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Highlights 29 

Near-infrared hyperspectral imaging assessed the apple heterogeneity.  30 

Principal component analysis allowed to select the region of interest in apples. 31 

Single apple presented a large heterogeneity of biochemical compositions. 32 

Models mapped total sugars and dry matter contents in each apple. 33 

34 
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Abstract 35 

The heterogeneity of apple fruit was highlighted by near-infrared hyperspectral 36 

imaging (NIR-HSI) using a data analysis in two successive steps. First, NIR-HSI 37 

images were acquired on the cut surface of six transverse slices per apple, which were 38 

then systematically sampled with 5 or 6 cylinders per slice. PCA carried out on the 39 

NIR-HSI images allowed to select 141 representative cylinders from the total dataset 40 

(1056 samples), in which the contents of dry matter (DMC), total sugars (TSC), 41 

fructose, glucose, sucrose, malic acid and polyphenols were quantified by 42 

spectrophotometry and chromatography. In a second step, leave-one-out PLS models 43 

were developed and successfully used to describe the distribution of DMC (Rcv
2 = 44 

0.83, RPD = 2.39) and TSC (Rcv
2 = 0.81, RPD =2.20) in each apple slice. A strong 45 

heterogeneity of DMC and TSC was detected inside each fruit. Such a simple and 46 

rapid method reduced the needs of numerous chemical characterizations to 47 

demonstrate the distribution of quality traits within and between fruit and contributed 48 

to better manage the fruit quality measurements. 49 

Keywords: Malus domestica Borkh.; partial least square regression; random forest 50 

regression; apple variability and heterogeneity. 51 

  52 



4 

 

Introduction 53 

An external aesthetic appearance and a sustainable internal quality of fruit are 54 

both crucial for consumers (Ma et al., 2018; Zhang et al., 2018). However, genetic 55 

diversity (varieties), pedoclimatic conditions and agricultural practices are known to 56 

provide variability and heterogeneity of fruit, which limit the precision and prediction 57 

of quality using infrared methods (Vis-NIR and NIRS) and thus hinders their 58 

widespread applications for online commercial fruit sorting (Barritt et al., 1991; Xia et 59 

al., 2020; Zhang et al., 2018). It appears necessary to develop some applications using 60 

efficient and rapid technologies to phenotype internal heterogeneity of the fruit, in 61 

order to help field growers and industrial manufacturers to improve quality of fruit 62 

products. 63 

Apple is one of the most consumed agricultural commodities in the global fruit 64 

market (68.6 million tons at 2018) (USDA, 2018). The high heterogeneity of soluble 65 

solids content (Fan et al., 2016; Mo et al., 2017; Peiris et al., 1999), starch (Menesatti 66 

et al., 2009), polyphenols and vitamin C (Pissard et al., 2012) in a single apple fruit 67 

has been proven to truly exist in different directions, from proximal to distal direction 68 

(Fan et al., 2016; Peiris et al., 1999), in radial direction from inside to outside (Mo et 69 

al., 2017) and along equatorial direction (Mo et al., 2017; Pissard et al., 2012). 70 

As known, conventional chemical analyses (HPLC-DAD, GC-MS and 71 

ultraviolet/ visible spectrometry etc.) are costly and time-consuming to determine the 72 

heterogeneity occurring at the level of the tissues in a single fruit (Peng et al., 2019; 73 

Pissard et al., 2012). To determine the chemical heterogeneity within a fruit, most 74 
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previous works encountered difficulties of i) long-periods and intensive labor 75 

operations, ii) a large amount of targeted fruit samples and the high requirements for 76 

characterization, and iii) the limited stability of fruit samples (highly hydrated, rapid 77 

oxidation). In addition, the limited knowledge of apple heterogeneity becomes a 78 

barrier to obtain robust predictive models by high-throughput techniques (Vis-NIRS, 79 

NIRS, MIRS, NMR) (de Oliveira et al., 2014; Fan et al., 2016; Pissard et al., 2012). 80 

Particularly with the non-destructive and localized (around 2 cm2) NIR measurements 81 

on apples, it is essential to know more about the distribution of components in fruit in 82 

order to determine where and how many measurements are needed, as well as to 83 

access the representative sample portion to be characterized using reference methods 84 

for calibration dataset. 85 

Hyperspectral imaging (HSI) is an emerging platform technique that integrates 86 

imaging and spectroscopy to provide both spatial and spectral information (Gowen et 87 

al., 2007). It is safer than X-ray imaging, more rapid and affordable than FT-IR 88 

imaging and Magnetic resonance imaging, and with a better image quality than 89 

thermal imaging (Fan et al., 2016; Ma et al., 2018). Until now, applications of HSI in 90 

the Visible-NIR (400-1000 nm) or NIR (1000-2400 nm) ranges were carried out to 91 

evaluate the variability of apple quality, such as fruit defects (Mehl et al., 2004), 92 

firmness (Peng and Lu, 2008), mealiness (Huang and Lu, 2010) and soluble solids 93 

content (Mendoza et al., 2011). These studies were applied nondestructively on apple 94 

fruit. As the NIRS radiation penetration depth is around 0.2 to 0.3 cm in the spectral 95 

area between 900 and 1900 nm (Lammertyn et al., 2000), the non-destructive 96 
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detection of HSI does not allow to evaluate the entire internal heterogeneity of apple 97 

fruit. Thus, the HSI is used destructively by scanning fruit slices and makes possible 98 

to describe the distribution of the internal soluble solids content, as shown in apples 99 

(Mo et al., 2017) and melons (Sun et al., 2017). However, these studies need a large 100 

number of reference data (numbers of samples and limited samples quantity) on all 101 

the targeted areas of single fruit, required for model calibration.  102 

Consequently, the main objective of this work was to provide a simple and 103 

efficient method to reduce the intensive reference measurements (contents of dry 104 

matter, total sugars, individual sugars, acids and polyphenols) in order to develop a 105 

HSI modelling calibration and to evaluate the apple variability and heterogeneity. 106 

2. Material and methods 107 

2.1 Apple fruit 108 

The experiment was conducted on four different apple varieties: ‘Golden 109 

Delicious’ (GD), ‘Granny Smith’ (GS), ‘Braeburn’ (BR) and ‘Royal Gala’ (GA). In 110 

2018, all apples were harvested in the experimental orchard at La Pugère (Bouches du 111 

Rhône, France). ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’ apples were grown 112 

under a commercial fruit thinning (Th+, 50-100 fruit/ tree). ‘Golden Delicious’ apples 113 

were grown under two thinning conditions, the commercial fruit thinning (Th+, 114 

50-100 fruit/ tree) and without thinning (Th-, 150-200 fruit/ tree). After the 115 

commercial harvesting (‘Royal Gala’ on August 28th, Golden Delicious on September 116 

19th, ‘Granny Smith’ on September 20th, and ‘Braeburn’ on October 3rd), all apples 117 

were stored in a cold chamber at 4 °C and at around 90 % of humidity until their 118 
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characterization (November 2018). 119 

2.2 Samples preparation 120 

A calibration dataset corresponded to the data of 30 apples with similar sizes (6 121 

fruit × 5 apple groups of GD Th-,GD Th+, GS, BR, GA) and scanned using the 122 

NIR-HSI imaging system. Each apple was cut with a slicing tool along horizontal 123 

direction to produce six apple slices, including five 1.2 cm thick slices (named slices 124 

from ‘A’ to ‘E’ at the stem, equator and calyx directions) and the one residual piece of 125 

varying thickness (named slice ‘F’ at the calyx positions). Hyperspectral images of 126 

180 apple slices (5 apple groups × 6 fruit × 6 slices) were acquired and six cylindrical 127 

1.6 cm diameter portions were extracted with a cookie cutter (numbered 1 to 6) from 128 

each of the apple slices A to E, and five or six cylinders from the residual slice F (Fig. 129 

1). 130 

The cylinders were put immediately in liquid nitrogen prior to storage at -20 °C, 131 

giving 35 to 36 cylinders per apple, following the previous works of Mo et al. (2017) 132 

and Bureau et al. (2013). These cylinders were distributed with a systematic 133 

repartition for each apple from the top to the bottom and from the sunny to the shady 134 

faces. In total 1056 cylinders (5 apple groups × 6 fruit × 35-36 cylinders) were 135 

numbered and stored (Part 2.4.1). After the extraction of all the cylinders, RGB 136 

photos were taken on each apple slice in order to ensure the correct correspondence 137 

between the cylinders and HSI images (Fig. 1). 138 

2.3 Hyperspectral Imaging (HSI) System 139 

A pushbroom (a line-scanning type) near infrared hyperspectral imaging system 140 
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(SPECIM, Oulu, Finland) was used to acquire the hyperspectral images of apple slices. 141 

Particularly, this NIR-HSI system consisted of a SWIR camera (SWIR-CL-400-N25E, 142 

SPECIM) covering the spectral range of 1000-2500 nm with a spectral resolution of 143 

about 12 nm, an OLES 56 camera lens (SPECIM), an illumination source (halogen 144 

lamps) and a translating scanner. All the image acquisition parameters (the exposure 145 

time of camera, the scanning speed etc.) were controlled by the LUMO® software 146 

from SPECIM. Before measurements, a reflectance calibration was performed by 147 

recording a dark current image (0 % reflectance) with an internal shutter and a white 148 

image using a reference standard close to 100 % reflectance (Spectralon® 100 %). To 149 

reduce the impact of light and noise, the calibrated hyperspectral images could be 150 

automatically obtained using the dark and white reference images, with the following 151 

equation: 152 

����  =  
���	�
��

��
��
× 100 %       (1) 153 

with R: the calibrated hyperspectral image data, R0: the raw image data, Rd and Rw: 154 

the dark and white reference images, respectively.  155 

All images were acquired in the reflectance mode and the final image size for 156 

each kernel is 387 × xdim × 288, the two first values representing pixel dimensions in 157 

the x and y directions (field of view of 9.8 × 6.3 cm, with a spatial resolution of 225 158 

µm) and the third value accounting for the number of spectral channels. The xdim 159 

values varied according to the dimensions of apple slices. Each image was acquired in 160 

about twenty seconds. As the beginning and ending wavelengths contained noise 161 

caused by the instrument itself (Sun et al., 2017), the 258 bands from 990 to 2450 nm 162 
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were selected for further spectral analysis.  163 

2.4 Imaging pre-processing 164 

The pre-processing of the hyperspectral images and the selection of region of 165 

interest (ROIs) were performed with Matlab 7.5 (Mathworks Inc. Natick, MA) 166 

software using the SAISIR package (Cordella & Bertrand, 2014). Due to the high 167 

volume of data, the processing of all images was not possible using a common 168 

computer. In this way, 10,000 spectra were randomly extracted from the HSI images 169 

of each apple slice, counting around one third of the total number of spectra in each 170 

HSI image. Afterwards, all random selected spectra were gathered into a matrix X (5 171 

apple groups × 6 fruit × 6 slices × 10,000 rows by 258 columns). After pre-tests, 172 

matrix X was smoothed by a window size of three pixels. A given value x (i) of index i 173 

was replaced by the local average of x (i - 1) + x (i) + x (i + 1). Then it was 174 

pre-processed with standard normal variate (SNV) to increase its signal to noise ratio 175 

for the selection of ROIs. 176 

2.5 ROI selection and characterization 177 

PCA has been commonly applied on the NIR-HSI of agro-food products for 178 

safety and quality assessments (Dale, et al., 2013). It was performed on the 179 

pre-processed matrix X to check the major components causing variability in the 180 

apples. Afterwards, this model was applied to all pixels of all images, and the major 181 

components (PCs) were selected as estimators to refold into PCs images to point out 182 

the heterogeneous areas in each HSI image of apple slice. Finally, the ROIs to be 183 

analyzed by chemical and biochemical measurements (141 samples) were manually 184 
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selected depending on the results of the major principal components and the same 185 

location on photographical images (an example of the ROIs marked black circles in 186 

Fig. 1). 187 

2.6 Chemical and biochemical measurements 188 

All chemical and biochemical characterizations (contents of dry matter, fructose, 189 

glucose, sucrose, malic acid and sum of polyphenols) were performed on these ROIs 190 

(141 samples) and expressed as the ratio on fresh weight. Particularly, individual 191 

sugars (glucose, fructose, and sucrose) and malic acid were quantified on the half of 192 

each sample using an enzymatic method with commercial kits for food analysis, 193 

following the manufacturer’s instructions (R-biopharm, Darmstadt, Germany). The 194 

total sugars content were computed by the sum of all individual sugars (fructose, 195 

glucose and sucrose). The dry matter content (DMC) was estimated from the weight 196 

of freeze-dried samples upon reaching a constant weight (freeze-drier, 3 days). The 197 

freeze-dried samples were further used to quantify polyphenols by HPLC-DAD after 198 

thioacidolysis as described in Le Bourvellec (Le Bourvellec et al., 2011). Particularly, 199 

apple polyphenols were separated in an Agilent 1050 separation system coupled with 200 

a (250 mm × 4 mm i.d.) Licrospher PR-18 5 µm column (Merck, Darmstadt, 201 

Germany) operated at 30 ℃. This data was presented as the sum of individual 202 

polyphenols including procyanidins and monomeric flavanols, phenolic acids, 203 

dihydrochalcones and flavonols. 204 

2.7 Modelling 205 

After smoothing with a 3-point window and the first order derivative with a 11 206 
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point window, the averaged spectra of each ROI (giving 141 spectra) and their related 207 

reference data were used for modelling. Leave-one-out partial least squares 208 

(LOO-PLS) regession was used to build prediction models with Matlab 7.5 209 

(Mathworks Inc. Natick, MA) software using the SAISIR package (Cordella & 210 

Bertrand, 2014). Random forest (RF) regression was also applied to compare the 211 

prediction ability of developed models, using R software (version 4.0.2) (R Core 212 

Team, 2019) coupled with several packages including ‘prospectr’ (Stevens and 213 

Ramirez-Lopez, 2014), ‘Rmatlab’ (Bengtsson et al., 2018), ‘caret’ (Kuhn, 2015) and 214 

‘randomForest’ (Liaw and Wiener, 2002). 215 

The developed model performance was assessed using the determination 216 

coefficient of cross-validation (Rcv
2), the root mean square error of cross-validation 217 

(RMSEcv), the number of latent variables (LVs), the ratio of the standard deviation 218 

values (RPD). The interpretations of beta-coefficients were used to determine the 219 

relevant spectral regions. The spectral bands related to the maximum and minimum of 220 

beta-coefficient values can present the most important wavelengths (Sun et al., 2017).  221 

2.8 Prediction maps of apple quality attributes 222 

After comparison of the modeling results of each apple quality attribute, only the 223 

models with RPD values higher than 2.0 allowing a coarse quantitative prediction 224 

(Nicolai et al., 2007), were selected to predict fruit quality attributes of all apple slices 225 

at the individual pixel level. The prediction values were then visualized under the 226 

form of prediction maps, which were used to phenotype the internal distributions of 227 

the predicted quality attributes in apples. 228 
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3 Results and discussion 229 

3.1 Spectral characteristics 230 

The initial PCA conducted on the random selected spectra of one out of three 231 

pixels of all apple slices (matrix X) was able to discriminate the variability and 232 

heterogeneity of apple fruit between the top (slice A) and the bottom (slice F). The 233 

first two principal components represented 68.0 % of the total variability, with the 234 

first component (PC1) of 43.7 % and the second component (PC2) of 24.2 %, 235 

respectively. For all apple groups, a clear discrimination was shown along the first 236 

two principal components (PC1 and PC2) between the middle slices (slices C, D) and 237 

the others (top slices A, B and bottom slices E, F). The most contributing wavelengths 238 

of PC1 and PC2 were: i) the sharp peak around 1065 nm corresponding to the C-H 239 

and O-H stretching in second overtone, which is linked to the sugar variations in fruit 240 

(Sun et al., 2017); ii) the absorption region from 1157 - 1364 nm which is associated 241 

with the first overtone of O-H band in water (Ignat et al., 2014); and iii) the broad 242 

band at 1400-1530 nm which corresponds to the combination of second overtone of 243 

C-H stretching and the first overtone of O-H stretching, already used to determine the 244 

soluble solids content in apples (Zhang et al., 2019). These fingerprint wavelengths 245 

pointed out the variations of water and carbohydrate contents in a single apple, which 246 

were consistent with previous results using chemical measurements (Peiris et al., 1999; 247 

Pissard et al., 2012). 248 

In a second step, the variability expressed on the dominant PC1 components 249 

(43.7 % of total variability) was used for phenotyping all apple slices based on a 250 



13 

 

correspondence between the different areas described by a color range, according to 251 

their hyperspectral spectra. PC1 scores-images have directly pointed out the most 252 

variable locations with the color range (Fig. 1). ROIs in each apple were targeted at 253 

top slice A, middle slice C and bottom slice E, with the most different colored areas 254 

(such as the area No. 3 of slice C and the area No. 3 of slice F in Fig. 1). Besides, the 255 

clear color differences inside the middle slices (area No. 2 and No. 5 of slice D in Fig. 256 

1) were also selected, depending on apple cultivars. A total of 141 ROIs was manually 257 

selected and characterized by reference chemical measurements to check if these 258 

targeted positions really showed variations consistent with the corresponding 259 

hyperspectral images, and to identify the chemical components responsible for the 260 

heterogeneity observed in PC1 scores images. 261 

3.2 Chemical characteristics of ROIs 262 

The boxplot of chemical reference data (Fig. 2) of the 141 selected ROIs showed 263 

a large variation of contents of dry matter, total sugars, malic acid and polyphenols in 264 

the different apple cultivars. 265 

Royal Gala apples had the most intensive variations of DMC among the five 266 

apple groups (Fig. 2a). Conversely, the lowest variations of DMC and of TSC (Fig. 267 

2b) were observed in the thinned (GD Th+) and non-thinned Golden Delicious (GD 268 

Th-), presenting a relatively limited heterogeneity of DMC and TSC in single GD 269 

apples. The fructose content of Granny Smith (GS) had the lowest variations among 270 

the four cultivars (Fig. 2c). Moreover, the contents of polyphenols varied a lot in each 271 

apple cultivar (Fig. 2f). Golden Delicious (thinned and non-thinned) (0.34 ± 0.14 g/kg 272 
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in non-thinned GD and 0.34 ± 0.12 g/kg in thinned GD) and Royal Gala (GA) (0.27 ± 273 

0.14 g/kg) apples presented a large polyphenolic variation compared to GS apples 274 

(0.55 ± 0.14 g/kg). This result was different from a previous work showing a small 275 

internal heterogeneity of polyphenols in Gala (Vidot et al., 2019). This inconsistent 276 

result could be due to the difference in the measured targeted areas in apples, only 277 

parts close to the fruit surface (Vidot et al., 2019) versus parts distributed everywhere 278 

inside the entire fruit (our experiment).  279 

Concerning the effect of agricultural practices on Golden apple quality, the 280 

average contents of total sugars and malic acid were higher in the thinning condition 281 

(GD Th+) than in the non-thinning one (GD Th-), which was in line with our previous 282 

results observed during the 2017 harvested season (Lan et al., 2020). Interestingly, the 283 

tree thinning treatment, by increasing the individual apple growth potential, led to a 284 

lower variability of malic acid (Fig. 2f) and sucrose (Fig. 2d) contents in Golden 285 

Delicious apples, with the standard derivation values decreasing from 0.89 to 0.62 286 

g/kg and from 10.9 to 9.3 g/kg, respectively. 287 

Consequently, the most variable regions chosen according to the PC 288 

scores-images truly exhibited a large heterogeneity, in agreement with the variations 289 

of the reference values of total sugars, dry matter, malic acid and polyphenols. The 290 

apple internal heterogeneity should be then considered as an important factor for 291 

apple fruit quality characterization and understanding. 292 

3.3 Prediction of apple quality traits based on averaged spectra of ROIs 293 

The chemical composition data obtained on the 141 selected ROIs was used to 294 
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build prediction models validated within this selected subset, using the averaged 295 

spectra of each ROI. Acceptable predictions of DMC (SD = 21.9 mg/g, Rcv
2 = 0.83, 296 

RMSEcv = 9.7 mg/g, RPD = 2.39) and TSC (SD = 18.7 g/kg, Rcv
2 = 0.81, RMSEcv = 297 

8.4 g/kg, RPD = 2.20) were obtained by LOO-PLS, respectively (Table 1). According 298 

to Nicolai et al. (2007), a RPD over 2 indicates the possibility to a coarse qualitative 299 

prediction of the internal attributes of fruit. The linear models (PLS) were much better 300 

than the random forest (RF) (Table1), as described by Sun et al. (2017) to predict 301 

soluble solids content in melon fruit. The small number of latent variables (LVs) 302 

employed in PLS models indicated the robust prediction of DMC (LVs = 7) and TSC 303 

(LVs = 5), based on data including different apple varieties and growing agricultural 304 

practices. All predicted DMC and TSC on 141 ROIs by LOO-PLS regression were 305 

well correlated to the measured values, according to their linearity correlation plots 306 

(Fig. 3a and 3b). Moreover, the beta-coefficients showed strong positive or negative 307 

bands (Fig. 3c and 3d) for both, the PLS regressions of DMC and TSC, including 308 

informative spectral regions at around 1123 nm, 1208 nm, 1389- 1401 nm, 1474- 309 

1480 nm, 1857- 1863 nm and 2319- 2336 nm, which have been widely reported to 310 

estimate water and sugar contents in apple fruit (Giovanelli et al., 2014; Lan et al., 311 

2020; Peirs et al., 2003). Particularly, six sharp peaks at 1208 nm, 1123 nm, 1389 nm, 312 

1474 nm, 1857 and 2336 nm were identified as being important wavelengths to 313 

predict dry matter content in apples. And the specific wavelengths at 1123 nm, 1401 314 

nm, 1480 nm, 1863 nm and 2319 nm contributed to the determination of total sugars 315 

in apple tissues. 316 
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However, modelling using the averaged spectra of ROIs showed a limited ability 317 

to predict the individual sugars (fructose, glucose and sucrose), malic acid and sum of 318 

polyphenols (Table 1). This was expected and in agreement with the previous work 319 

(Walsh et al., 2020). That could be due to i) their respective lower content in apple 320 

tissues compared with DMC and TSC and ii) the limited chemical variations in our 321 

studied apple varieties. Concerning polyphenols, a larger variation is observed in the 322 

cider apple varieties from 1 to 7 g/kg in apple parenchyma (Sanoner et al., 1999) than 323 

in the dessert varieties, such as those of this study, from 0.6 to 0.9 g/kg (Guyot et al., 324 

2002) because of their highest content in procyanidins, the main polyphenols. Thus, a 325 

better prediction of these compounds might be obtained taking into account the entire 326 

variability within apple varieties. 327 

As mentioned in section 3.1, the fingerprint wavelengths of apple variability and 328 

heterogeneity were mainly related to water and carbohydrates. Thus, for these five 329 

apple groups (BR, GA, GS, thinned and non-thinned GD), prediction models based on 330 

the averaged HSI spectra of ROIs and their reference values were suitable to estimate 331 

intensive variations of water and the dominated soluble contents in apple fruit, such as 332 

dry matter and total sugars, but not of individual compounds (fructose, glucose, 333 

sucrose and malic acid) or microcomponents (sum of polyphenols). 334 

3.4 Phenotyping apple heterogeneity by HSI 335 

For a more in-depth assessment of the internal composition of each apple, the 336 

best PLS models described in the Part 3.2 were applied to predict the quality traits at 337 

each pixel on all hyperspectral images of apple slices. The resulting images were 338 
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presented as ‘prediction maps’ for TSC (Fig. 4) for each apple slice. In total, 10 colors 339 

were used to fit the different intervals of the predicted values and pixels with the 340 

similar predicted values appeared in the same color. The prediction results 341 

demonstrated a large variability and heterogeneity of total sugars and dry matter 342 

contents i) in different apple varieties; ii) between individual apple fruit and iii) inside 343 

single fruit. 344 

For the traditional non-destructive NIR analyses on apples, to obtain a robust 345 

prediction model, the calibration dataset should be sufficiently rich in variations, 346 

particularly taking into account the existing variability with the fruit itself (Zhang et 347 

al., 2018). Our prediction results provided advanced knowledge to determine where 348 

and how many positions are needed with the non-destructively NIRS measurements 349 

on apple surfaces, as well as to access the sample portion to be analyzed by reference 350 

methods for the calibration set.  351 

In the literature, NIR predictions of apple quality traits involve taking 352 

measurements at up to four points located in the equatorial region (Liu and Ying, 2005; 353 

Peirs et al., 2003; Pissard et al., 2012), or along the stem, equator and calyx positions 354 

of apples (Fan et al., 2016). However, there was a reverse conclusion to reach the 355 

accurate predictions of developed models following each of these two methods. From 356 

our results, a specific attention needs to be paid according to the ‘cultivar’, which is 357 

the major factor influencing the fruit heterogeneity and the possible reason to explain 358 

the aforementioned disagreement result. According to the relative standard deviation 359 

(RSD) values of the predicted DMC and TSC of all pixels in single apples, different 360 
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levels of internal chemical variations were observed in Braeburn (RSD of DMC = 361 

24.6 % and of TSC = 22.1 %), Royal Gala (RSD of DMC = 26.5 % and of TSC = 362 

27.1 %), Granny Smith (RSD of DMC = 18.9 % and of TSC = 22.0 %) and thinned 363 

Golden Delicious (RSD of DMC = 13.2 % and of TSC = 15.7 %). These results 364 

indicated the same and limited spectral measurement points for all apples could not 365 

present such intensive internal quality variations of different cultivars. From a 366 

spectroscopic point of view, an increase of measured positions on apple surfaces 367 

therefore is particularly important to improve accuracy in the calibration steps. 368 

In all apples, the large DMC and TSC differences among the middle (the average 369 

predicted DMC of all pixels in slice C and D of all cultivars = 136.5 ± 16.2 g/kg and 370 

TSC = 115.6 ± 14.3 g/kg), top (the average predicted DMC of all pixels in slice A and 371 

B of all cultivars = 117.1 ± 22.4 g/kg and TSC = 79.5 ± 17.1 g/kg) and bottom slices 372 

(the average predicted DMC of all pixels in slice E and F of all cultivars = 124.1 ± 373 

25.2 g/kg and TSC = 87.3 ± 20.1 g/kg) demonstrated that four points at the equatorial 374 

region might not be enough to provide the representative spectra of the entire apple 375 

fruit. NIRS information from top to bottom of apple surfaces therefore needs to be 376 

considered for all apple cultivars. 377 

Consequently, the strong variability and heterogeneity of apples were highlighted 378 

using our developed models, and probably constitute the major barrier to an accurate 379 

NIR modelling. The similar distribution results of TSC and DMC in apple slices were 380 

observed in most apple slices of each cultivar (at least 4 over 6 fruits). These results 381 

provided an important opportunity to advance our knowledge on the quality 382 
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measurement: where and how many specific positions need to be measured on apple 383 

surfaces with NIRS, in order to develop accurate and robust prediction models. 384 

The previous HSI models mainly detected the soluble solids content and firmness 385 

changes in single fruit (Mo et al., 2017; Sun et al., 2017), because of the quick and 386 

easy reference data quantification of all targeted samples using digital refractometers 387 

and hardness detectors. Compared to these studies, our work provided an efficient 388 

solution for the HSI modelling calibration step, depending on the reference data 389 

measured on 141 representative samples instead of the 1056 prepared samples. 390 

Importantly, this method offered a new sight on contents of total sugars (sum of the 391 

fructose, glucose and sucrose) and dry matter in apples, with a limited number of 392 

complicated (individual sugars measured by spectrometry using enzymatic kits) and 393 

time-consuming (at least 24 hours for freeze-drying) analyses for HSI modelling. In 394 

future, such a rapid and efficient approach for HSI modelling calibration would be 395 

helpful to detect the variations of apple internal quality parameters according to 396 

different environmental conditions (crop load, irrigation, light penetration and 397 

elevations of regions etc. …) and growing stages, and then contribute to an 398 

improvement of apple quality and production. The objective at the end could be to 399 

have a better knowledge of the apple homogeneity in order to manage them better for 400 

fresh market and processing taking into account the sustainability of practices. 401 

4. Conclusion 402 

In this study, the power of chemometric methods was harnessed in a two-steps 403 

procedure for mapping of apple fruit heterogeneity while minimizing the number of 404 
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chemical analyses. PCA of NIR-HSI data was used to scan the heterogeneity of apple 405 

slices and to pin-point the best representing areas of the whole spectral variation. A 406 

limited number of chemical measurements could then be carried out and exploited by 407 

PLS regression to identify the underlying compositional information present in 408 

NIR-HSI data at individual pixels. NIR-HSI coupled with PLS regression showed a 409 

good ability to phenotype the distribution of dry matter content and total sugars 410 

content in apple fruit. The prediction models developed with the reference values of 411 

the most variable areas identified by PCA on HSI data were enough to assess the 412 

variability and heterogeneity of apple global parameters, with acceptable precisions 413 

(range of values). For dry matter and total sugars, the PLS results had a better ability 414 

than the random forest ones to estimate their distributions in apple slices. With the 415 

rapid scanning of apple slices and a limited number of chemical measurements, this 416 

method showed the great advantages of a simple fruit sampling, less experimental 417 

deviations caused by rapid oxidation of fruit, and a high efficiency of model 418 

developments. This method opens the possibility to more systematically evaluate the 419 

fruit variability and heterogeneity in future projects. 420 
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Figure captions: 548 

Fig. 1. The photographs of Braeburn apple slices and the first principal component 549 

(PC1) score (from the PCA results on all apple groups) plot of all near-infrared 550 

hyperspectral pixels (990- 2450 nm) for each slice (A, B, C, D, E, F). The selected 551 

ROIs were labelled with black circles. 552 

Fig. 2. The boxplots of: (a) dry matter, (b) total sugars, (c) fructose, (d) sucrose, (e) 553 

glucose, (f) malic acid, (g) sum of polyphenols of ‘Braeburn’ (BR); ‘Granny Smith’ 554 

(GS); ‘Royal Gala’ (GA); thinned ‘Golden Delicious’ (GD Th+) and non-thinned 555 

‘Golden Delicious’ (GD Th-) apples. 556 

Fig. 3. Comparison of the measured and the full-cross validated (a) dry matter content 557 

(DMC) and (b) total sugars content (TSC) of the 141 ROI samples; and the most 558 

contributing wavelengths for (c) DMC and (d) TSC prediction, using the 559 

leave-one-out PLS regression on the ROI averaged spectra. 560 

Fig. 4. The distribution of total sugars content (TSC) in apple slices predicted by the 561 

LOO- PLS models developed based on the ROI averaged spectra. 562 
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Table 1 Leave- one- out partial least square (LOO-PLS) and random forest (RF) results of apple internal quality traits using the averaged 572 

spectra of ROIs. 573 

Parameters Measured range SD Models 
Full-crossed validation (n = 141) 

Rcv
2 RMSEcv RPD LVs 

dry matter (mg/g) 86.2- 195.3 21.9 
PLS 0.83 9.7 2.39 7 

RF 0.67 14.8 1.58 7 

total sugars content (g/kg) 58.8- 156.8 18.7 
PLS 0.81 8.4 2.20 5 

RF 0.78 9.2 2.11 4 

fructose (g/kg) 19.8- 91.6 15.4 
PLS 0.38 9.0 1.35 9 

RF 0.32 10.1 1.24 8 

sucrose (g/kg) 9.1- 98.7 8.4 
PLS 0.67 4.9 1.73 8 

RF 0.65 5.8 1.40 6 

glucose (g/kg) 5.7- 21.1 3.0 
PLS 0.29 2.5 1.19 6 

RF 0.27 2.5 1.18 6 

malic acid (g/kg) 2.3- 11.4 2.2 
PLS 0.31 2.1 1.23 7 

RF 0.15 2.3 1.08 8 

Sum of polyphenols (g/kg) 0.13- 0.77 0.16 
PLS 0.14 0.17 1.01 8 

RF 0.13 0.21 0.85 9 
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