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Abstract: The cross-talk between skeletal muscle and adipose tissue is involved in the development
of insulin resistance (IR) in skeletal muscle, leading to the decrease in the anabolic effect of insulin.
We investigated if the long chain polyunsaturated n-3 fatty acids (LCn-3PUFA), eicosapentaenoic
and docosapentaenoic acids (EPA and DPA, respectively) could (1) regulate the development of IR in
3T3-L1 adipocytes and C2C12 muscle cells and (2) inhibit IR in muscle cells exposed to conditioned
media (CM) from insulin-resistant adipocytes. Chronic insulin (CI) treatment of adipocytes and
palmitic acid (PAL) exposure of myotubes were used to induce IR in the presence, or not, of
LCn-3PUFA. EPA (50 µM) and DPA (10 µM) improved PAL-induced IR in myotubes, but had
only a partial effect in adipocytes. CM from adipocytes exposed to CI induced IR in C2C12 myotubes.
Although DPA increased the mRNA levels of genes involved in fatty acid (FA) beta-oxidation and
insulin signaling in adipocytes, it was not sufficient to reduce the secretion of inflammatory cytokines
and prevent the induction of IR in myotubes exposed to adipocyte’s CM. Treatment with DPA was
able to increase the release of adiponectin by adipocytes into CM. In conclusion, DPA is able to protect
myotubes from PAL-induced IR, but not from IR induced by CM from adipocytes.

Keywords: insulin resistance; omega-3 fatty acids; adipocytes; myotubes; conditioned media

1. Introduction

In 2060, the European population is expected to reach 517 million and one third of people will
be more than 65 years old [1]. This represents a significant public health challenge with a major
economic cost, notably because of several associated chronic diseases. Variations in lean and fat
masses have common pathophysiological mechanisms, including insulin-resistance (IR), a low-grade
inflammation [2], and specific dysfunctions of adipose tissue and skeletal muscle metabolisms.
Altogether, these abnormalities are involved in the development of anabolic resistance of skeletal
muscle cells and the progressive muscle atrophy observed during aging.

It has been well described that obesity induces changes in the secretory activity of adipose tissue.
Chronic inflammation of adipose tissue decreases adiponectin (an adipokine with insulin-sensitizing
and anti-inflammatory effects) production whereas the release of pro-inflammatory cytokines
(interleukine-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor alpha
(TNF-α) is increased [3]. The contribution of IL-6 and TNF-α production by muscle cells [4] to systemic
inflammation is unclear but it was shown that chronically increased plasma levels of IL-6 and TNF-α
could mediate insulin and anabolic resistance of skeletal muscle’s cells [5,6].

In addition, combination of a high energy intake and insulin resistance (IR) in adipose tissue
increase the net efflux of free fatty acids (FA) from adipose tissue into the blood circulation [7]. Free FA
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will be caught up by the liver and skeletal muscles, leading to ectopic fat deposition. In insulin-sensitive
tissues, the increase of intracellular triglycerides (TG) is associated with the accumulation of lipid
intermediates, such as diglycerides (DG) and ceramides. These molecules can activate protein kinase
C (PKC) [8,9], which inhibits protein kinase B (PKB, also known as Akt), a crucial effector of insulin
signaling. Therefore, these lipotoxic events could participate in the development of resistance to the
anabolic action of insulin and the loss of skeletal muscle’s function.

Nutritional strategies are currently developed to prevent IR and metabolic disturbances. Recently,
we have shown that long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) could protect
skeletal muscle cells from IR. Eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA,
22:6n-3) supplementations improved Akt activation and glucose uptake in vitro by the inhibition
of PKC activation and the accumulation of intracellular DG and ceramides that are induced by an
exposure to palmitic acid (PAL) [10]. Furthermore, it has also been shown that DHA could improve
the growth of myotubes in a model of PAL-induced atrophy [11].

Among the different LCn-3PUFA found in human tissues, less attention was given to
docosapentaenoic acid (DPA, 22:5n-3) which is produced during the conversion of EPA into DHA.
Nevertheless, some evidences showed that DPA was as efficient as EPA and DHA in the prevention of
metabolic disorders. Its plasma level was associated with fewer coronary heart disease deaths [12].
DPA could also inhibit cyclooxygenase and the production of pro-inflammatory prostaglandins by
macrophages [13]. Interestingly, we recently observed in mice fed with a high fat, high sucrose
diet supplemented with EPA an increase in DPA content in different tissues concomitantly to an
improvement in insulin sensitivity as compared to non-supplemented animals [14].

LCn-3PUFA are quite prone to beta-oxidation as well as incorporation into phospholipids (PL).
It could be then hypothesized that their effects are, at least partially, mediated by the modulation of
the membrane’s PL composition. Indeed, the FA composition of PL regulates the fluidity of cytoplasm
or intracellular membranes and could be involved in insulin signaling efficiency [15].

Considering all these elements, the present study aimed at evaluating the effect of DPA on the
interrelation between adipose and muscle cells in the context of IR. Our objectives were (1) to explore
the reversion of IR by EPA and DPA in adipocytes and muscle cells; (2) to determine the impact of
adipocyte IR on the induction of muscle IR; and (3) to evaluate the potential mechanisms and mediators
involved in the cross-talk between adipocytes and myotubes.

2. Results

2.1. Effects of LCn-3PUFA Treatments on Membrane Phosphatidylcholine Content and Fatty Acid Profile

In order to validate the effectiveness of LCn-3PUFA treatments on the modification of the profile
of membrane’s PL, the FA composition of phosphatidylcholine (PC) has been evaluated (Table 1).
In 3T3-L1 adipocytes, the amount of PC was not significantly affected by CI or FA treatment (data not
shown). DPA relative abundance in PC was enhanced in adipocytes exposed to DPA compared to those
treated with chronic insulin (CI) only (p = 0.013 vs. CI). Similarly, EPA treatment significantly increased
EPA relative abundance in PC compared to CI condition alone (p < 0.0001 vs. CI). In C2C12 muscle cells
treated directly with FA, DPA and EPA also exhibited a significant incorporation into PC compared to
cells treated with PAL alone. As shown in Figure 1, treatment with PAL significantly increased the
PC relative amount compared to control (CTRL) (+ 6%, p = 0.005, PAL vs. CTRL). Treatment with
LCn-3PUFA restored the PC relative amount to the CTRL value.
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Table 1. Phosphatidylcholine enrichment in EPA and DPA in cells treated with LCn-3PUFA.

Cell types 3T3-L1 C2C12

Treatments CTRL CI DPA+CI EPA+CI CTRL PAL PAL+DPA PAL+EPA

%DPA 0.69 ± 0.03b 0.84 ± 0.02b 2.29 ± 0.54a 1.10 ± 0.10b 0.48 ± 0.11b n.d. 2.93 ± 0.71a 1 ± 0.25b

%EPA 4,35 ± 1,30b 4.74 ± 0.88b 10.01 ± 2.5b 24.44 ± 2.87a 0.94 ± 0.36b 0.77 ± 0.18b 1.06 ± 0.19b 27.13 ± 1.98a

Cells were harvested for lipid extraction and isolation of phosphatidylcholine (PC). PC collected were characterized
after methylation and analyzed by gas chromatography. They were obtained from 3T3-L1 mature adipocyte after a
48-h treatment with 10 µM docosapentaenoic acid (DPA) or 50 µM eicosapentaenoic acid (EPA) with the last 16 h
with or without chronic insulin (CI) or from C2C12 myotubes after 16 h of incubation with 500 µM palmitic acid
(PAL) with or without 50 µM EPA or 10 µM DPA. Data are mean ± SEM expressed in % of total fatty acids (n = 3–4
obtained after two experiments). In each cell type and line, different letters mean significant differences between
groups obtained by ANOVA followed by the Tukey post-hoc test. n.d.: not detected.

Figure 1. Phosphatidylcholine content in membranes of C2C12 muscle cells. C2C12 muscle cells were
treated with 500 µM palmitic acid (PAL) with or without 10 µM docosapentaenoic acid (DPA) or
50 µM eicosapentaenoic acid (EPA). Cells were harvested for lipid extraction and phospholipids were
separated by high performance liquid chromatography (HPLC). Phospholipid classes were quantified
and expressed as the percent of total phospholipids. Data are mean ± SEM (n = 4–6 obtained after
three experiments). Different letters mean significant differences (p < 0.05) between groups obtained by
ANOVA and the Tukey post-hoc test.

2.2. Effect of Fatty Acid Treatments on Insulin Resistance in C2C12 Muscle Cells

As PAL can induce IR in skeletal muscle cells, we investigated the effects of DPA on PAL-induced
IR in C2C12 muscle cells (Figure 2). Akt protein is almost not phosphorylated in the absence of insulin
stimulation and FA alone have no significant effect (Figure S1). The effect of FA was then investigated
in cells exposed to insulin for 10 min. PAL treatment for 16 h significantly decreased Akt ser473/4
phosphorylation after insulin stimulation. Similar observations could be observed on thr308/9 residue [10].
When medium was supplemented with LCn-3PUFA, Akt phosphorylation tended to be improved by
EPA (p = 0.18, EPA vs. PAL) and was restored by DPA (p = 0.015, DPA vs. PAL).

2.3. Chronic Insulin Induced Insulin Resistance in 3T3-L1 Adipocytes

We investigated the effect of chronic insulin on 3T3-L1 adipocytes previously exposed to
LCn-3PUFA or not (Figure 3). It has been previously shown that serum starved adipocytes exhibited
a very poor basal Akt protein activation [16]. We then exposed 3T3-L1 adipocytes to insulin for 10
min after serum and insulin deprivation to explore the phosphorylation of Akt protein as an index
of insulin sensitivity. We observed that CI treatment induced a strong decrease in insulin-dependent
Akt phosphorylation on ser473/4 residue (p < 0.001 vs. CTRL). Although the improvement did not
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restore Akt activation to the control value, pre-incubation of adipocytes with EPA tended to partially
restore, while DPA partially and significantly restored, Akt phosphorylation (p = 0.1 and p = 0.031 vs.
CI condition, respectively).

Figure 2. Effects of palmitic acid and LCn-3PUFA on insulin signaling in skeletal muscle cells. C2C12
muscle cells were treated with 500 µM palmitic acid (PAL) with or without 10 µM docosapentaenoic
acid (DPA) or 50 µM eicosapentaenoic acid (EPA). Before harvesting, cells were stimulated with insulin
(100 nM) to evaluate insulin sensitivity by the quantification of Akt protein phosphorylation. Data are
mean ± SEM (n = 11–14 obtained after six experiments). Different letters mean significant differences
(p < 0.05) between groups obtained by ANOVA and the Tukey post-hoc test.

Figure 3. Effects of chronic insulin and LCn-3PUFA on insulin signaling in mature adipocytes.
3T3-L1 preadipocytes were differentiated for eight days before a 48 hour-treatment with 10 µM
docosapentaenoic acid (DPA) or 50 µM eicosapentaenoic acid (EPA). Insulin resistance was induced by
adding insulin (10 µM) during the last 16 h of treatment (chronic insulin, CI). Cells were then starved
for 6 h. Before harvesting, cells were stimulated with insulin (100 nM) to evaluate insulin sensitivity
by the quantification of Akt protein phosphorylation. Data are mean ± SEM (n = 10 in CI and control
(CTRL) groups and n = 20 in LCn-3PUFA groups obtained after four experiments.) * p < 0.05 vs. CI and
*** p < 0.001 vs. CI were obtained by ANOVA followed by the Dunnett post-hoc test.
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2.4. Effects of Chronic Insulin and LCn-3PUFA Treatments on Gene Expression in 3T3-L1 Adipocytes

The mRNA levels of genes related to lipid metabolism, insulin signaling, encoding key
transcription factors involved in lipid or FA metabolisms and regulators of energy metabolism were
evaluated in 3T3-L1 adipocytes exposed to CI and LCn-3PUFA (Figure 4). The mRNA amount of
genes encoding for proteins involved in lipid mitochondrial oxidation (ACADVL, ACAT1, HADHB)
were significantly enhanced by DPA (p = 0.004, p = 0.02 and p = 0.032 vs. CI, respectively) (Figure 4A).
EPA tended to increase ACAT1 mRNA expression (p = 0.055 vs. CI). The mRNA level of CD36 was
enhanced by DPA and EPA, but only cells treated with DPA exhibited a significant difference with
the CI group (p < 0.05 vs. CI and p = 0.071 vs. CI, respectively). FABP4 and LPL mRNA expression
was enhanced by DPA treatment compared to CI group (p = 0.078 and p = 0.014 vs. CI, respectively).
PLIN2 mRNA expression was also slightly enhanced by DPA and EPA treatments (p = 0.109 and
p = 0.065 vs. CI, respectively). As shown in Figure 4B, IRS2 mRNA level strongly tended to be
reduced in CI group vs. CTRL group (p = 0.062). Supplementation for 48 h with DPA significantly
enhanced both IRS1 and IRS2 gene expression compared with CI alone (p = 0.019 and p = 0.034 vs. CI,
respectively). PPARG, NR1H3 (coding for LXRα1), and PPARA mRNA expressions were all enhanced
by DPA supplementation compared to CI treatment alone (p = 0.002, p = 0.003 and p = 0.035 vs. CI,
respectively) (Figure 4C). CTRL and EPA+CI groups exhibited a lower expression of SREBF2 mRNA
compared to CI (p = 0.004 and p = 0.06 vs. CI, respectively). No effect of DPA supplementation was
observed on SREBF2 gene expression. ADIPOQ (adiponectin) gene expression strongly tended to
be enhanced by DPA supplementation vs CI treatment alone (p = 0.078 vs. CI) (Figure 4D). Finally,
APLN gene expression was reduced in the CTRL group (p = 0.02 vs. CI), whereas mRNA level was
increased by DPA treatment compared to CI (p = 0.046 vs. CI). EPA treatment had no effect on APLN
gene expression compared to CI.
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Figure 4. Effects of chronic insulin and LCn-3PUFA on gene expression in 3T3 adipocytes.
3T3-L1 preadipocytes were differentiated for eight days before a 48-hour treatment with 10 µM
docosapentaenoic acid (DPA) or 50 µM eicosapentaenoic acid (EPA). Insulin resistance was induced
by adding chronic insulin (CI, 10 µM) during the last 16 h of treatment. Cells were then starved
for 6 h and RNA were collected to perform qPCR. Relative gene expression of genes related to lipid
metabolism (A), insulin signaling (B), transcription factors (C), and regulators of energy metabolism
(D) are presented. The NONO gene was used as the housekeeping gene. Data represent the mean ±
SEM (n = 5–6 obtained after three experiments). * p < 0.05; and ** p < 0.01 vs. CI obtained by ANOVA
followed by the Dunnet post-hoc test.

2.5. Effects of Chronic Insulin and LCn-3PUFA Treatments on Mature Adipocyte Secretion

Adipokine and chemokine secretions were analyzed in conditioned media (CM) collected after
starvation of adipocytes for 6 h (Figure 5). As compared to CI treatment, IL-6 secretion was lower
in control adipocytes compared to insulin-resistant adipocytes (CI). EPA and DPA treatment of CI
adipocytes had no effect (Figure 5A). MCP-1 secretion was increased by EPA supplementation (p
< 0.01 vs. CI) and C-C motif chemokine ligand 5 (CCL5) secretion was increased by DPA and EPA
supplementation compared to CI condition (Figure 5B,C). Adiponectin secretion (Figure 5D) was
increased by DPA supplementation (p < 0.05 vs. CI).
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Figure 5. Effects of chronic insulin and LCn-3PUFA on adipokine secretion by mature adipocytes.
3T3-L1 preadipocytes were differentiated for eight days before a 48-hour treatment with 10 µM
docosapentaenoic acid (DPA) or 50 µM eicosapentaenoic acid (EPA). Insulin resistance was induced by
adding insulin (10 µM) during the last 16 h of treatment (chronic insulin, CI). Cells were then starved
for 6 h and conditioned media were collected for quantification of IL-6 (A), MCP-1 (B), CCL5 (C),
and adiponectin (D) concentrations. Data represent the mean ± SEM (n = 8–12 obtained after three
experiments). * p < 0.05; ** p < 0.01; and *** p < 0.001 vs. CI obtained by ANOVA followed by the
Dunnet post-hoc test. CCL-5: C-C motif chemokine ligand 5; IL-6: interleukin-6; MCP-1: monocyte
chemoattractant protein-1.

2.6. Effect of Adipocyte-Conditioned Media on Akt Phosphorylation in C2C12 Muscle Cells

CM collected after starvation for 6 h did not contain FA (data not shown) or insulin allowing the
characterization of the effects of adipocyte secretions. In C2C12, CM from insulin-resistant adipocytes
significantly decreased the response to insulin as demonstrated by the lower Akt phosphorylation
on ser473/4 residue compared to control C2C12 (p < 0.01 vs. CTRL) (Figure 6). CM from adipocyte
supplemented with LCn-3PUFA also induced IR as well, without any preventive effect.
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Figure 6. Effects of adipocyte condition media on Akt activation in skeletal muscle cells. Adipocyte
media were collected after 48 h of treatment with, or without, 16-hour chronic insulin (CI),
docosapentaenoic acid (DPA), oreicosapentaenoic acid (EPA), and after six hours of starvation. C2C12
muscle cells were treated for 16 h with conditioned media (CM). Before harvesting, cells were
stimulated with insulin (100 nM) to evaluate insulin sensitivity by the quantification of Akt protein
phosphorylation. Data are represented as the mean ± SEM (n = 10 in CI and control (CTRL) groups,
and n = 20 in LCn-3PUFA groups obtained after four experiments. ** p < 0.01 vs. CI obtained by
ANOVA followed by the Dunnet post-hoc test.

3. Discussion

Several studies have previously demonstrated the beneficial effects of EPA or DHA, two
LCn-3PUFA on IR in skeletal muscle cells exposed to high concentrations of PAL [10,17,18].
The alteration in the activation of Akt could be considered as a first step in the development of
IR. We previously showed that LCn-3PUFA can normalize Akt activation by insulin on both serine
and threonine residues in C2C12 myotubes exposed to PAL [10]. DPA, an intermediate of DHA
production from EPA, remains poorly studied. Here we showed that DPA which is less abundant in
plasma membranes than EPA or DHA, is as efficient as other LCn-3PUFA to improve muscle insulin
sensitivity in vitro, even when used at a lower concentration (10 µM compared to 30–50 µM of EPA or
DHA). This effect is due to a reversion of the lipotoxic effect of PAL. Hence, LCn-3PUFA without PAL,
are not able to enhance the effect of insulin on Akt phosphorylation (Figure S1). The enrichment of
membrane’s PL with LCn-3PUFA could facilitate protein interactions in cellular membranes and then
play a role in the modulation of insulin signaling [15]. A net increase of DPA and EPA concentration
was observed in PC from both muscle and adipose cells after 16 to 48 h of incubation. It might
partially explain the beneficial effects of LCn-3PUFA. In adipocytes, only a slight improvement of
insulin-induced Akt activation was observed when cells were supplemented with LCn-3PUFA before
the induction of IR. The model of insulin-resistant adipocytes was first described by Kozka et al. in
1991 [19] who demonstrated a decrease of cell surface glucose transporter 4 in 3T3-L1 adipocytes
after chronic exposure to insulin. To further explore the effect of LCn-3PUFA on the cellular effects
of insulin downstream of Akt, the exploration of Akt substrate of 160 kDa (AS160) activation, and
glucose transporter 4 translocation to plasma membrane will be of particular interest.

In our study, LCn-3PUFA only partially improved IR induced by CI in adipocytes but induced
some metabolic adaptations, especially on lipid metabolism. We observed an increase of FAT/CD36
expression with DPA and EPA, DPA having a stronger effect. FAT/CD36 can also modulate insulin
sensitivity and the incorporation of essential FA in 3T3-L1 adipocytes [20]. DPA significantly enhanced
the expression of lipid mitochondrial oxidation markers (ACAT1, ACADVL, HADHB). This is in
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perfect agreement with previous results published by Madsen et al. showing that the mitochondrial
oxidation of FA was enhanced by EPA and DHA in fully differentiated 3T3-L1 adipocytes [21]. DPA
also induced some changes in the expression level of genes involved in insulin signaling. Expression
of IRS1 and IRS2 mRNA was enhanced in DPA-treated adipocytes. IRS1 and IRS2 were identified as
crucial regulators of adipocyte differentiation as simultaneous knock out of these genes completely
blocked differentiation in mice [22]. In our study, we incubated fully-differentiated adipocytes with
LCn-3PUFA. We could then hypothesize that DPA may affect the maintenance of these cells, suggesting
a preserved capacity for FA and glucose buffering during IR and with over-nutrition. Supporting this
idea, the mRNA levels of PPARG, PPARA, and NR1H3, which are crucial transcription factors involved
in differentiation and lipid metabolism, were increased in adipocytes exposed to DPA. The exact
time-window of the treatment of adipocytes with LCn-3PUFA might be critical as it has been shown
that only DHA treatment during the differentiation process had inhibitory effects [23], whereas EPA or
DHA incubation before and during the induction of differentiation increased adipogenesis [24].

Although we found marked changes in the mRNA level of key metabolic genes following DPA
treatment, it was not sufficient to reduce the ability of adipocyte-CM to induce IR in skeletal muscle
cells. Induction of IR in mature adipocytes resulted in a higher secretion of adipokines involved in
inflammation and macrophage recruitment (MCP-1 and CCL5). These increases were not reversed by
treatment with LCn-3PUFA. Surprisingly, DPA and EPA further increased CCL5 secretion and EPA also
had an enhancing effect on MCP-1 secretion by adipocytes. MCP-1, CCL5 (also known as regulated
upon activation normal T cell expressed and secreted, RANTES) and IL-6 secretions are known to
be enhanced in mature adipocytes compared to undifferentiated adipocytes [25,26]. Nevertheless,
incubation of muscle cells with IL-6 for less than 96 h is known to have an insulin sensitizing
effect [27], whereas MCP-1 is able to impair insulin signaling [28]. DPA also significantly improved
adiponectin secretion and tended to increase its gene expression. Adiponectin has anti-inflammatory
and insulin-sensitizing properties [29], which could then have a protective role against metabolic
abnormalities in other tissues. However, the beneficial effects of this adipokine could be masked by an
opposite action of pro-inflammatory chemokines secreted by adipocytes.

The factors involved in the induction of IR from adipocytes to skeletal muscle cells remains
unknown. Literature on the role of extracellular vesicles is increasing and might be useful to
identify new mediators. These vesicles secreted by all types of tissues contain proteins, RNA,
and lipids, and are involved in the paracrine or endocrine communications between cells and
tissues [30]. For example, it has been shown that exosomes (one category of extracellular vesicles) from
lipid-induced insulin-resistant muscles are able to modulate gene expression and proliferation of beta
cells in mice [31]. Another study showed that exosomes from adipose tissue macrophages of obese
mice were able to induce IR in L6 muscle cells [32]. The miRNA 155 seemed to be implicated in these
effects. We cannot rule out that exosomes from adipocytes had a role in our study and could modulate
IR and metabolism of skeletal muscle cells.

Some hypotheses could be proposed to explain the regulation of intracellular insulin action and
lipid metabolism by LCn-3PUFA in muscle cells. LCn-3PUFA have a strong protective effect against
lipotoxicity when they are directly added to muscle cells, allowing their incorporation in cell’s PL.
Consequently, the incorporation of LCn-3PUFA in cellular membranes and an improvement in the
membrane’s fluidity could facilitate the protein-receptor interactions and, thus, insulin signaling [10].
On the contrary, an excess of saturated FA could induce an elevation of PC content as we observed in
moytubes. It remains to be determined if it has a significant impact on insulin sensitivity.

Our experiments in adipocytes suggested that the co-activation of transcriptional regulators, such
as PPARs and LXR by LCn-3PUFA, might also play a role, as we observe a regulation of the mRNA level
of several genes (ADIPOQ, FABP4, CD36, etc.) that are under the control of these proteins [33,34]. It
remains to be determined if similar transcriptional adaptations are involved in the improvement of FA
oxidation and detoxification of lipotoxic metabolites in skeletal muscle [35]. The effect of LCn-3PUFA
on apelin secretion by adipocytes should be investigated in future studies. Apelin is an adipokine
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that is known to be insulin-mimetic, which could then modulate the cross-talk between adipose and
muscle cells. It was shown to increase glucose utilization in insulin-resistant obese mice [36]. In our
study, APLN mRNA levels were increased by DPA treatment. Unfortunately, we did not measure its
concentration in CM. It was shown that EPA (200 µM) can activate the secretion and gene expression
of apelin in the same model of adipocytes [37]. It remains to be determined if such an effect could be
observed in situation of IR with a lower and more physiological concentration of LCn-3PUFA.

In conclusion, DPA has similar effects than EPA on insulin sensitivity in PAL-induced IR in skeletal
muscle cells. DPA and EPA partially reversed IR in adipocytes. DPA improved gene expression of key
molecules in lipid metabolism and insulin signaling. However, these changes are not sufficient
to improve insulin sensitivity of skeletal muscle cells exposed to the CM from insulin-resistant
adipocytes. Further studies are necessary to clearly identify which molecules could be responsible for
IR transmission from adipocytes to skeletal muscle cells.

4. Material and Methods

4.1. 3T3-L1 Cell Culture and Treatment.

3T3-L1 cells from ATCC (LGC Standards, Molsheim, France) were cultured in Dulbecco's Modified
Eagle's medium (DMEM) (Sigma-Aldrich, Saint-Quentin Fallavier, France) supplemented with 10% calf
serum, 100 U/mL penicillin and 100 mg/mL streptomycin in 5% CO2 /humidified atmosphere at 37 ◦C.
Two days after confluence (day 0), cells were incubated in DMEM containing 10% fetal bovine serum
(Thermo Scientific, Villebon sur Yvette, France), 100 U/mL penicillin, and 100 mg/mL streptomycin
(differentiation medium) supplemented with 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 µM
dexamethasone, and 10 µg/ml insulin to initiate differentiation into adipocytes. After 48 h, cells were
maintained in differentiation medium with insulin only. Insulin was removed after 48 h (day 4) and
cells were maintained until day 8 (medium was replaced at day 6). Stock solutions of EPA and DPA
(Cayman Chemicals, Montigny-le-bretonneux, France) (50 and 10 mM respectively) were prepared
in ethanol (EtOH) and further diluted at 1:1000 in DMEM containing 0.5% of FA-free BSA (ID Bio,
Limoges, France). Cells were treated with FA from days 9 to 11. Cells exposed to 0.1% EtOH alone
were used as control.

4.2. Induction of Insulin Resistance in 3T3-L1 Adipocytes

IR was induced by treating mature adipocytes with 10 µM of insulin (chronic insulin, CI) for
the last 16 h of day 10. On day 11, cells were washed twice with Phosphate Buffered Saline (PBS),
fatty acid- and insulin-deprived for 6 h before the collection of conditioned media (CM). Once CM
were collected, fresh DMEM media was added with 100 nM insulin for 10 min for the analysis of
insulin sensitivity.

4.3. C2C12 Muscle Cell Culture.

C2C12 myoblasts from ATCC (Molsheim, France) were seeded in 100 mm dishes in proliferation
medium composed of DMEM with 4.5 g/L glucose, 2.4 g/L sodium bicarbonate, 10% FBS, and 1%
of 100× penicillin and streptomycin mix (100 UI/mL and 100 µg/mL respectively). Cells were kept
in a humidified, 37 ◦C and 5% CO2 atmosphere. The medium was changed every 48 h to ensure
growth until reaching 80–90% of confluence and the induction of differentiation into myotubes using
differentiation medium (2% horse serum instead of 10% FBS in proliferation medium) for five days
before cell treatment.

4.4. BSA-Bound PAL Solution for Muscle Cell Treatment with Fatty Acids

A solution of 50 mM PAL (Sigma-Aldrich, Saint-Quentin Fallavier, France) in EtOH was prepared
and sterilized by filtration before a dilution (1:25) in BSA-enriched DMEM (2% of FA-free BSA)
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containing 1% penicillin/streptomycin 100×. This 2 mM PAL solution was sonicated 4 min and heated
for 15 min at 55 ◦C.

4.5. Fatty Acid Treatment

The BSA-bound PAL solution was diluted four times with BSA-enriched DMEM (0.5 mM final
concentration). LCn-3PUFA-supplemented media were prepared by adding stock solution of EPA or
DPA (d = 1:600) to reach a final concentration of 50 and 10 µM, respectively. All media were kept at
37 ◦C to ensure BSA-binding before treatment. Differentiated C2C12 muscle cells were washed three
times with PBS before exposure to BSA-bound 0.5 mM PAL solution (PAL) with or without 50 µM
EPA (PAL+EPA) or 10 µM DPA (PAL + DPA) for 16 h. Control cells were challenged with a FA-free
BSA-enriched (2%) DMEM containing 2% of EtOH, without FA. After treatments, cells were stimulated
with insulin (100 nM) for 10 min, washed twice with cold PBS, and harvested for protein isolation.

4.6. Treatment of Myotubes with Conditioned Media

One volume of CM were first diluted with one volume of fresh DMEM not supplemented with
BSA or serum. Then, differentiated C2C12 myotubes were exposed to adipocyte-conditioned media
for 16 h before insulin stimulation and harvesting.

4.7. Protein Quantification and Western Blotting

C2C12 myotubes and 3T3-L1 adipocytes were harvested in lysis buffer (50 mM HEPES, 150 mM
sodium chloride, 10 mM EDTA, 10 mM NaPPi, 25 mM beta-glycerophosphate, 100 mM sodium
fluoride, 10% glycerol, 1% sodium orthovanadate, 1% Triton X-100, and 0.5% phosphatase inhibitor
cocktail). Protein concentration was determined using BCA protein assay (Thermo Scientific). BSA
standard curve and sample preparation and analysis were realized according to the manufacturer’s
instructions (Thermo Scientific). Denatured proteins in loading buffer (20 µg) were separated by
SDS-PAGE electrophoresis, transferred on PVDF membranes, which were then immunoblotted.
Antibody binding was detected using enhanced chemiluminescence (ECL) western blotting substrate
(Thermo Scientific) and visualized by Fusion Solo chemiluminescence imaging system (Vilber Lourmat,
Marne-la-Vallée, France). Image quantifications were obtained using MultiGauge V3.2 software
(Fujifilm, Saint Quentin en Yvelines, France). Phospho ser473/4-(cat. number 9271), total Akt (cat.
number 9272) primary antibodies were from Cell Signaling Technology. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH, cat. number G9545) primary antibodies were from Sigma-Aldrich.

4.8. Reverse Transcriptase Polymerase Chain Reaction

RT-PCR was performed as previously described [14]. RNA extraction from cells was
performed using TRIzol® (Invitrogen, 1 mL/10 cm2) according to the manufacturer's instructions.
Chloroform-isoamylalcohol was added (0.2 mL/mL of TRIzol®) and samples were mixed and
centrifuged 15 min at 12,000× g and 4 ◦C. Aqueous phase containing ribonucleic acid (RNA) was
collected, mixed with isopropanol to precipitate RNA and centrifuged (12,000× g, 4 ◦C, 15 min). After
centrifugation, the pellet was washed with ethanol 70% (v/v), dried, and suspended in water. RNA
quantification and integrity were evaluated by measuring the ratio of optical density at 260 nm and
280 nm and by agarose gel migration, respectively. Reverse transcription of messenger RNA was
performed from 2 µg of total RNA using the High Capacity RNA-to-cDNA Master Mix from Applied
Biosystems (Thermo Scientific). A TaqMan low-density array was used for 3T3-L1 adipocyte samples
using a 7900HT Fast Real Time PCR system (Applied Biosystems). The entire list of genes investigated
and the corresponding relative expression are supplied in the Supplementary Table S1.
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4.9. Phospholipid Extraction

Lipids were extracted by adding 5 mL chloroform: methanol (1:1, v/v) to cell extracts. Samples
were shaken for 5 min and centrifuged for 10 min at 125× g. A total of 2.5 mL of chloroform and
1.5 mL of 0.9% sodium chloride were then added. After shaking for 5 min and centrifugation at 250× g
for 10 min, the chloroform phase was kept and dried under nitrogen flux. Lipids were suspended in
50 µL of chloroform. Lipid extracts were kept at −20◦ C until analysis.

4.10. Phospholipid Separation and Collection by HPLC

Phospholipid extracts were analyzed in a Thermo Scientific Ultimate 3000 HPLC associated with
a charged aerosol detector (Corona, Thermo Scientific) to analyze phospholipid profile and identify
the retention time of the different phospholipid classes for collection. Separation was performed using
the hydrophilic interaction liquid chromatography (HILIC) method for polar compounds. Briefly,
5–10 µL of phospholipid extracts were injected and separated with an AccucoreTM HILIC column
(length 1500 mm × diameter 2.1 mm × particle size 2.6 µm, Thermo Scientific). An isocratic inverse
phase protocol was used with the following parameters: the mobile phase was (A) acetonitrile/H2O
(%) 95/5 containing 5 mM ammonium acetate, (B) acetonitrile/H2O (%) 50/50; the mobile phase flow
and the temperature column were maintained at 0.8 mL/min and 30 ◦C, respectively. During the run,
percentages of A/B were 65/35 at 0 min, 70/30 at 1 min, 85/15 at 20 min, 100/0 at 23 min and 65/35
at 24 min and until the end of the run. Phospholipid collection was performed using an automated
fraction collector (Thermo Scientific). Phosphatidylcholine (PC) were collected between 10 min and
12 min and 30 s after injection.

4.11. Fatty Acid Profile of PC Fraction

PC fractions were dried under nitrogen and dissolved in boron trifluoride 7% in methanol
(Sigma-Aldrich) for FA methylation at 90◦C for 2 h. Analysis of fatty acid methyl-esters (FAMEs)
was performed on a gas chromatograph (Thermo Electron Corporation, Waltham, MA, USA) coupled
with a flame ionization detector using a select FAME (Agilent Technologies, Les Ulis, France) column
(0.25 mm inner diameter, 100 m., 0.25 µm film thickness) and helium as the carrier gas (2.6 bar, constant
pressure, inlet temperature of 250 ◦C). Data were expressed as percent of total fatty acids (% TFA) for
EPA (20:5n-3) and DPA (22:5n-3). In the cases of pic area below the detection limit, value was replaced
by the mean of the corresponding group.

4.12. Quantification of Adipokines and Non-Esterified Fatty Acids in Conditioned Media from Mature
Adipocytes

IL-6, adiponectin, MCP-1 and CCL5 were quantified using enzyme-linked immunosorbent assay
(ELISA) kit from Sigma-aldrich, Assaypro, Thermo Fisher Scientific and R&D Systems, respectively.
Non-esterified fatty acids (NEFA) were quantified using a colorimetric kit from Diasys (Grabels, France)
according to the manufacturer’s instructions operated on Konelab TM 20 analyzer (Thermo Electron
SA, Cergy-Pontoise, France). Regardless of the treatment, every NEFA concentrations found were
under the detection limit (10 µM).

4.13. Statistical Analyses

All data presented are mean ± standard error about the mean (SEM). For statistical tests, one-way
analysis of variance (ANOVA) was performed, followed by a Dunnett post-hoc test taking CI group as
reference group, or followed by a Tukey post-hoc test for experiments using palmitic acid on muscle
cells and for fatty acid profiles. The number of experiments and samples were indicated in each legend
of figures. Analysis have been performed using R software (R Foundation for Statistical Computing,
Vienna, Austria), version 3.1.2 and the multcomp package.
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AS160 Akt Substrate of 160 kDa
BSA Bovine Serum Albumin
CM Conditioned Media
DG Diacylglycerol
DMEM Dulbecco’s Modified Eagle Medium
DHA Docosahexaenoic Acid
DPA Docosapentaenoic Acid
ECL Enhanced Chemiluminescence
EPA Eicosapentaenoic Acid
EtOH Ethanol
FA Fatty Acid
FBS Fetal Bovine Serum
GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase
HILIC Hydrophilic Interaction Liquid Chromatography
HPLC High Performance Liquid Chromatography
HPRT Hypoxanthine Guanine Phosphoribosyltransferase
IBMX Isobutyl-Methyl-Xanthine
IL-6 Interleukine-6
IR Insulin Resistance
IRS Insulin Receptor Substrate
LCn-3PUFA Long Chain n-3 Polyunsaturated Fatty Acids
MCP-1 Monocyte Chemoattractant Protein-1
METS Metabolic Syndrome
PAL Palmitic acid
PC Phosphatidyl-Choline
PKC Protein Kinase C
PL Phospholipid
PPAR Peroxisome Proliferator-Activated Receptor
RNA Ribonucleic Acid
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