is negative, the (locally) evolutionarily stable degree of in-group altruism �rst increases
and then decreases in the number of competing groups (property (ii) of Proposition 9). It
remains that � < 0 always leads to stronger in-group altruism under preference evolution
than � > 0; for any given number of competing groups (Proposition 8).
Propositions 8 and 9 together show that stronger complementarity between group mem-

bers�e¤orts within groups and a larger number of competing groups reinforce evolutionary
pressure towards higher degrees of in-group altruism. Intuitively, a player�s �tness is increas-
ingly merged with the success of his own group with increased number of competing groups,
and increased within-group e¤ort complementarity. In turn, preference evolution leads to
stronger in-group altruism and group cohesiveness in intergroup con�ict.
Finally, we can characterize the equilibrium level of individual e¤ort and of individual

�tness when players have locally evolutionarily stable preferences. When all players have
the same preference parameter ��, they all exert the same level of individual e¤ort, that is,
e� = (1 + ��)(n� 1)=2n2. Substituting �� given by (22.1) into this expression, we obtain

e� =
(1� �) (n� 1)2

n [(n2 + 2)(1� �)� n(1� 2�)] : (26)

Furthermore, all groups have the same probability of success, that is 1=n; therefore, each
player�s material payo¤ induced by evolutionarily stable preferences is �� = (1=n)� e� or

�� =
n+ 1� �

n [(n2 + 2)(1� �)� n(1� 2�)] : (27)

We can easily verify that an increase in the degree of complementarity between individual
e¤orts, that is, a decrease in �, unambiguously decreases material payo¤. Indeed, the lower
the �, the higher (lower) is the locally evolutionarily stable degree of in-group altruism
(spite), and thus, the higher is the level of individual e¤ort. Consequently, the con�ict
between groups becomes more severe. A larger number of competing groups decreases the
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equilibrium winning probability and can actually increase or decrease the stable degree of in-
group altruism, depending on the constellation of parameters. Consequently, the equilibrium
level of individual e¤ort is not monotonous in the number of competing groups. Nevertheless,
a larger number of groups also always decreases individual payo¤s, simply because a larger
number of players are involved in a group contest with a �xed-prize value.

4 Conclusion

The inclination of people to pull together when facing of a common enemy appears to be
a universal trait of human behavior, which is con�rmed by several experimental studies in
economics and social psychology. In this study, we provide an evolutionary foundation for
the emergence and stability of in-group altruism when several groups compete against each
other for an exogenous prize. We demonstrate that both a strong degree of complementar-
ity between individual e¤orts and a large number of competing groups reinforce in-group
altruism under preference evolution. Indeed, the success of a group crucially depends on its
ability to contain the tendency to free-riding or sel�shness. Thus, there is an evolutionary
pressure towards in-group altruism, because it increases the probability of success of one�s
own group, which in turn increases individual �tness. The downside of this behavior is that
it makes the con�ict between groups more severe and potentially more destructive.
One important feature of the present analysis is that the contested prize has the charac-

teristics of a public good. Thus, a potential direction for future research would be to consider
a group contest for a private prize, which must be divided between group members if they
win the contest. How would the prize be distributed among the members of the winning
group? As a �rst step, as proposed by Nitzan (1991), we could consider a linear sharing
rule where a certain proportion of the prize is shared equally while the residual proportion
is distributed according to relative e¤ort. We could then analyze how the sharing rule para-
meter a¤ects the evolutionarily stable degree of altruism/spite within groups. The next, and
more ambitious, step would be to determine the evolutionarily stable sharing rule. However,
in this case, characterizing an evolutionarily stable equilibrium would require studying the
e¤ects of a two-dimensional level of mutations: mutations in preferences at the individual
level, and mutations in sharing rules at the group level.

Appendix

A.1. Proof of Lemma 1

The proof of this Lemma is conducted in three steps. The �rst one is to show that the �rst-order

conditions given by (6) are necessary and su¢ cient for maximization.
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The �rst derivative of Vij(ej; e�j), given by (5), with respect to eij is given by

@Vij(ej; e�j)

@eij
= (1 + �ij)

@pj (ej; e�j)

@Gj (ej)

@Gj (ej)

@eij
� 1: (A1)

Using (1) and (2), we have
@pj (ej; e�j)

@Gj (ej)
=

P
k 6=j Gk (ek)

(
Pn

l=1Gl (el))
2 ; (A2)

and
@Gj (ej)

@eij
=
�
e�ij + e

�
�ij
� 1
�
�1
e��1ij =

Gj (ej) e
��1
ij

e�ij + e
�
�ij

: (A3)

Thus, (A1) can be rewritten as

(1 + �ij)
pj (ej; e�j)

hP
k 6=j pk (ek; e�k)

i
e��1ij�

e�ij + e
�
�ij
� � 1: (A4)

Hence, the �rst-order condition for i = 1; 2 and j = 1; 2; :::; n is given by (6), since pj (ej; e�j) +P
k 6=j pk (ek; e�k) = 1.

The second derivative of Vij(ej; e�j) with respect to eij is given by

@2Vij(ej; e�j)

@e2ij
= (1 + �ij)

8>>>>><>>>>>:
[1� 2pj (ej; e�j)]

@pj (ej; e�j)

@Gj (e1)

@Gj (ej)

@eij

e��1ij�
e�ij + e

�
�ij
�

pj (ej; e�j) [1� pj (ej; e�j)]
e��2ij

�
(� � 1) e��ij � e�ij

��
e�ij + e

�
�ij
�2

9>>>>>=>>>>>;
: (A5)

From (A2) and (A3), we also have

@pj (ej; e�j)

@Gj (ej)

@Gj (ej)

@eij
=
pj (ej; e�j) [1� pj (ej; e�j)] e��1ij

e�ij + e
�
�ij

: (A6)

Substituting (A6) into (A5), we obtain

@2Vij(ej; e�j)

@e2ij
=
(1 + �ij)pj (ej; e�j) [1� pj (ej; e�j)]

�
�2pj (ej; e�j) e�ij + (� � 1) e��ij

�
e��2ij�

e�ij + e
�
�ij
�2 ;

(A7)
which is always negative for i = 1; 2 and j = 1; 2; :::; n, since � � 1.

Consequently, Vij(ej; e�j), for i = 1; 2 and j = 1; 2; :::; n, is strictly concave and continuous in

eij for � 2 (�1; 0) or � 2 (0; 1]. Thus, the �rst-order conditions given by (6) are both necessary
and su¢ cient for maximization.

22



The second step of the proof is to show that if a group participates to the contest, then its

two members produce positive levels of e¤ort. In other words, a corner solution for player (i; j) �

that is eij = 0 �and an interior solution for player (�i; j) �that is e�ij > 0 �cannot be mutual
best responses for the two players of group j. Indeed, suppose �rst that � 2 (0; 1] with eij = 0
and e�ij > 0, then we would have pj (ej; e�j) > 0 but the denominator of the LHT of (6) would

tend to 0, so that the LHT would approach in�nity. Hence, (6) cannot be satis�ed for eij = 0

and e�ij > 0 when � 2 (0; 1]. Now suppose that � 2 (�1; 0) with eij = 0; then Gj (ej) = 0
and thus V�ij(ej; e�j) is strictly decreasing in e�ij so that player (�i; j) cannot do better than
e�ij = 0; in this case. To conclude, if a group participates to the contest, it fully participates

with both members being active (see also Kolmar and Rommeswinkel, 2003). Furthermore, there

cannot exist an equilibrium where all groups do not participate to the contest for � 2 (0; 1].

Indeed, if all other groups do not enter the contest, the members of group j could win the prize

with probability 1 in return for an arbitrarily small e¤ort (exerted by both group members). As a

result for � 2 (0; 1], at least one group is fully active. If � 2 (�1; 0), eij = 0 and e�ij = 0 are
mutually best responses independently of the behavior of other groups. Hence, there may exist an

equilibrium �that we ignore �in which none the n groups participate to the contest.

The �nal step for demonstrating the existence of a pure strategy Nash equilibrium characterized

by (6), is to reduce the group contest to a contest among heterogeneous individual players,25 and

then, use Theorem 1 of Cornes and Hartley (2005). Suppose that there are m active groups and

consider the system of 2m �rst-order conditions (6), holding with equality. This system can be

rewritten as (with (A1), (A2) and (A3))�P
k2MnfjgGk

�
G1��j�P

l2M Gl
�2 =

e1��ij

(1 + �ij)
; (A8)

for i = 1; 2 and j being an element of the set of active groups, denoted by M .

For a given group j, the LHS of (A8) is the same for i = 1; 2 and hence e1j(1 + �2j)1=(1��) =

(1 + �1j)
1=(1��) e2j . The aggregate output of group j 2 M can thus be written as a function of

the e¤ort of player 1, that is

Gj =

"
(1 + �1j)

�
1�� + (1 + �2j)

�
1��

(1 + �1j)
�

1��

# 1
�

e1j � 	1j(�1j; �2j)e1j: (A9)

We thus have e1j = [	1j(�1j; �2j)]
�1Gj .

The system of 2m �rst-order conditions (A8) can thus be reduced to a system of m equations

in Gj for j = 1; 2; :::;m, that is P
k 6=j Gk�P
l2M Gl

�2 = 1

�j(�1j; �2j)
; (A10)

25See also Brookins et al. (2015) in a model of group contest with CES impact functions and heterogeneous
and convex cost functions.

23



where

�j(�1j; �2j) = (1 + �1j) [	1j(�1j; �2j)]
1�� =

h
(1 + �1j)

�
1�� + (1 + �2j)

�
1��

i 1��
�
: (A11)

In other words, the system of �rst-order conditions (A4) for the group contest with heterogeneous

group members�preferences can be reduced to a system that is induced by a lottery contest of

m individual players choosing Gj with heterogeneous (and constant) marginal costs given by the

RHT of (A10). Applying Theorem 1 of Cornes and Hartley (2005), we can conclude that there

exists a unique pure strategy Nash equilibrium (G�1; G
�
2; ::; G

�
n). In turn, e

�
ij = [	1j(�1j; �2j)]

�1G�j
satisfying (6) constitute an equilibrium in the contest between groups.

A.2. Proof of Proposition 1

(i) From the proof of Lemma 1, we know that if a group participates to the contest, then its two

members exert positive levels of e¤ort. Furthermore, the group contest with heterogeneous "other-

regarding" preferences can be reduced to a lottery contest between individual players choosing Gj
with heterogeneous marginal costs. Let G =

P
kGk. From (A10), the �rst-order condition for

player j can be rewritten as
G�Gj
G2

� 1

�j(�1j; �2j)
� 0: (A12)

It is non-positive at Gj = 0 for �j(�1j; �2j) � G. Thus, player/group j is fully inactive if

�j(�1j; �2j) � G. If, however �j(�1j; �2j) > G, then player j is active and thus Gj = G �
(G2=�j(�1j; �2j)). Again, let M be the set of the m active players in equilibrium. We have

G =
P

j2M Gj , and hence

G =
m� 1P

j2M (1=�j(�1j; �2j))
. (A13)

Now, suppose that all group members have the same preference parameter �, except player (1; 1)

who has the preference parameter �m. Thus, we have (from (A11)) ��1(�) = 2
1��
� (1 + �) for all

j 6= 1 and �1(�m; �) =
h
(1 + �m)

�
1�� + (1 + �)

�
1��

i 1��
�
.

We �rst show that there cannot exist an equilibrium in which player (group) 1 is active, and

some, but not all, other players (groups) are inactive. Let denote by x, the number of inactive
players, with 1 < x < n� 1. If it were the case, we would have

G =
n� x� 1

[1=�1(�m; �)] + (n� x� 1) [1=��1(�)]
=

(n� x� 1)�1(�m; �)��1(�)
(n� x� 1)�1(�m; �) + ��1(�)

: (A14)

However, for a player j 6= 1 to be inactive, we must also have ��1(�) � G, which is in contradiction
with (A14). Consequently, there are two possibilities. All groups j 6= 1 are either fully active or
fully inactive. However, there cannot exist an equilibrium where all these groups are fully inactive

while group 1 is fully active. Indeed, in that case, the LHT of (A12) would be strictly negative for
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any positive level of G1 > 0, so that this group would not play its best response. As a consequence,

if player (i.e. group) 1 is active, then all players (groups) are active in equilibrium.

Now, suppose that player 1 is fully inactive, and that some, but not all, other players (groups)

are also fully inactive. Let, again, denote by x the number of inactive players in addition to player

1, with 1 < x < n� 1. In this case, we would have

G =
(n� x� 2)��1(�)

(n� x� 1) : (A15)

However, again, for a player j 6= 1 to be inactive, we must also have ��1(�) � G, which is in

contradiction with (A15). Thus, when player 1 is fully inactive, all groups j 6= 1 are either fully
active or fully inactive. As already mentioned, we ignore the equilibrium where all groups are fully

inactive. Thus, suppose that all players j 6= 1 are fully active (still with player 1 being inactive).
In this case, G is given by (A15) with x = 0. This is an equilibrium if �1(�m; �) � G, or

�1(�m; �)

��1(�)
� (n� 2)
(n� 1) . (A16)

To conclude, there are two types of equilibrium. If (A16) holds, group 1 is fully inactive while all

other groups are active. If (A16) does not hold, then all groups are fully active. Let de�ne

�(�m; �) = (1 + �m)
�

1�� + (1 + �)
�

1�� ; (A17)

so that �1(�m; �) = [� (�m; �)]
1��
� . Since ��1(�) = 2

1��
� (1 + �), the necessary and su¢ cient

condition for all groups �and thus all group members �being active is given by (17).

(ii) Suppose (17) holds and that �ij = � for i = 1; 2 and j = 2; :::; n. Then, the �rst-order

conditions given by (6) hold with equality and are symmetric for all j 6= 1. Thus, all players �

except the members of group 1 �exert the same level of individual e¤ort. To simplify the exposition,

let denote by e�R this equilibrium level of e¤ort, i.e. e
�
R � e�ij for i = 1; 2 and j = 2; 3; :::; n: Hence,

we write pj
�
e�j ; e

�
�j
�
� pR (e�1; e�R) for all j = 2; 3; :::; n and where e�R = ((e�R; e�R); :::; (e�R; e�R))| {z }

n�1 times

:

The two members of group 1 di¤er in terms of (other-regarding) preferences, and thus, exert

di¤erent levels of e¤ort in equilibrium. This results in a probability of success for group 1, that is

p1 (e
�
1; e

�
R), which di¤ers from pR (e

�
1; e

�
R).

From these observations, there are three distinct equilibrium levels of e¤ort that must satisfy

the following �rst-order conditions,

(1 + �m)
p1 (e

�
1; e

�
R) [(n� 1)pR (e�1; e�R)] e���111

e��11 + e
��
21

= 1; (A18)

for player (1; 1), and

(1 + �)
p1 (e

�
1; e

�
R) [(n� 1)pR (e�1; e�R)] e���121

e��11 + e
��
21

= 1; (A19)
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for player (2; 1), who is the partner of player (1; 1), and

(1 + �)
pR (e

�
1; e

�
R) [p1 (e

�
1; e

�
R) + (n� 2)pR (e�1; e�R)]
2e�R

= 1; (A20)

for all players of group j 6= 1.
Thus, using (A18) and (A19), we have

e�21 =

�
1 + �

1 + �m

� 1
1��

e�11: (A21)

With (A19) and (A20), we have

2e�Rp1 (e
�
1; e

�
R) (n� 1)e���121 = [p1 (e

�
1; e

�
R) + (n� 2)pR (e�1; e�R)] (e��11 + e��21 ) : (A22)

Using (1) and (2) and the fact that Gj(e�j) = GR (e
�
R) = 21=�e�R for j = 2; 3; :::; n and that

p1 (e
�
1; e

�
R) and p

�
R (e

�
1; e

�
R) have the same denominator, (A22) becomes

e�R
�
2G1 (e

�
1) (n� 1)e���121 � 21=�(n� 2) (e��11 + e��21 )

�
= G1 (e

�
1) (e

��
11 + e

��
21 ) : (A23)

Since G1 (e�1) = (e
��
11 + e

��
21 )

1=�, (A23) can be rewritten as

e�R

h
2(n� 1)e���121 � 21=�(n� 2) (e��11 + e��21 )

(��1)=�
i
= (e��11 + e

��
21 ) : (A24)

Let

�(:) � �(�m; �) = (1 + �m)
�

1�� + (1 + �)
�

1�� : (A25)

Then, using (A21) and (A25), (A24) can be rewritten has

e�R

h
2(n� 1) [� (:)]

1��
� � 2 1� (1 + �) (n� 2)

i
(1 + �m)

1
1�� = (1 + �) [� (:)]

1
� e�11: (A26)

The �rst-order condition (A18) can also be rewritten as

(1 + �m) (n� 1)G1 (e�1)GR (e�R) e���111

(e��11 + e
��
21 ) [G1 (e

�
1) + (n� 1)GR (e�R)]

2 � 1 = 0: (A27)

Since GR (e�R) = 2
1=�e�R and G1 (e

�
1) = (e

��
11 + e

��
21 )

1=�, (A27) can be rewritten as

2
1
� (n� 1)(1 + �m) (e��11 + e��21 )

1��
� e���111 e�R =

h
(e��11 + e

��
21 )

1
� + 2

1
� (n� 1)e�R

i2
. (A28)

Using (A21) and (A25), (A28) becomes

2
1
� (n� 1)(1 + �m)

2
1�� [� (:)]

1��
� e�R =

h
[� (:)]

1
� e�11 + 2

1
� (n� 1)(1 + �m)

1
1�� e�R

i2
. (A29)

Substituting e�R given by (A26) into (A29), we �nd after some tedious rearrangements, the equilib-

rium level of e¤ort e�11 (�m; �) given in (18.1). The equilibrium level of e¤ort e�21 (�m; �), given in

(18.2), is obtained by using (A21). Finally, the common equilibrium level of e¤ort for any player

i = 1; 2 of group j = 2; 3; ::n, that is e�R (�m; �) in (18.3), is obtained by substituting e
�
11 (�m; �)

into (A26).
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A.3. Proof of Proposition 2

Using (18.1), one can obtain (after long and tedious calculations),

@e�11
@�m

=
2
1��
� (n� 1)(1 + �)(1 + �m)

�
1�� [�1(:) + �2(:) + �3(:)]

(1� �) [� (:)]2
h
2
1��
� (1 + �) + (n� 1) [� (:)]

1��
�

i3 where

�1(:) � �1 (�m; �) = �4
1��
� (n� 2)(1 + �)2

h
�(:)� �(1 + �m)

�
1��

i
;

�2(:) � �2 (�m; �) = (n� 1)2 [� (:)]
2(1��)

�

h
�(:)� (1 + �m)

�
1��

i
;

(A30)

�3(:) � �3 (�m; �) = �2
1��
� (n� 1)(1 + �) [� (:)]

1��
�

h
(n� 3)� (:)� [n(2� �)� 3] (1 + �m)

�
1��

i
:

Evaluating this expression at �m = �, we obtain

@e�11
@�m

j�m=� =
(n� 1) [n2 � n+ 2� �(n2 � 2n+ 2)]

4(1� �)n3 ; (A31)

which is strictly positive for any � 2 (�1; 0) [ (0; 1].
From (A21), we also have

@e�21
@�m

=

�
1 + �

1 + �m

� 1
1��
�
� e�11
(1� �)(1 + �m)

+
@e�11
@�m

�
; (A32)

and, thus,
@e�21
@�m

j�m=� = �
e�

(1� �)(1 + �) +
@e�11
�m

j�m=� ; (A33)

where e� is the equilibrium level of e¤ort in the symmetric equilibrium with all players having the

same preference parameter �. Using (18), we obtain for �m = �:

e� =
(1 + �)(n� 1)

2n2
: (A34)

Substituting (A34) and (A31) into (A33), we have

@e�21
@�m

j�m=� =
(n� 1) [(n� 1)(n� 2)� � (n2 � 2n+ 2)]

4(1� �)n3 ; (A35)

which is positive (negative) for � � ~� (� � ~�), where ~� = [(n� 1)(n� 2)] = (n2 � 2n+ 2).
Observe that if n = 2, this derivative is strictly positive (negative) for � < 0 (� > 0) and it is

equal to 0 when � goes to 0. In any case, we have [@e�11=@�m] j�m=� > [@e�21=@�m] j�m=� and
[@(e�11 + e

�
21)=@�m] j�m=� > 0.

Finally, using (18.3), we can �nd that

@e�R
@�m

=
2
1��
� (n� 1) (1 + �)2 [� (:)]

1�2�
� [2

1��
� (1 + �)� (n� 1) [� (:)]

1��
� ]

2 (1 + �m)
1�2�
1�� [2

1��
� (1 + �) + (n� 1) [� (:)]

1��
� ]3

: (A36)
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Consequently, we have
@e�R
@�m

j�m=� = �
(n� 2)(n� 1)

4n3
; (A37)

which is equal to 0 for n = 2, and is strictly negative for any n � 3.

A.4. Proof of Proposition 4

First, we need to verify condition (i) of Proposition 3. Using (21), we have

@��11
@�m

=
@p1 (e

�
1; e

�
R)

@G1 (e�1)

�
@G1 (e

�
1)

@e�11

@e�11
@�m

+
@G1 (e

�
1)

@e�21

@e�21
@�m

�

+
X

j 6=1

@p1 (e
�
1; e

�
R)

@Gj(e�j)

�
@Gj(e

�
j)

@e�1j

@e�1j
@�m

+
@Gj(e

�
j)

@e�2j

@e�2j
@�m

�
� @e

�
11

@�m
. (A38)

Using the �rst-order conditions for the e¤ort levels of the two members of group 1, that is, (A1)

with �11 = �m and �21 = �, we obtain

@��11
@�m

= � �m
1 + �m

@e�11
@�m

+
1

1 + �

@e�21
@�m

+
X

j 6=1

@p1 (e
�
1; e

�
R)

@Gj(e�j)

�
@Gj(e

�
j)

@e�1j

@e�1j
@�m

+
@Gj(e

�
j)

@e�2j

@e�2j
@�m

�
: (A39)

We have
@p1 (e

�
1; e

�
R)

@Gj(e�j)
= � G1 (e

�
1)h

G1 (e�1) +
P

j 6=1Gj(e
�
j)
i2 for j 6= 1: (A40)

From (A3), we also have
@Gj(e

�
j)

@e�ij
=
�
e�ij

� + e��ij
�
� 1��

� e�ij
��1: (A41)

Let again e�R � e�ij for i = 1; 2 and j 6= 1, we haveGj(e�j) = GR (e�R) and @Gj(e�j)=@e�ij = 2(1��)=�
for i = 1; 2 and j 6= 1; and thus, (A39) reduces to

@��11
@�m

= � �m
1 + �m

@e�11
@�m

+
1

1 + �

@e�21
@�m

� 21=�(n� 1)G1 (e�1)
[G1 (e�1) + (n� 1)GR (e�R)]

2

@e�R
@�m

: (A42)

We now evaluate this expression at �m = �.

Substituting (A33) and (A37) into (A42), we have

@��11
@�m

j�m=� =
1� �
1 + �

@e�11
@�m

j�m=� �
e�

(1� �)(1 + �)2 +
(n� 1)2(n� 2)

4n5e�
; (A43)
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because G1 (e�1) = GR (e
�
R) = 2

1
� e� for �m = �.

Substituting (A31) and (A34) into (A43) and setting it to 0, yields a unique value for �� given

by (21). One can also easily verify that �� � �1, since this inequality reduces to n � ��=(1��),
which holds for any � 2 (�1; 0) [ (0; 1].

Now, we verify condition (ii) of Proposition 3. (A42) can be rewritten as

@��11
@�m

= �1(:) + �2(:) + �3(:) where

�1(:) � �1 (�m; �) = �
�m

1 + �m

@e�11
@�m

;

�2(:) � �2 (�m; �) =
1

1 + �

@e�21
@�m

;

�3(:) � �3 (�m; �) =
�21=�(n� 1)G1 (e�1)

[G1 (e�1) + (n� 1)GR (e�R)]
2

@e�R
@�m

: (A44)

We have
@�1(:)

@�m
= � 1

(1 + �m)
2

@e�11
@�m

� �m
1 + �m

@2e�11
@�2m

: (A45)

Now, let evaluate this expression at �m = �. We have

@�1(:)

@�m
j�m=� = �

1

(1 + �)2
@e�11
@�m

j�m=� �
�

1 + �

@2e�11
@�2m

j�m=� : (A46)

We also have
@�2(:)

@�m
=

1

1 + �

@2e�21
@�2m

: (A47)

Using (A32), the second derivative of e�21 with respect to �m is given by

@2e�21
@�2m

=

�
1 + �

1 + �m

� 1
1��
�
� 2

(1� �)(1 + �m)
@e�11
@�m

+
(2� �)e�11

(1� �)2(1 + �m)2
+
@2e�11
@�2m

�
: (A48)

Substituting (A48) into (A47), and evaluating this last expression at �m = �, we obtain

@�2(:)

@�m
j�m=� =

1

1 + �

�
� 2

(1� �)(1 + �)
@e�11
@�m

j�m=� +
(2� �)e�

(1� �)2(1 + �)2 +
@2e�11
@�2m

j�m=�
�
:

(A49)
Recalling that e� = (1 + �)(n� 1)=2n2 and using (A46) and (A49), we obtain

@ (�1(:) + �2(:))

@�m
j�m=� =

(2� �)(n� 1)
2n2(1� �)2(1 + �)2 �

(3� �)
(1� �)(1 + �)2

@e�11
@�m

j�m=�

+

�
1� �
1 + �

�
@2e�11
@�2m

j�m=� : (A50)
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Substituting (A31) into (A50), we have

@ (�1(:) + �2(:))

@�m
j�m=� = �

(n� 1) [3n2 � 7n+ 6� �(n2 � 2n+ 2)]
4n3(1� �)(1 + �)2 +

�
1� �
1 + �

�
@2e�11
@�2m

j�m=� :

(A51)
Now, we calculate the derivative of �3 (:) with respect to �m. From (A44), �3 (:) can be rewritten

as

�3(:) = �21=�(n� 1)p1 (e�1; e�R)	(e�1; e�R)
@e�R
@�m

where

	(e�1; e
�
R) =

1

G1 (e�1) + (n� 1)GR (e�R)
: (A52)

We obtain

@�3(:)

@�m
= �21=�(n� 1)

8>>>>>>>>>><>>>>>>>>>>:

@p1(:)

@�m

@e�R
@�m

	(:) + p1(:)	(:)
@2e�R
@�2m

+p1(:)
@e�R
@�m

266664
@	(:)

@G1(:)

�
@G1(:)

@e�11

@e�11
@�m

+
@G1(:)

@e�21

@e�21
@�m

�

+
@	(:)

@GR(:)

@GR(:)

@e�R

@e�R
@�m

377775

9>>>>>>>>>>=>>>>>>>>>>;
: (A53)

We have
@	(:)

@GR(:)
= (n� 1) @	(:)

@G1(:)
= � n� 1

[G1 (:) + (n� 1)GR (:)]2
: (A54)

Furthermore, from condition (i) of Proposition 3, we also have @p1(:)=@�m = @e�11=@�m. Thus

(A53) becomes

@�3
@�m

= �21=�(n� 1)

8>>>>>>>>>><>>>>>>>>>>:

@e11
@�m

@e�R
@�m

	(:) + p1(:)	(:)
@2e�R
@�2m

+p1(:)
@e�R
@�m

@	(:)

@G1(:)

266664
@G1(:)

@e�11

@e�11
@�m

+
@G1(:)

@e�21

@e�21
@�m

+(n� 1)@GS(:)
@e�R

@e�R
@�m

377775

9>>>>>>>>>>=>>>>>>>>>>;
: (A55)

In a symmetric equilibrium, we have

p1(:) j�m=� =
1

n
; 	(:) j�m=� =

1

2
1
�ne�

;
@	(:)

@G1(:)
j�m=� = �

1

[nG(e�)]2
= � 1h

2
1
�ne�

i2 ;
@GR(:)

@e�R
j�m=� = 2

1
� ;

@G1(:)

@e�11
j�m=� =

@G1(:)

@e�21
j�m=� = 2

1��
� : (A56)
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Consequently, we have

@�3(:)

@�m
j�m=� = �

(n� 1)
ne�

8>>>>>>>>><>>>>>>>>>:

@e�11
@�m

j�m=�
@e�R
@�m

j�m=� +
1

n

@2e�R
@�2m

j�m=�

� 1

2n2e�
@e�R
@�m

j�m=�

26664
@e�11
@�m

j�m=� +
@e�21
@�m

j�m=�

+2(n� 1) @e
�
R

@�m
j�m=�

37775

9>>>>>>>>>=>>>>>>>>>;
: (A57)

Substituting (A33) into (A57), we obtain

@�3(:)

@�m
j�m=� = �(n� 1)

ne�
@e�R
@�m

j�m=�

8>>>><>>>>:

�
1� 1

n2e�

�
@e�11
@�m

j�m=�

+
1

2n2(1� �)(1 + �) �
(n� 1)
n2e�

@e�R
@�m

j�m=�

9>>>>=>>>>;
�(n� 1)
n2e�

@2e�R
@�2m

j�m=� : (A58)

Substituting e� given by (A34) into (A58) yields

@�3(:)

@�m
j�m=� = � 2n

(1 + �)

@e�R
@�m

j�m=�

8>>>><>>>>:

�
(1 + �)(n� 1)� 2
(1 + �)(n� 1)

�
@e�11
@�m

j�m=�

+
1

2n2(1� �)(1 + �) �
2

(1 + �)

@e�R
@�m

j�m=�

9>>>>=>>>>;
� 2

(1 + �)

@2e�R
@�2m

j�m=�� : (A59)

Substituting (A31) and (A37) into (A59), we �nally obtain after some trivial (but tedious) calcu-

lations

@�3(:)

@�m
j�m=� =

(n� 1)(n� 2)

24 (n3 � 2)(1� �)(1 + �)� n2(2� 3�)(1 + �)
+n(1� 2� + �(3� 4�))

35
8(1� �)(1 + �)2n5

� 2

(1 + �)

@2e�R
@�2m

j�m=� : (A60)

The second derivative of ��11 (�m; �) with respect to �m evaluated at �m = � is given by the sum

of (A51) and (A60).
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Thus, to complete the proof, we need to calculate the second derivative of e�11 and of e
�
R with

respect to �m.26 Calculating the derivative of @e�11=@�m; given by (A30), with respect to �m, and

evaluating the resulting expression at �m = �, we can obtain

@2e�11
@�2m

j�m=� = �
(n� 1) [n3 � 5n2 + 10n� 6� 2�(2n3 � 6n2 + 8n� 3)]

8(1� �) (1 + �)n4 : (A61)

Similarly, calculating the derivative of @e�R=@�m, given by (A36), with respect to �m, and evaluating

the resulting expression at �m = �, we can obtain

@2e�R
@�2m

j�m=� =
(n� 1) [3n2 � 10n+ 6� 2�(2n2 � 6n+ 3)]

8(1� �) (1 + �)n4 : (A62)

Substituting (A61) into (A51) to obtain [@ (�1(:) + �2(:)) =@�m] j�m=� and (A62) into (A60) to
obtain [@�3(:)=@�m] j�m=� and adding the two terms, we obtain

�
@2��11=@�

2
m

�
j�m=� (see (A44)),

that is,

@2��11
@�2m

j�m=� = �

(n� 1)

8<: (n� 1) [6n3 � 3n2 � 6n+ 4� �(2n3 � 7n2 + 10n� 4)]

�� [5n4 � 3n3 � 12n2 + 12n� 4� �(5n4 � 17n3 + 26n2 � 16n+ 4)]

9=;
8(1� �)(1 + �)2n5 :

(A63)
Substituting � by �� given by (22.1) into this expression, we �nally obtain

@2��11
@�2m

j�m=�� =

[n2 � n+ 2� �(n2 � 2n+ 2)]

24 �2(n3 � n+ 1)� 2�2(n� 1)2
+� (2n3 + 3n2 � 6n+ 4)

35
16(1� �)3n5 : (A64)

The sign of
�
@2��11=@�

2
m

�
j�m=�� is the same as the sign of its numerator. The �rst term in [:]

in the numerator is strictly positive for any � < 1. Thus, the sign of
�
@2��11=@�

2
m

�
j�m=�� is

the same as the sign of the second term in [:] in the numerator. Let denote � (n; �) this term,

i.e. � (n; �) = �2�2(n � 1)2 + � (2n3 + 3n2 � 6n+ 4) � 2(n3 � n + 1). For � < 0, we have
� (n; �) < 0. Now, let us consider that � > 0. The quadratic equation � (n; �) = 0 has two

positive roots in �, that is

�1 =
2n3 + 3n2 � 6n+ 4� n

p
4n3(n� 1) + 17n2 � 20n+ 12

4(n� 1)2 ;

�2 =
2n3 + 3n2 � 6n+ 4 + n

p
4n3(n� 1) + 17n2 � 20n+ 12

4(n� 1)2 : (A65)

It can be veri�ed that �2 is strictly larger than 1 for any n � 2. Furthermore, � (n; �) is concave
in � and hence property (ii) of Proposition 3 is veri�ed if and only if � < �1 � ��.
26Since the mathematical expressions are very long, we only write the values of these expressions evaluated

at �m = �. We also used the Mathematical software to verify the computation of these derivatives.
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A.5. Proof of Proposition 9

Part (i): The derivative of �� with respect to n; given by (25), is clearly positive for � > 0.
Furthermore, the denominator of �� given by (22.1) is strictly positive for any � > 0. Thus,

solving the equation �� = 0 reduces to solving (n2 � 2)(1� �)� n = 0, which admits a negative
root and a positive positive root, this last being given by n̂ in part (i) of Proposition 9. Since the

above polynomial is convex in n, �� is negative (positive) for n � bn̂c (n � dn̂e).
Part (ii): The sign of @��=@n is the same as the sign of the polynomial in n in [:] in the

numerator of (25), which can be rewritten as �(n; �) = n2� + 4n(1 � �) � 2(1 � �). The

quadratic equation �(n; �) = 0 has two positive roots in n, namely

n =
�2(1� �) +

p
2(1� �)(2� �)
�

and n = �2(1� �) +
p
2(1� �)(2� �)
�

: (A66)

One can easily verify that n > 2 > n > 0 for any � 2 (�1; 0). Furthermore, the second
derivative of �(n; �) with respect to n is given by 2�. Thus, when � < 0, �(n; �) is concave in

n (for n � 2), and is positive (negative) for n � bnc (n � dne). It follows that �� is increasing
(decreasing) in n for n � bnc (n � dne).
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