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Abstract: Over the last fewyears, theuseof agent-basedsimulations to study social systemshas spread tomany
domains (e.g., geography, ecology, sociology, economy). These simulations aim to reproduce real life situations
involving human beings and thus need to integrate complex agents to match the behavior of the simulated
people. Therefore, notions such as cognition, emotions, personality, social relationships or norms have to be
taken into account, but there is currently no agent architecture that could incorporate all these features and
be used by the majority of modelers, including those with low levels of skills in programming. In this paper,
the BEN (Behavior with Emotions and Norms) architecture is introduced to tackle this issue. It is a modular
architecturebasedon theBDImodel of cognitionand featuringmodules toaddemotions, emotional contagion,
personality, social relationships and norms to agent behavior. This architecture is integrated into the GAMA
simulationplatform. AnapplicationofBEN to the simulationof theevacuationof anightclubon fire is presented
and shows the complexity of behaviors that may be developed with this architecture to create credible and
expressive simulations.
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Introduction

1.1 Recent years have seen the emergence of agent-based simulation as a powerful tool, especially in social sci-
ences, for studying situations where human actors are involved. In this precise context, the community is now
speaking of social simulations (Gilbert & Troitzsch 2005), involving social agents simulating humans.These so-
cial agents are supposed to reproduce thehumanbehavior in a studied situation,whichmeansmaking complex
decisions while taking into account psychological and social notions.

1.2 Achieving believable agents implies the addition of social features to agents’ behavior (Sun 2006). This view is
also supported by the EROS principle (Enhancing Realism Of Simulation) (Jager 2017), which is in opposition
with the KISS principle (Keep It Simple, Stupid) (Axelrod 1997). The EROS principle implies that integrating
psychological theories into the definition of agent behavior favors believable results from the simulation of a
real-life situation involving human beings.

1.3 To tackle these issues of realism, several architectures, each coveringdi�erent aspects of humanbehavior, have
been proposed: from reflexive agents, researchers went to cognitive agents, emotional agents, agents with a
personality, and normative systems. However, these architectures are still rarely used in the social simulation
community. Indeed, researchers from this community are facing a wide variety of agent architectures, some
of them are either not implemented or not in widely used simulation platforms, or are domain dependent. In
addition, developing a detailed understanding of the di�erences between these architectures, which integrate
various social features, is a di�icult task. Finally, very high-level programming skills are required to use these
existing behavior architectures.
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1.4 The BEN (Behavior with Emotions and Norms) architecture proposed in this paper aims to address these is-
sues. It enables modelers to create agents simulating human actors with social dimensions such as cognition,
emotions, emotional contagion, personality, social relations and norms. In fact, adding social features can not
only help creating agents with a believable behavior, but also provide a high-level explanation of such behav-
ior (Jager 2017). Moreover, as the BEN architecture is modular, few constraints are imposed upon the users,
who can enable or disable the multiple social features, depending on the studied case. Finally, BEN has been
implemented in the GAMAmodeling and simulation platform (Taillandier et al. 2018), which has had a growing
success over the last few years, thus ensuring its usability and its di�usion among a large audience.

1.5 Section 2 of the paper discusses the other agent architectures proposed in recent years. Section 3 outlines the
formalism used to represent the social features and the way they were redefined to fit into the architecture.
The BEN architecture is presented and discussed in details in Section 4. Section 5 illustrates the use of BEN by
presenting the case of the evacuation of a nightclub in Brazil. Finally, Section 6 serves as a conclusion.

RelatedWorks

2.1 As creating believable agents is a key issue in social simulations, several works have already been conducted to
create agent architecturesmeant to reproduce human behavior. Using architectures enables to unifymodeling
practices. Without aprecise architecture, eachmodeler creates abehavior fromscratch, usingdi�erent theories
and formalisms, making it di�icult to compare between twomodels of the same situation.

2.2 In the context of credible agents in social simulations, adding cognition to the agent’s capabilities is a first step
to create more complex agents, which are able to make decisions that are not based only on the last percep-
tion (Adam & Gaudou 2016; Balke & Gilbert 2014). Thus, a cognitive engine has to be the base of any domain-
independent social architecture.

Cognitive architectures

2.3 Di�erent approaches have been proposed to tackle this issue. Architectures such as SOAR (Laird et al. 1987),
Clarion (Sun et al. 2001) or ACT/R (Byrne & Anderson 1998) rely on neurological and psychological research.
They make a distinction between the agent’s body and mind, with the body serving as an interface between
the environment and the reasoning engine, represented by the mind. This reasoning engine is composed of
multiple parts, enabling an agent to do short term actions and take into account its long term will. However,
to our knowledge, these architectures have not been used on real life scenarios featuring hundreds of social
agents.

2.4 Another approach on cognition is proposed by the BDI (Belief Desire Intention) paradigm (Bratman 1987). For-
malised with modal logic (Cohen & Levesque 1990), it defines the concepts of beliefs, desires and intentions
as well as the logical links to choose a plan of action in order to address the agent’s intentions. This paradigm
has been translated into PRS (Procedural Reasoning System) (Myers 1997) which manipulates high level con-
cepts with a set of rules that determines the actions of an agent depending on its perceptions and its current
state. This process has subsequently been applied into agent architectures such as JACK (Howden et al. 2001)
or JADEX (Pokahr et al. 2005). These architectures based on the BDI paradigm are called BDI architectures.

Social architectures

2.5 BDI architectures have been derived to integrate social features. This is how eBDI (Jiang et al. 2007) has been
built to create emotional agents using a BDI cognition. It is based on the cognitive appraisal theory of emotions
(Frijda et al. 1989; Smith & Lazarus 1990; Scherer et al. 1984; Ortony et al. 1988), which states that emotions are
a valued answer to the cognitive appraisal of the environment. Other architectures have been proposed using
the same theoretical background such as EMA (Gratch & Marsella 2004), FAtiMA (Dias et al. 2014) or DETT (Van
DykeParunaketal. 2006),withdi�erent implementationsand interpretationsof thepsychological research. For
example, EMA is based on the appraisal theory described by Smith & Lazarus (1990) while DETT rely on the OCC
model (Ortony et al. 1988) and FAtiMA is amodular framework to test various appraisal approaches. Emotional
conceptshavealsobeenwidelyused in social simulationswithoutbeing supportedbyanarchitecture (Bourgais
et al. 2018).
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2.6 BDI architectures have also been derived to integrate norms and obligations, creating the BOID (Belief Obliga-
tion IntentionDesire) architecture (Broersen et al. 2001). Obligations are added to the classical BDI, challenging
the agent’s desires. BOID has been extended to BRIDGE (Dignum et al. 2008) to include a "social awareness"
based on social norms. Another approach consists in creating normative systems, which do not need any cog-
nition, as is the case with EMIL-A (Andrighetto et al. 2007). This model describes all the possible states of the
agent in terms of norms which may be fulfilled or violated, leading an agent to make decisions in conformity
with thenormsof the system. This approach is extendedby theNoAarchitecture (Kollingbaum2005). However,
these two last works are only theoretical to our knowledge.

2.7 Other works tried to integrate emotional contagion (Hatfield et al. 1993) into simulation, leading to the AS-
CRIBE (Agent-based Social Contagion Regarding Intentions, Beliefs and Emotions) model (Bosse et al. 2009)
describing the dynamic evolution of emotions in a population. Thismodel was improved to take socio-cultural
parameters into account in evacuation simulations andbecame the IMPACTmodel (van derWal et al. 2017). The
concepts developed by the authors involve computing the intensity of a mental state (an emotion, a belief or
an intention) by taking into account the intensities of these values from other agents.

2.8 With the same idea of combining social features, di�erent architectures have been proposed in simulation by
mixing cognition either with emotions, personality and social relations (Ochs et al. 2009) or with emotions,
emotional contagion and personality (Lhommet et al. 2011). These approaches use the OCEANmodel (McCrae
& John 1992) of personality to make a link between the social features integrated.

Commentary and synthesis

2.9 There are two main problems when trying to simulate real case scenarios featuring people: handling a large
number of agents in a reasonable computation time and creating a credible behavior. The architecture HiDAC
(Pelechano et al. 2007) proposes to take into account psychological notions such as stress to simulate a dense
crowd evacuating a building. This work o�ers good results in terms of computation time but is only applied to
the specific case of inside evacuations. TheMASSIS architecture (Pax&Pavón 2017) proposes another approach
to the same problem, creating the agent’s behavior with a set of plans triggered by perceptions. However, this
work is also dependant of its case studied and is notmade to be easily adapted to social simulations in general.

2.10 TheEROSprinciple (Jager 2017) fosters theuseof psychological theories in thedefinitionof social agents to gain
credibility andexplainabilty fromtheobtained results. This sectionhas shown that various e�ortsweremade to
create general architectures formaking decisions, integrating cognitive, a�ective, and social dimensions based
on psychological theories. However, none of them covers at the same time all these notions, which could be
useful from the perspective of a modeler with low level skills in programming who could try and find the best
suited dimensions to its own case.

2.11 The BEN architecture aims to fill this void by integrating cognition, emotions, emotional contagion, manage-
ment of norms and social relations into a single agent architecture for the social simulation. A personality fea-
ture is used to help combining these dimensions so an agent makes a decision based on its own perception of
the world and its own overall mental state. All these dimensions enable a modeler to define an expressive and
complex agent’s behavior while being able to explain the observations in common language (e.g., "this agents
is doing this action because it has a fear emotion about a thing and at the same time a social relation with this
other agent").

2.12 Besides, BEN is independent from any specific application and is built to be modular. Thus, a modeler does
not have to use all the components if it is not necessary. The objective is to be as accessible as possible for
all the social simulation community. This means compromises have been made to enable the computation of
thousands of agents in a reasonable time, while ensuring a decision-making process that takes into account all
the elements present in the agent’s mental state.

Representing Social Features

3.1 The BEN architecture features notions such as cognition, personality, emotions, emotional contagion, norms
and social relations to describe the agents’ behavior in the context of a social simulation. In order to link these
features together in the architecture, each one of these components has to be represented using a formalism
that ensures its compatibility with the others. In this section, the formalization of each social feature is de-
scribed in details.
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3.2 The main part of BEN is the agent’s cognition. A cognitive agent may reason over a set of perceptions of its
environment and a set of previously acquired knowledge. In BEN, this environment is represented through the
concept of predicates.

3.3 A predicate represents information about the world. This means it may represent a situation, an event or an
action, depending on the context. As the goal is to create behaviors for agents in a social environment, that is
to say taking actions performed by other agents into account with facts from the environment in the decision
making process, an information P caused by an agent j with an associated list of value V is represented by
Pj(V). ApredicateP represents an informationcausedbyanyornoneagent,withnoparticular valueassociated.
The opposite of a predicate P is defined as not P.

3.4 The rest of the section introduces how notions related to cognition, personality, emotions, emotional conta-
gion, norms and social relations are represented in BEN.

Cognition about the environment

Reasoning with cognitive mental states

3.5 Through the architecture, an agentmanipulates cognitivemental states tomake a decision; they constitute the
agent’s mind. A cognitive mental state possessed by the agent i is represented by Mi(PMEm,Val,Li) with the
following meaning:

• M: the modality indicating the type of the cognitive mental state (e.g. a belief, a desire, etc.).

• PMEm: the object with which the cognitive mental state relates. It can be a predicate, another cognitive
mental state, or an emotion.

• Val: a real value whose meaning depends on the modality.

• Li: a lifetime value indicating the time before the cognitive mental state is forgotten.

3.6 Acognitivemental statewithnoparticular valueandnoparticular lifetime iswrittenMi(PMEm). Val[Mi(PMEm)]
represents the value attached to a particular cognitive mental state and Li[Mi(PMEm)] represents its lifetime.

3.7 The cognitive part of BEN is based on the BDI paradigm (Bratman 1987) in which agents have a belief base, a
desire base and an intention base to store the cognitivemental states about theworld. In order to connect cog-
nition with other social features, the architectures outlines a total of six di�erent modalities which are defined
as follows:

• Belief: represents what the agent knows about the world. The value attached to this mental state indi-
cates the strength of the belief.

• Uncertainty: represents an uncertain information about the world. The value attached to this mental
state indicates the importance of the uncertainty.

• Desire: represents a state of theworld the agentwants to achieve. The value attached to thismental state
indicates the priority of the desire.

• Intention: represents a state of the world the agent is committed to achieve. The value attached to this
mental state indicates the priority of the intention.

• Ideal: represents an information socially judged by the agent. The value attached to this mental state
indicates the praiseworthiness value of the ideal about P. It can be positive (the ideal about P is praise-
worthy) or negative (the ideal about P is blameworthy).

• Obligation: represents a state of the world the agent has to achieve. The value attached to this mental
state indicates the priority of the obligation.
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Acting on the world through plans

3.8 To act upon the world according to its intentions, an agent needs a plan of actions, that is to say a set of behav-
iors executed in a certain context in response to an intention. In BEN, a plan owned by agent i is represented by
Pli(Int,Cont,Pr,B)with:
• Pl: the name of the plan.

• Int: the intention triggering this plan.

• Cont: the context in which this plan may be applied.

• Pr: a priority value used to choose between multiple plans relevant at the same time. If two plans are
relevant with the same priority, one is chosen at random.

• B: the behavior, as a sequence of instructions, to execute if the plan is chosen by the agent.

3.9 The context of a plan is a particular state of the world in which this plan should be considered by the agent
making a decision. This feature enables to definemultiple plans answering the same intention but activated in
various contexts.

Personality

3.10 In order todefinepersonality traits, BEN relies on theOCEANmodel (McCrae&John 1992), also knownas thebig
five factors model. In the BEN architecture, this model is represented through a vector of five values between 0
and 1, with 0.5 as the neutral value. The five personality traits are:
• O: represents the openness of someone. A value of 0 stands for someone narrow-minded, a value of 1
stands for someone open-minded.

• C: represents the consciousness of someone. A value of 0 stands for someone impulsive, a value of 1
stands for someone who acts with preparations.

• E: represents the extroversion of someone. A value of 0 stands for someone shy, a value of 1 stands for
someone extrovert.

• A: represents the agreeableness of someone. A value of 0 stands for someone hostile, a value of 1 stands
for someone friendly.

• N: represents the degree of control someone has on his/her emotions, called neurotism. A value of 0
stands for who is neurotic, a value of 1 stands for who is calm.

Emotions

Representing emotions

3.11 In BEN, the definition of emotions is based on theOCC theory of emotions (Ortony et al. 1988). According to this
theory, an emotion is a valued answer to the appraisal of a situation. Once again, as the agents are taken into
consideration in the context of a society and should act depending on it, the definition of an emotion needs to
contain the agent causing it. Thus, an emotion is represented by Emi(P,Ag,I,De)with the following elements :
• Emi: the name of the emotion felt by agent i.

• P: the predicate representing the fact about which the emotion is expressed.

• Ag: the agent causing the emotion.

• I: the intensity of the emotion.

• De: the decay withdrawn from the emotion’s intensity at each time step.

3.12 An emotion with no intensity and no decay is represented by Emi(P,Ag) and an emotion that isn’t caused by
any agent is written Emi(P). I[Emi(P,Ag)] stands for the intensity of a particular emotion and De[Emi(P,Ag)]
stands for its decay value.
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Emotional contagion

3.13 Emotional contagion is the process where the emotions of an agent are influenced by the perception of emo-
tions of agents nearby (Hatfield et al. 1993). This influence can lead to the perceived emotion being copied or
to the creation of a new emotion. In BEN, the formalism of this process is based on a simplified version of the
ASCRIBEmodel (Bosse et al. 2009), represented by (Emi,Emj ,Chi,Rj ,Thj) for a contagion from agent i to agent
j with the following meanings:

• Emi: the emotion from i that triggers the contagion if it is perceived by j.

• Emj : the emotion created by j. It can be a copy of Emi (with other value of intensity and decay) or a new
emotion.

• Chi: the charisma value of i, indicating its power to express its emotions.

• Rj : the receptivity value of j, expressing its capacity to be influenced by other agents.

• Th: a threshold value. The contagion is executed only if charisma × receptivity is greater than this
threshold.

Norms and obligations

3.14 Thedefinitionof anormative system inBEN isbasedon the theoretical definitionprovidedbyTuomelaTuomela
(1995), the BOID architecture (Broersen et al. 2001) and the framework proposed by López y López López y
López et al. (2006). This means that a norm is considered to be a behavior, active under certain conditions,
that an agent may choose to obey to answer one of its intentions. In BEN, only the concepts of social norms
and obligations are encompassed under the notion of norms as described below. A social norm is a convention
adopted implicitly by a social group while an obligation is an explicit rule imposed by an authority. In the BEN
architecture, a norm possessed by agent i is represented by Noi(Int,Cont,Ob,Pr,B,Vi)with:

• Noi: the name of the norm owned by agent i.

• Int: the intention which triggers this norm.

• Cont: the context in which this norm can be applied.

• Ob: an obedience value that serves as a threshold to determine whether or not the norm is applied de-
pending on the agent’s obedience value.

• Pr: a priority value used to choose betweenmultiple norms applicable at the same time.

• B: the behavior, as a sequence of instructions, to execute if the norm is followed by the agent.

• Vi: a violation time indicating how long the norm is considered violated once it has been violated.

3.15 This definition of norms covers entirely the concept of social norms, but it is not enough to fully represent an
obligation. To do so, the concept of laws is introduced. A law is an explicit rule, imposed upon the agent, that
creates an obligation, as a cognitive mental state, under certain conditions. Once again, a lawmay be violated.
Using all these elements, a law is represented by La(Cont,Obl,Ob)with:

• La: the name of the law.

• Cont: the context in which this law can be applied.

• Obl: the obligation created by the law.

• Ob: an obedience value that serves as a threshold to determine whether or not the law is to be executed
depending on the agent’s obedience value.

3.16 Finally, as norms and laws may be violated, the architecture needs an enforcement system to apply sanctions
against agents violating norms or laws. A sanction is a sequence of instructions triggered by enforcement. En-
forcement done by agent i on agent j is represented by (Mej ,Sai,Rei)with the following elements:
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• Mej : themodality of agent j that needs to be enforced. It can be a norm, a law or an obligation (the agent
applied the law but did not execute the norm corresponding to its obligation).

• Sai: the sanction the agent i applies if the modality enforced is violated.

• Rei: the sanction the agent i applies if the modality enforced is fulfilled, called the reward.

3.17 An enforcementworks depending on itsmodality. Enforcing a normmeans checking, if its context was fulfilled,
if it was applied or not by the agent enforced. Enforcing a law means checking, if its context was fulfilled, if
it created or not the given obligation into the enforced agent. Finally, the enforcement of obligations enables
modelers to create systems where an agent may fulfil a law (the law is "accepted" by the agent) while the cor-
responding obligation (i.e., actions implied) may not be followed by the agent.

Social relations

3.18 As people create social relations when living with other people and change their behavior based on these re-
lationships, the BEN architecture makes it possible to describe social relations in order to use them in agents’
behavior. Based on the research carried out by Svennevig Svennevig (2000), a social relation is described by
using a finite set of variables. Svennevig identifies aminimal set of four variables : liking, dominance, solidarity
and familiarity. A trust variable is added to interact with the enforcement of social norms. Therefore, in BEN, a
social relation between agent i and agent j is expressed as Ri,j(L,D,S,F,T)with the following elements:

• R: the identifier of the social relation.

• L: a real value between -1 and 1 representing the degree of liking with the agent concerned by the link. A
value of -1 indicates that agent j is hated, a value of 1 indicates that agent j is liked.

• D: a real value between -1 and 1 representing the degree of power exerted on the agent concerned by the
link. A value of -1 indicates that agent j is dominating, a value of 1 indicates that agent j is dominated.

• S: a real value between 0 and 1 representing the degree of solidarity with the agent concerned by the link.
A value of 0 indicates that there is no solidarity with agent j, a value of 1 indicates a complete solidarity
with agent j.

• F: a real value between0and 1 representing thedegree of familiaritywith the agent concernedby the link.
A value of 0 indicates that there is no familiarity with agent j, a value of 1 indicates a complete familiarity
with agent j.

• T: a real value between -1 and 1 representing the degree of trust with the agent j. A value of -1 indicates
doubts about agent j while a value of 1 indicates complete trust with agent j. The trust value does not
evolve automatically in accordance with emotions.

3.19 With this definition, a social relation is not necessarily symmetric, whichmeans Ri,j(L,D, S, F, T ) is not equal
by definition to Rj,i(L,D, S, F, T ). L[Ri,j] stands for the liking value of the social relation between agent i and
agent j, D[Ri,j] stands for its dominance value, S[Ri,j] for its solidarity value, F[Ri,j] represents its familiarity
value and T[Ri,j] its trust value.

Integrating Social Features into an Agent Architecture

4.1 The BEN architecture, represented in Figure 1, provides cognition, emotions, emotional contagion, social re-
lations, personality and norms to agents for social simulation. All these features evolve together during the
simulation in order to give a dynamic behavior to the agent, which may react to a change in its environment.

4.2 The architecture, which its execution is detailed in Algorithm 1, is composed of four main parts connected to
the agent’s knowledge bases, seated on the agent’s personality. Each part is made up of processes that are
automatically computed (in blue) or which need to be manually defined by the modeler (in pink). Some of
these processes are mandatory (in solid line) and some others are optional (in dotted line). This modularity

JASSS, 23(4) 12, 2020 http://jasss.soc.surrey.ac.uk/23/4/12.html Doi: 10.18564/jasss.4437



Perception Managing KnowledgeKnowledge bases

Making decision

Knowledge dynamic

Creating beliefs

Emotional Contagion

Creating Social 
Relations

Cognitive engine

Execute plan/norm

Inference rules

Emotional engine

Social engine

Degrading Mental 
States

Degrading Emotions

Cognitive Bases

Emotional Base

Social Base

Plans

update

influence

influence

modify

modify

influence

1 2

3

4

automatic

manual

information from 
the world

other agents’ 
emotions

other agents’ 
presence

Modify the 
environment

optional

mandatory

Laws
Applying sanctions

enforcement on 
other agents

Sanctions

influence

Updating Norm status

Normative engine

OCEAN Personality

parametrize

Normative Base

Figure 1: Diagram of the BEN architecture providing an agent with cognition, emotions, emotional contagion,
personality, social relations and norms

enables eachmodeler to only use components that seem pertinent with the studied situation without creating
heavy and useless computations.

4.3 In this section, each part of the architecture is explained; each dynamic concept developed herea�er is based
on the static representation proposed in Section 3.

Knowledge of the agent

4.4 The agent’s knowledge, which constitutes the core of the architecture, is composed of knowledge bases and
variables.

4.5 The cognitive bases store all cognitivemental states of the agent as outlined in Section 3.11; the emotional base
stores emotions; the social relations base contains all the social relations the agent has with other agents and
the normative base contains all the norms of the agent as exposed in Section 3.5. The agent also has a base
that stores the sanctions and a base for the action plans which are triggered by the cognitive engine. Finally,
a personality based on the formalism presented in Section 3.2. is used by the overall architecture for a global
parameterization. These three last bases are apart from the center block as the architecture’s processes cannot
modify them during the simulation.

4.6 In addition to these knowledge bases, the agent also has variables related to some of the social features. The
idea behind the BEN architecture is to connect these variables to the personality module and in particular to
the five dimensions of theOCEANmodel in order to reduce the number of parameterswhich need to be entered
by the user. These additional variables are the probability to keep the current plan, the probability to keep the
current intention, a charisma value linked to the emotional contagion process, an emotional receptivity value
linked to the emotional contagion, and an obedience value used by the normative engine.

4.7 With the cognition, the agent has two parameters representing the probability to randomly remove the current
plan or the current intention in order to check whether there could be a better plan or a better intention in the
current context. These two values are connected to the consciousness components (C) of the OCEANmodel as
it describes the tendency of the agent to prepare its actions (with a high value) or act impulsively (with a low
value).

ProbabilityKeepingP lans =
√
C (1)
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1 begin
2 if perceptionActivated then
3 if creating_beliefs) then
4 perceive(Environment);
5 createBeliefs;
6 end
7 if emotional_contagion then
8 perceive(OtherAgentsEmotions);
9 emotionalContagion;
10 end
11 if creating_social_relation then
12 perceive(OtherAgents);
13 createSocialReltations;
14 end
15 if applying_sanctions then
16 perceive(OtherNorms);
17 applySanction;
18 end
19 end
20 ifmanagingKnowledgeActivated then
21 if inference_rules then
22 executeInferenceRules;
23 end
24 if laws then
25 executeLaws;
26 end
27 if emotional_engine then
28 manageEmotions;
29 end
30 if social_engine then
31 manageSocialReltaions;
32 end
33 end
34 if normative_engine then
35 makeDecision(normative_engine);
36 end
37 if noDecisionMade then
38 makeDecision(congnitive_engine);
39 end
40 executePlan;
41 if knowledgeDynamicsActivated then
42 if lifetime then
43 degradeMentalState;
44 end
45 if emotionIntensity then
46 degradeEmotions;
47 end
48 if normViolation then
49 updateNormStatus;
50 end
51 end
52 end

Algorithm 1: Functioning of the BEN architecture

ProbabilityKeepingIntentions =
√
C (2)

4.8 For the emotional contagion, the formalism proposed in Section 3.1 requires charisma (Ch) and emotional re-
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ceptivity (R) to be defined for each agent. In BEN, charisma is related to the capacity of expression, which is
related to the extroversion of the OCEAN model, while the emotional receptivity is related to the capacity to
control the emotions, which is expressed with the neurotic value of OCEAN.

Ch = E (3)

R = 1−N (4)

4.9 With the concept of norms, the agent has a value of obedience between 0 and 1, which indicates its tendency
to follow laws, obligations and norms. According to research in psychology, which tried to explain the behavior
of people participating in a recreation of the Milgram’s experiment (Bègue et al. 2015), obedience is linked with
the notions of consciousness and agreeableness which gives the following equation:

obedience =

√
C +A

2
(5)

4.10 With the same idea, all theparameters requiredbyeachprocess are linked to theOCEANmodel as it is explained
in the rest of this section.

Perceiving the environment

4.11 The first step of BEN, corresponding to themodule number 1 on Figure 1, is the perception of the environment.
Thismodule is used to connect the environment to the knowledge of the agent, transforming information from
the world into cognitive mental states, emotions or social links but also used to apply sanctions during the
enforcement of norms from other agents.

4.12 The first process in this perception consists in adding beliefs about the world. During this phase, information
from the environment is transformed into predicates which are included in beliefs or uncertainties and then
added to theagent’s knowledgebases. This process enables theagent toupdate its knowledgeabout theworld.
From the modeler’s point of view, it is only necessary to specify which information is transformed into which
predicate. The addition of a beliefBeliefA(X) triggersmultiple processes related to belief revision: it removes
BeliefA(notX), it removes IntentionA(X), it removesDesireA(X) if IntentionA(X)has justbeen removed,
it removesUncertaintyA(X) orUncertaintyA(notX), and it removesObligationA(X).

4.13 The emotional contagion enables the agent to update its emotions according to the emotions of other agents
perceived. Based on the formalismexposed in Section 3.3.2, themodeler has to indicate the emotion triggering
the contagion, the emotion created in the perceiving agent and the threshold of this contagion; the charisma
(Ch) and receptivity (R) values are automatically computed as explained in Section 4.1. The contagion from
agent i toagent j occursonly ifChi×Rj is superioror equal to the threshold (Th),whosevalue is0.25bydefault.
The presence of the trigger emotion in the perceived agent is checked in order to create the emotion indicated.
The equations to determine the intensity and the decay of the new emotion are expressedwith Equation 6 and
Equation 7.{

IfEmj(P ) already exists: I[Emj(P )] = I[Emj(P )] + I[Emi(P )]× Chi ×Rj

else: I[Emj(P )] = I[Emi(P )]× Chi ×Rj
(6)

 IfEmj(P ) already exists: De[Emj(P )] =

{
De[Emi(P )] if I[Emi(P )] > I[Emj(P )]
De[Emj(P )] if I[Emj(P )] > I[Emi(P )]

else: De[Emj(P )] = De[Emi(P )]
(7)

4.14 Therea�er, the agent has the possibility of creating social relationswith other perceived agents. Themodeler
indicates the initial value for each component of the social link, as explained in Section 3.5. By default, a neutral
relation is created, with each value of the link at 0.0. Social relations can also be defined before the start of the
simulation, to indicate that an agent has links with other agents at the start of simulation, like links with friends
or family members.

4.15 Finally, the agentmay apply sanctions through the norm enforcement of other agents perceived. Themodeler
needs to indicate whichmodality is enforced and the sanction and reward used in the process. Then, the agent
checks if the norm, the obligation, or the law, is violated, applied or not activated by the perceived agent. To do
so, each agent has to have access to other agents’ normative bases.
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4.16 A norm is considered violated when its context is verified, and yet the agent chose another norm or another
plan to execute because it decided to disobey. A law is considered violated when its context is verified, but the
agent disobeyed it, not creating the corresponding obligation. Finally, an obligation is considered violated if
the agent did not execute the corresponding norm because it chose to disobey.

Updating the knowledge

4.17 The second step of the architecture, corresponding to the module number 2 on Figure 1, consists in managing
the agent’s knowledge. This means updating the knowledge bases according to the latest perceptions, adding
new desires, new obligations, new emotions or updating social relations, for example.

4.18 Modelers have to use inference rules for this purpose. These rules are triggered by a new belief, a new un-
certainty or a new emotion, in a certain context, andmay add or remove any cognitivemental state or emotion
indicatedby the user. Usingmultiple inference rules helps the agent to adapt itsmind to the situation perceived
without removing all its older cognitivemental states or emotions, thus enabling the creation of a cognitive be-
havior. These inference rules enable to link manually the various dimensions of an agent, for example creating
desires depending on emotions, social relations and personality.

4.19 Using the same idea, modelers can define laws, based on the formalism defined in Section 3.5. These laws
enable the creationof obligations in agivencontext basedon thenewestbeliefs createdby theagent through its
perception or its inference rules. The modelers also need to indicate an obedience threshold and if the agent’s
obedience value is below that threshold, the law is violated. If the law is activated, the obligation is added to
the agent’s cognitivemental state bases. The definition of lawsmakes it possible to create a behavior based on
obligations imposed upon the agent.

4.20 The other two processes of this module are the automatic computations of the agent’s emotions and social
relations. The following subsections indicatewhichmodels are used in the implementation of these processes.

Adding emotions automatically

4.21 BENenables the agent to get emotions about its cognitivemental states. This additionof emotions is based on
theOCCmodel (Ortony et al. 1988) and its logical formalism (Adam2007), which has beenproposed to integrate
the OCCmodel in a BDI formalism.

4.22 According to the OCC theory, emotions can be split into three groups: emotions linked to events, emotions
linked to people and actions performed by people, and emotions linked to objects. In BEN, as the focus is on
relations between social agents, only the first two groups of emotions (emotions linked to events and people)
are considered.

4.23 The twenty emotions defined in this paper can be divided into seven groups depending on their relations with
mental states: emotions about beliefs, emotions about uncertainties, combined emotions about uncertainties,
emotions about other agents with a positive liking value, emotions about other agents with a negative liking
value, emotions about ideals and combined emotions about ideals. All the initial intensities and decay value
are computed using the OCEANmodel and the value attached to the concernedmental states.

4.24 The emotions about beliefs are joy and sadness and are expressed this way:

Joyi(Pj ,j)
def
= Beliefi(Pj) & Desirei(P)

Sadnessi(Pj ,j)
def
= Beliefi(Pj) & Desirei(not P)

4.25 Their initial intensity is computed according to Equation 8 with N the neurotism component from the OCEAN
model.

I[Emi(P )] = V [Beliefi(P )]× V [Desirei(P )]× (1 + (0, 5−N)) (8)

4.26 The emotions about uncertainties are fear and hope and are defined this way:

Hopei(Pj ,j)
def
= Uncertaintyi(Pj) & Desirei(P)

Feari(Pj ,j)
def
= Uncertaintyi(Pj) & Desirei(not P)
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4.27 Their initial intensity is computed according to Equation 9.

I[Emi(P )] = V [Uncertaintyi(P )]× V [Desirei(P )]× (1 + (0, 5−N)) (9)

4.28 Combined emotions about uncertainties are emotions built upon fear and hope. They appear when an un-
certainty is replaced by a belief, transforming fear and hope into satisfaction, disappointment, relief or fear
confirmed and they are defined this way:

Satisfactioni(Pj ,j)
def
= Hopei(Pj ,j) & Beliefi(Pj)

Disappointmenti(Pj ,j)
def
= Hopei(Pj ,j) & Beliefi(not Pj)

Reliefi(Pj ,j)
def
= Feari(Pj ,j) & Beliefi(not Pj)

Fear confirmedi(Pj ,j)
def
= Feari(Pj ,j) & Beliefi(Pj)

4.29 Their initial intensity is computed according to Equation 10 with Em’i(P) the emotion of fear/hope.

I[Emi(P )] = V [Beliefi(P )]× I[Em′
i(P )] (10)

4.30 On top of this, according to the logical formalism (Adam 2007), four inference rules are triggered by these emo-
tions: the creation of fear confirmed or the creation of relief will replace the emotion of fear, the creation of
satisfaction or the creation of disappointment will replace a hope emotion, the creation of satisfaction or
relief leads to the creation of joy, the creation of disappointment or fear confirmed leads to the creation of
sadness.

4.31 The emotions about other agents with a positive liking value are emotions related to emotions of other agents
which are in a social relation base with a positive liking value on that link. They are the emotions called “happy
for” and “sorry for” which are defined this way:

Happy fori(P,j)
def
= L[Ri,j]> 0 & Joyj(P)

Sorry fori(P,j)
def
= L[Ri,j]> 0 & Sadnessj(P)

4.32 Their initial intensity is computed according to Equation 11 with A the agreeableness value from the OCEAN
model.

I[Emi(P )] = I[Emj(P )]× L[Ri,j ]× (1− (0, 5−A)) (11)

4.33 Emotions about other agents with a negative liking value are close to the previous definitions, however, they
are related to the emotions of other agents which are in the social relation base with a negative liking value.
These emotions are resentment and gloating and have the following definition:

Resentmenti(P,j)
def
= L[Ri,j]< 0 & Joyj(P)

Gloatingi(P,j)
def
= L[Ri,j]< 0 & Sadnessj(P)

4.34 Their initial intensity is computedaccording toEquation 12. This equationcanbeseenas the inverseof Equation
11, andmeans that the intensity of resentment or gloating is greater if the agent has a low level of agreeableness
contrary to the intensity of “happy for” and “sorry for”.

I[Emi(P )] = I[Emj(P )]× |L[Ri,j ]| × (1 + (0, 5−A)) (12)

4.35 Emotions about ideals are related to the agent’s ideal basewhich contains, at the start of the simulation, all the
actions about which the agent has a praiseworthiness value to give. These ideals can be praiseworthy (their
praiseworthiness value is positive) or blameworthy (their praiseworthiness value is negative). The emotions
coming from these ideals are pride, shame, admiration and reproach and have the following definition:

4.36 Their initial intensity is computed according to Equation 13 with O the openness value from the OCEANmodel.

I[Emi(P )] = V [Beliefi(P )]× |V [Ideali(P )]| × (1 + (0, 5−O)) (13)
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Pridei(Pi,i)
def
= Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]> 0

Shamei(Pi,i)
def
= Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]< 0

Admirationi(Pj ,j)
def
= Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]> 0

Reproachi(Pj ,j)
def
= Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]< 0

Gratificationi(Pi,i)
def
= Pridei(Pi,i) & Joyi(Pi)

Remorsei(Pi,i)
def
= Shamei(Pi,i) & Sadnessi(Pi)

Gratitudei(Pj ,j)
def
= Admirationi(Pj ,j) & Joyi(Pj)

Angeri(Pj ,j)
def
= Reproachi(Pj ,j) & Sadnessi(Pj)

4.37 Finally, combined emotions about ideals are emotions built uponpride, shame, admiration and reproach. They
appearwhen joyor sadness appearwithanemotionabout ideals. Theyaregratification, remorse, gratitudeand
anger which are defined as follows:

4.38 Their initial intensity is computed according to Equation 14 with Em’i(P) the emotion about ideals and Em"i(P)
the emotion about beliefs.

I[Emi(P )] = I[Em′
i(P )]× I[Em”i(P )] (14)

4.39 In order to keep the initial intensity of each emotion between 0 and 1, each equation is truncated between 0 an
1 if necessary.

4.40 The initial decay value for each of these twenty emotions is computed according to the same Equation 15 with
∆t a time step which enables to define that an emotion does not last more than a given time.

De[Emi(P )] = N × I[Emi(P )]×∆t (15)

Updating social relations

4.41 When an agent already known is perceived (i.e. there is already a social link with it), the social relation with
this agent is updated automatically by BEN. This update is based on the work of Ochs et al. (2009) and takes
the agent’s cognitive mental states and emotions into account. In this section, the automatic update of each
variable of a social link Ri,j(L,D,S,F,T) by the architecture is described in details; the trust variable of the link is
however not updated automatically.

4.42 According to Ortony (1991), the degree of liking between two agents depends on the valence (positive or nega-
tive) of the emotions induced by the corresponding agent. In the emotional model of the architecture, joy and
hope are considered as positive emotions (satisfaction and relief automatically raise joywith the emotional en-
gine)while sadness and fear are considered as negative emotions (fear confirmed anddisappointment automat-
ically raise sadnesswith the emotional engine). So, if an agent i has a positive (resp. negative) emotion caused
by an agent j, this will increase (resp. decrease) the value of appreciation in the social link from i concerning j.

4.43 Moreover, research has shown that the degree of liking is influenced by the solidarity value (Smith et al. 2014).
This may be explained by the fact that people tend to appreciate people similar to them.

4.44 The computation formula is described with Equation 16 with mPos the mean value of all positive emotions
caused by agent j, mNeg the mean value of all negative emotions caused by agent j and αL a coe�icient de-
pendingof theagent’s personality, indicating the importanceof emotions in theprocess, andwhich isdescribed
by Equation 17.

L[Ri,j ] = L[Ri,j ] + |L[Ri,j ]|(1 − |L[Ri,j ]|)S[Ri,j ] + αL(1 − |L[Ri,j ]|)(mPos − mNeg) (16)

αL = 1−N (17)

4.45 Keltner & Haidt (2001) and Shiota et al. (2004) explain that an emotion of fear or sadness caused by another
agent represent an inferior status. But Knutson (1996) explains that perceiving fear and sadness in others in-
creases the sensation of power over those persons.

4.46 The computation formula is described by Equation 18withmSE themean value of all negative emotions caused
by agent i to agent j, mOE the mean value of all negative emotions caused by agent j to agent i and αD a
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coe�icient depending on the agent’s personality, indicating the importance of emotions in the process, and
which is described by Equation 19.

D[Ri,j ] = D[Ri,j ] + αD(1− |D[Ri,j ]|)(mSE −mOE) (18)

αD = 1−N (19)

4.47 As explained in the formalism exposed in section 3.5, the solidarity represents the degree of similarity of de-
sires, beliefs and uncertainties between two agents. In BEN, the evolution of the solidarity value depends on
the ratio of similarity between the desires, beliefs and uncertainties of agent i and those of agent j. To compute
the similarities and oppositions between agent i and agent j, agent i needs to have beliefs about agent j’s cog-
nitive mental states. Then it compares these cognitive mental states with its own to detect similar or opposite
knowledge.

4.48 On topof that, according todeRivera&Grinkis (1986), negative emotions tend todecrease the valueof solidarity
between two people. The computation formula is described by Equation 20 with sim the number of cognitive
mental states similar betweenagent i andagent j, opp the number of opposite cognitivemental states between
agent i and agent j, NbKnow the number of cognitive mental states in common between agent i and agent j,
mNeg the mean value of all negative emotions caused by agent j, αS1 a coe�icient depending of the agent’s
personality, indicating the importance of similarities and oppositions in the process, andwhich is described by
Equation 21 and αS2 a coe�icient depending of the agent’s personality, indicating the importance of emotions
in the process, and which is described by Equation 22.

S[Ri,j ] = S[Ri,j ] + S[Ri,j ] × (1 − S[Ri,j ]) × (αS1
sim− opp
NbKnow

− αS2mNeg)) (20)

αS1 = 1−O (21)

αS2 = 1−N (22)

4.49 In psychology, emotions and cognition do not seem to impact the familiarity. However, Collins & Miller (1994)
explain that people tend to be more familiar with people whom they appreciate. This notion is modeled by
grounding the evolution of the familiarity value on the liking value between two agents. The computation for-
mula for the evolution of the familiarity value is defined by Equation 23.

F [Ri,j ] = F [Ri,j ](1 + L[Ri,j ]) (23)

4.50 All theequationshavebeenelaborated suchas theevolution remainsbetween -1 and 1 for likinganddominance
and between 0 and 1 for solidarity and familiarity, in accordance with the formalism exposed in Section 3.5.

4.51 The trust value is not evolving automatically in BEN, as there is no clear and automatic link with cognition or
emotions. However, this value can evolve manually, especially with sanctions and rewards to social norms
where the modeler can indicate a modification of the trust value during the enforcement process described in
Section 4.2.

Making decisions

4.52 The third part of the architecture, number 3 on Figure 1, is the only one mandatory as it is where the agent
makes a decision. A cognitive engine can be coupled with a normative engine to chose an intention and a plan
to execute. The complete engine is summed up in Figure 2 and described by described by the Algorithm 2.

4.53 This decision making process may be divided into seven steps:

• Step 1: the engine checks the current intention. If it is still valid, the intention is kept so the agent may
continue to carry out its current plan.

• Step 2: the engine checks if the current plan/norm is still usable or not, depending on its context.

• Step 3: the engine checks if the agent obeys an obligation taken from the obligations corresponding to
a norm with a valid context in the current situation and with a threshold level lower than the agent’s
obedience value as computed in Section 4.1.

• Step 4: the obligation with the highest priority is taken as the current intention.
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Figure 2: Diagram representing the cognitive and normative engine of the BEN architecture

1 if not currentIntentionValid then
2 if obeyObligations then
3 chooseNewIntentionAmongObligations;
4 else
5 chooseNewIntentionAmongDesires;
6 end
7 chooseNewPlanNorm;
8 else
9 if not currentPlanNormUsable then
10 chooseNewPlanNorm;
11 end
12 end
13 executePlanNorm;

Algorithm 2: Decision making process in BEN

• Step 5: the desire with the highest priority is taken as the current intention.

• Step 6: the plan or normwith the highest priority is selected as the current plan/norm, among the plans
or norms corresponding to the current intention with a valid context.

• Step 7: the behavior associated with the current plan/norm is executed.

4.54 Steps 4, 5 and 6 do not have to be deterministic; they may be probabilistic. In this case, the priority value
associated to obligations, desires, plans and norms serves as a probability.

Creating a temporal dynamic

4.55 The final part of the architecture, number 4 on Figure 1, is used to create a temporal dynamic to the agent’s be-
havior, useful in a simulation context. Todo so, thismodule automatically degradesmental states andemotions
and updates the status of each norm.

4.56 Thedegradation ofmental states consists in reducing their lifetime. When the lifetime is null, themental state
is removed from its base. The degradation of emotions consists in reducing the intensity of each emotions
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stored by its decay value. When the intensity of an emotion is null, the emotion is removed from the emotional
base.

4.57 Finally, the status of each norm is updated to indicate if the normwas activated or not (if the context was right
or wrong) and if it was violated or not (the normwas activated but the agent disobeyed it). Also, a norm can be
violated for a certain time which is updated and if it becomes null, the norm is not violated anymore.

4.58 These last stepsenableagent’sbehavioral components toautomatically evolve through time, leading theagents
to forget a piece of knowledge a�er a certain amount of time, creating dynamics in their behavior.

Discussion

4.59 The contribution presented in this paper is articulated around three points: a global architecture, the aggrega-
tion of known social and a�ective theories, and an implementation of the global architecture into a behavior
model to use BEN on a real case study.

A general behavioral architecture

4.60 The BEN Architecture shown in Figure 1 represents a global and general behavioral architecture for the devel-
opment of agents simulating human actors. BEN is a proposition that connects multiple a�ective and social
features for the agent’s behavior, making it possible for these social features to interact with each other. Never-
theless, thearchitecture canbeeasily adapted toa specific context or refined to integratenewelementswithout
having to modify the overall structure.

4.61 The main advantage of BEN is its modularity; even if all the processes are explained in detail in this section,
they are not all mandatory. Amodelermay unplug any optional part of the architecturewithout preventing the
rest fromworking properly. For example, If someone estimates that norms and obligations have nothing to do
with the case being studied, processes linked to norms and obligations can be unpluggedwithout stopping the
architecture from functioning.

4.62 This modularity means that all the social features are related but not dependent to each other. For example,
emotions can be used in the context definition of plans or norms, linking all these notions together and thus
creating a richer behavior.

Assumptions about social and a�ective theories

4.63 In order to implement the general architecture into a behavioral model, we had to choose particular theories
to support the various processes. As our objective is to build an architecture usable by social scientists and
experts of various fields, and not only by computer researchers, we integrated theories already used by the
social simulation community (Bourgais et al. 2018).

4.64 In details, the cognitive engine tomake a decision is based onBDI (Bratman 1987), the representation and auto-
matic creation of emotions is based on the OCCmodel (Ortony et al. 1988) and its formalizationwith BDI (Adam
2007), the emotional contagion process is based on the ASCRIBE model (Bosse et al. 2009) and the represen-
tation and manipulation of social relations is based on the work of Svennevig (2000). Finally, the personality
of the agent, used for the parametrization of the overall architecture, is based on the OCEANmodel (McCrae &
John 1992) which makes a consensus in the community (Eysenck 1991).

4.65 As experts are familiar with these social and a�ective theories, we assess it is easier for them to use BEN for the
definition of an agent simulating a human actor as they alreadymanipulates the concepts encompass and used
by the architecture.

Implementation of a behavioral model

4.66 To use BEN on a real life scenario, we have to instantiate the theories used with computation formulas where
they were missing. To do so, we mostly rely on existing works (Adam 2007; Ochs et al. 2009; Lhommet et al.
2011), adapting themwhen needed, which is discussed in detail in this section.

4.67 The various equations proposed for computing the parameters, intensity and decay of emotions or evolution
of social relations were all developed to be linked with the fewest dimensions of OCEAN in the simplest way to
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respect the principle of parsimony. Di�erent people do not have the same value for these parameters, which is
explained by the various personalities observed on a population. Also, one of the objectives was to reduce the
number of parameters entered by the modeler to ease the parametrization phase of a model using BEN.

4.68 Most of the relationswith OCEAN dimensions are linear to stay simple. However, linear relationswere not satis-
fying for parameters such as obedience as people tends to have a high value of obedience, evenwith an average
personality. This is why the equation proposed uses square roots.

4.69 The equations for the computation of initial intensities of emotions presented in Section 4.31may be simplified
in the way they are written; they were presented this way to highlight their construction. These equations are
composed of a term directly related to the cognitive mental states involved and then pondered upon by a per-
sonality dimension; this dimension being balanced on its neutral value of 0.5 as explained in Section 3.2. Also,
for each emotion, only one personality dimension was retained: the one closely related to the meaning of the
emotion, once again keeping the parsimony principle in mind. For example, the agreeableness dimension of
personality is usedwith emotions related to emotions of others (happy for, sorry for, resentment and gloating).

4.70 The equations for the evolution of dimensions from social relations were developed to respect the underlying
psychological notions, but alsowith awill to keep them in their limits (-1 and 1 for liking and dominance, 0 and 1
for solidarity and familiarity). Personality dimensionswere includedonce again to reproduce the fact that these
evolution are di�erent for persons with di�erent personalities. The neurotism dimension is used for the part
related toemotions,while theopennessdimension is used for thepart related to the similarities anddi�erences
of mental states between two agents (someone open-minded will give less importance to this field compared
to someone narrow-minded).

4.71 The implementation we made of the chosen theories may be discussed or changed by any expert user. For
example, the emotional engine can be replaced with another one based on another theory, the same for the
update of social relations or the cognitive engine. However, these modifications would not a�ect the overall
structure of the general architecture.

The Kiss Nightclub Case

5.1 The BEN architecture has been implemented and integrated in the GAMA modeling and simulation platform
(Taillandier et al. 2018). This platform,whichhasbeenagrowing success over the last fewyears, aims to support
the development of complex models while ensuring that non-computer scientists get an easy access to high-
level, otherwise complex, operations.

5.2 In this section, one of the case studies using the GAMA implementation of BEN to model human behavior is
presented. The case study concerns the evacuation of a nightclub in Brazil, the Kiss Nightclub. The main goal
of this example is to show the richness of behavior possible with BEN, still keeping high level explanations.
The complete model is available on OpenABM (https://www.comses.net/codebases/7ca5fbb1-9e3a-4ea1-a63f-
87d2ba9f39d6/releases/1.1.0/).

Presentation of the case

5.3 In January27thof2013, a fire started inside theKissNightclub inSantaMaria, RioGrandedoSul inBrazil, causing
thedeathof 242people. Many factors caused this tragedy: between 1200and 1400personswere in thenightclub
while it had a maximum capacity of 641 people, there was only one exit door, there was no alarm and the exit
signals were broken, indicating the restrooms instead of the exit. The vast majority of people who died were
found in the restrooms, dead because of the smoke (Atiyeh 2013).

5.4 This case has been studied before (Silva et al. 2017) with a simplemodel for the agent’s behavior. The aimof the
authorswas to show that respecting the safetymeasures could have helped reducing the number of casualties.
In this paper, the goal is to show how this case could be modeled with the BEN architecture and how it could
help in getting a result closer to the real events. Also, BEN enables to incorporate more complex behaviors
thanks to its a�ective and social features, closer to human reactions in this situation. The goal is also to show
that BEN runs on a simulation platform with an acceptable computation time.

5.5 In order tobeas closeaspossible to the real case, the club’s blueprint at the timeof the tragedywas reproduced.
The environment of the simulation is shown in Figure 3 where walls and fences high enough to block people
are in black and the exit door is in blue. The yellow disc in the le� top corner is the ignition point approximately
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Figure 3: Recreation of the Kiss Nightclub with 1300 people randomly placed inside

placed where the real fire started (on the scene where a local music band was playing) and white triangles
represent the people placed randomly.

5.6 In this case, the focus is on the propagation of the smoke as it is the cause in more than 95 per cent of the
casualties. The spread of this smoke has been based on a study made by the French government to model
hazards due to fires (Chivas & Cescon 2005). The main idea is that smoke spreads from its initial point at a
constant pace, filling the entire nightclub within 4 to 5 minutes. The floor of the club is divided into square
cells, which all have a percentage representing howmuch smoke is in the volume above it. The visual result of
the spread of smoke, twominutes a�er the start of the fire, is shown in Figure 4.

5.7 According to the same report (Chivas & Cescon 2005), it takes about 50 seconds to faint because of this kind of
smoke. The simulationwas configured to respect this time so agents are not automatically killedwhen touched
by the smoke.

Creating agents’ behavior using BEN

5.8 Evacuating a nightclub in fire is not a common situation. It involves not only cognition to evaluate the context
and make a decision but also emotions as people react according to their fear of fire. Given that a nightclub
features a lot of people who act together, emotional contagion and social relations have to be taken into ac-
count. Finally, the evacuation plan imposed by the authorities can be modeled through the notions of laws,
obligations and norms.

5.9 The main focus of this example is the behavior of people evacuating the nightclub, given that the objective
is to mimic the real situation. Nevertheless, there are not enough testimonials from people who lived this
tragedy about their behavior during the evacuation and hence their actions are hypothetical. This means that
the agents’ behavior is based on hypotheses about the behavior of real people in this situation.

5.10 At the beginning of the simulation, agent’s initial knowledge are of three kinds: beliefs about the world, initial
desires and social relations with friends. Also, each agent has a personality. Table 1 shows how some of these
initial knowledge may be formalized with BEN.

5.11 The first step of BEN is the perception of the environment which means defining what an agent perceives and
how it a�ects its knowledge. Here are examples of the agent’s perceptions in the studied case:

5.12 Once the agent is up to date with its environment, its overall knowledge has to adapt to what was perceived.
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Figure 4: The spread of smoke through the Kiss Nightclub, without any agent

statement formalisation description

A belief on the exact po-
sition of the exit door

Beliefi(exitDoor, lifetime1) Each agent has a belief about the precise lo-
cation of the exit door with a lifetime value at
lifetime1.

A desire there is no fire Desirei(notF ire, 1.0) Each agentwish there is no fire in the nightclub
with a priority of 1.0. This desire cannot lead to
an action (no action plan is defined to answer
it).

a relation of friendship
with another agent

Ri,j(L,D, S, F, T ) Each agent i is likely to have a social relation
with agent j, representing its friend.

Table 1: Formalization of agent’s initial knowledge

Perception Action

exit door updates the beliefs related to it
fire adds the belief there is a fire
smoke adds the belief about the level of smoke perceived
other human agent create social relations with them and execute an emotional contagion about the

fear of a fire

Table 2: Examples of perceptions

This is done with the definition of inference rules and laws:

5.13 With the execution of inference rules and laws, each agent creates emotions through the emotional engine.
In this case, the presence of an uncertainty about the fire (added through the inference rule concerning the
belief about smoke), with the initial desire that there is no fire, produces an emotion of fear which intensity is
computed depending on the quantity of smoke perceived.

5.14 Once the agent acquires the desire to flee (because it perceived the fire or its fear of a fire had an intensity great
enough), it follows action plans and norms. Table 4 shows the definition of some action plans and norms used
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Law/Rule Activation Action

law the level of smoke is maximum follow the exit signs
rule belief there is fire adds the desire to flee
rule belief there is smoke adds an uncertainty there is a fire
rule has a fear emotion about the fire with an intensity

greater than a given threshold
adds the desire to flee

Table 3: Examples of laws and inference rules

by the agent to answer its intention to flee, depending on the context perceived.

conditions actions commentaries

The agent has a good visibility
andhas a belief on the exact lo-
cation of the exit door

The agent runs to
the exit door

In this plan, the agent runs to the exit door follow-
ing the shortest path.

The agent has a good visibility
and has no belief about the lo-
cation of the door

the agent follows
the agent in its field
of view with the
highest trust value
among its social
relations

This norm works with the trust value of social re-
lations created during the simulation.

The agent has a bad visibility
and has the obligation to fol-
low signs

The agent goes to
the restrooms

In this norm, the agent comply with the law that
indicates to follow exit signs.

The agent has a bad visibility
and has a belief exit signs are
wrong

The agent moves
randomly

In this plan, the agent moves randomly in the
smoke.

Table 4: Action plans and norms answering the fleeing intention

5.15 The social relationdefinedwith a friendmayalsobeused todefineplans tohelpone’s friend if it is lost in smoke.
This plan consists in finding the friend and telling it the location of the exit door.

5.16 The variety in agent personalities makes it possible to obtain heterogeneous behaviors as the intensities com-
puted for the fear emotion aredi�erent. Thismeans that twoagents placed in the same situationwill not decide
to flee at the time, some going out early and some waiting a little more time.

5.17 Bymultiplying perceptions, inference rules and plans or norms, it is possible to create a wide variety of behav-
iors, from agents fleeing when seeing the fire, to agents lost in smoke or going back to the smoke to help their
friends. Also, BENenables agents to react to a change in their environment, not continuingwith a behaviorwith
no sense in the current context.

Results and discussion

5.18 At the start of the simulation, agents are placed randomly inside the nightclub. Indeed, there is no information
available about the precise location of each and every occupant of the nightclub. However, since the place was
overcrowded, using a random location for them seems to be an acceptable approximation. Also, it is assumed
that people were going to the club with friends. The precise initial number of people inside the club at the
moment of the tragedy is not known, but reports indicate there were between 1200 and 1400 people (Atiyeh
2013). Thus, three cases were simulated: 1200 initial people, 1300 initial people and 1400 initial people at the
starting point.

5.19 For each case, 10 simulations were run with a new random location for each agent at each starting time. The
simulations were run on an Intel core i7 with 16 Gb of RAM. Figure 5 shows a visual result of the simulation a�er
aminute and a half of simulated time. The di�erent colors of triangles represent the various behavior adopted
by the agents: white agents are not aware of the danger, green agents go to the exit, yellow agents go to the exit
direction, blue agents complywith the law, redagents are lost in smoke, brownagents followanother agent and
purple agents are going through the smoke as they remember the location of the exit. The completemodelwith
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number of people 1200 1300 1400

mean 230.2 237.7 249.4
standard deviation 20.1 15.6 32.6

Table 5: Number of agent who died in the simulation of the Kiss Nighclub tragedy

a video of the simulation may be found at the following address: https://github.com/mathieuBourgais/
ExempleThese.

Figure 5: Simulation of the evacuation of the Kiss Nightclub

5.20 The statistical outputs of the simulations are shown in Table 5. For each case, a mean value of agents dead
because of the smoke as well as a standard deviation was computed. The OCEAN parameters of each agent
were randomly initialized with a Gaussian distribution centered on 0.5, the mean value for each personality
dimension. The perception of each agent has been based on real value for the field of view and the vision am-
plitude. The only parameters tuned in themodel are the thresholds representing the quantity of smoke to start
the evacuation and the quantity of smoke that decreases the field of view and forces the agent to obey to the
law.

5.21 Table 5 shows that the simulation is able to statistically be close to the real case where there were 242 victims.
However, themain result concern thecredibilityof the simulationwhichmaybeobservedwithFigure5oron the
video of the simulation (at the following address: https://github.com/mathieuBourgais/ExempleThese).
Agents show various behaviors in almost similar situations which is explained by the various personalities as in
real life where two persons in the same situation will not obviously make the same decision based on their
personalities. It is also possible to observe behavior patterns: some people are leaving early because they
perceived the fire while others are still dancing at the beginning of the simulation; the first persons evacuating
are joined by people between them and the exit thanks to emotional contagion; people still in the nightclub
lately are trapped in smoke andhave to follow the signswhich, in this particular case, are pointing to the toilets,
leading to the vast majority of death in the simulations; people getting out of smoke and perceiving the exit
change their action and flee from the nightclub. BEN enables to explain and express these behaviours with
high-level concepts such as the personality which enables the creation of emotions with di�erent intensities,
di�erent threshold of obedience, and so on.

5.22 Table 6 shows results obtained with extreme values for personality traits (all traits at 0.0 or all traits at 1.0) for
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personality 0.0 1.0

mean 3.4 362.8
standard deviation 1.43 20.16

Table 6: Number of agent who died in the simulation of the Kiss Nighclub tragedy with extreme personalities

number of people 1200 1300 1400

mean 861.7 841.4 884.9
standard deviation 78.4 57.7 101.2

Table 7: Computation time obtained for the simulation of the Kiss Nightclub tragedy

1200 initial agents. This table tells the personality has an important impact on the results: in a case, most of
the people flee at the beginning because of a huge emotional contagion, in the other case, most of the people
flee late, because of low levels of emotions and emotional contagion, which simulates the running of themodel
with modules related to emotions and emotional contagion switched o�.

5.23 Table 7 indicates the mean computation time for each step in ms. This means that, for 1200 people initially in
the club, it takes approximately 860ms to compute the behavior of all the agents still in the simulation at each
step, representing 1 second of simulated time. This result shows that BEN enables the simulation of hundreds
of agents with almost all the features possible, within a reasonable computation time.

5.24 As explained previously, the agents’ behavior developed in this example is based on hypotheses but only obvi-
ous hypotheses were retained. Also, the BEN architecture enables to translate directly these obvious hypothe-
ses into behaviors keeping their high-level descriptions. These high-level concepts are then supported by low
level plans which describe simple actions, retaining the high-level explanation for each agent’s behavior.

5.25 The evacuation of the Kiss Nightclub has been previously studied by other researchers with an agent-based
simulation (Silva et al. 2017) with a simpler behaviormodel: agents are either happy and they dance or they are
scared by the start of the fire and they flee. However, the results obtained do not reproduce statistically the real
case, with more than 400 death in the simulation against the 242 real casualties. Our approach seems better
on this particular case with at least a closer result to the real case.

5.26 There already exists other approaches for the simulation of crowd evacuations with agent-based models, de-
scribing the behavior with social forces (Pelechano et al. 2007) or social contagion (Bosse et al. 2013) with
promising results. There also exists other ways to model emergency evacuations without using agent-based
simulations (Bakar et al. 2017). However, as BEN is grounded on folk psychology concepts (Norling 2009), we
assess it may defines a more credible and amore explainable behavior than the cited approaches.

5.27 Another strength of BEN is its capability to define a large amount of simulated behavior. Although we are not
expert in emergency evacuation, we were able to create variations, so the fleeing behaviour seems more be-
lievable. This point is supported by previous works where BEN has been compared to a final state machine
(Adam et al. 2017) and has been used by non-programming researchers to test its easiness of use (Taillandier
et al. 2017b).

5.28 Themain contribution of BEN is the explainability gained for social simulations in general. The behavior of each
agent is expressed with psychological terms instead of mathematical equations, which is easier to understand
and to explain, from the modeler’s point of view (Broekens et al. 2010; Kaptein et al. 2017). Besides, the defini-
tion of a credible behavior is eased thanks to themodularity of the architecture where only useful processes in
the context of the studied case have to be implemented.

Conclusion

6.1 This paper presents BEN, an agent architecture featuring cognition, emotions, emotional contagion, personal-
ity, social relations and norms for social simulations. All these features act together to reproduce the human
decision-makingprocess. This architecturewasbuilt to beasmodular as possible in order to letmodelers easily
adapt it to their case studies.

6.2 This architecture relies on a formalization of all its features which was developed according to psychological
theories with the desire to standardize the representation of the concepts as much as possible. Then, BEN has
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been implemented in the GAMA platform to ensure its usability. An example concerning the evacuation of a
nightclub showed that even with a simple model, BEN allows to produce a great variety of behaviors, while re-
maining credible. This example also showed that usingBENonly requires one to translate high level hypotheses
into behavior with the same high level concepts.

6.3 BEN also represents a solid base, whichmay be extended in the future. Other social features such as culture or
experience may be integrated into the architecture. Eventually, it is possible to imagine a future architecture
based on BEN, with multiple theories and social features, asking the users to select their own combinations,
which could be used to test psychological hypotheses.

6.4 Finally, asBEN is amodular architecture, it hasalreadybeenused in variousprojectwhereonly a fewpartsof the
architecturewere put into use. The cognitive engine has help studying the land use change in theMekong delta
(Truong et al. 2015), cognition and emotions are used by the SWIFT project which studies the evacuation during
bushfires in Australia (Adamet al. 2017), cognition and social relations areusedby the Li-BIMproject (Taillandier
et al. 2017a), which is about household energy consumption and BEN has been used in a more complete way
for the evacuation of a nightclub under fire in USA (Valette & Gaudou 2018). These di�erent examples shows
that BEN has already been used partially in various contexts, showing its modularity and independence to the
case studied.
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