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Daily transcriptomes of the 
copepod Calanus finmarchicus 
during the summer solstice at high 
Arctic latitudes
Laura Payton   1,2 ✉, Céline Noirot3, Claire Hoede   3, Lukas Hüppe1,2,4, Kim Last5, 
David Wilcockson   6, Elizaveta A. Ershova7,8, Sophie Valière9 & Bettina Meyer   1,2,4

The zooplankter Calanus finmarchicus is a member of the so-called “Calanus Complex”, a group of 
copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial 
link between primary production and higher trophic levels. Climate change induces the shift of C. 
finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we 
generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme 
time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the 
northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an 
average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. 
We detail the quality assessment of the datasets and the complete annotation procedure, providing 
the possibility to investigate daily gene expression of this ecologically important species at high Arctic 
latitudes, and to compare gene expression according to latitude and sea ice-coverage.

Background & Summary
The copepod Calanus finmarchicus (Crustacea, Copepoda) is a key zooplankton species in the northern Atlantic 
food web as it converts sugars from algae into energy rich lipids that sustain higher consumers including marine 
fish larvae and seabirds1–3. Its high abundance and biomass also makes it an important contributor to ocean 
carbon flux4. The species inhabits a large latitudinal range from ~40° up to 80° N5. However, recent findings 
show that C. finmarchicus is undergoing temperature driven geographical shifts northwards because of climate 
change6–8, the effects of which are at their most extreme in the Northern Atlantic and Barents Sea. Therefore, 
the copepods will experience a change between the photoperiods they are adapted to at lower latitudes and 
the extreme high-latitude photoperiods. Photoperiodic variation is particularly pronounced in the Arctic with 
rapid change over short latitudinal ranges. The impact of such extreme photoperiods on non-endemic species is 
unknown, and the northward expansion of organisms at high latitudes may be limited by the adaptive capacity of 
their endogenous timing systems to extreme photoperiods8,9.

Endogenous timing systems, or biological clocks, are ubiquitous ancient and highly adaptive mechanisms 
enabling organisms to track and anticipate environmental cycles and prepare biological processes accordingly10,11. 
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Since the identification of circadian clock genes in C. finmarchicus12, studies have shown that this species pos-
sesses a functional clock that might be involved in the timing of both diel and seasonal events, such as the eco-
logically and biogeochemically important diel vertical migration (DVM)13 or diapause14. However, the Arctic 
environment is characterized by dramatic seasonality resulting in permanent illumination during Midnight Sun 
and permanent darkness during Polar Night15. As the circadian clock is entrained and synchronized by daily 
light/dark cycles, the persistence of daily biological processes in Arctic organisms during the absence of those 
remains uncertain16,17, as well as the consequences for newcomer species due to global warming8,9. Moreover, 
the Arctic is characterized by strong fluctuations in sea ice-cover, reflecting on biotic and abiotic factors, such as 
species communities and interactions or light penetration18,19.

Copepods are among the important non-model invertebrates for which genomic resources are still limited, 
one barrier being that many species, including C. finmarchicus, have large genomes20,21. The de novo transcrip-
tome of C. finmarchicus22 represents a useful resource for assessing the impact of global warming in this species 
of high ecological interest. In addition to differential gene expression analyzes, RNA sequencing has increased the 
ability to study the expression of rhythmically expressed mRNAs23–25. Indeed, at the molecular level, the endoge-
nous clock machinery drives the rhythmic expression of downstream genes whose rhythmic translation and func-
tion ultimately underlie daily oscillations at cellular and organismal levels25. Note that in the field, environmental 
cycles also directly generate rhythms independently from the clock. Thus, temporal transcriptomic studies allow 
a major breakthrough in the understanding of daily dynamics of biological processes in the field.

In this study, we performed RNA sequencing on temporally collected in situ samples to generate a daily tran-
scriptome of C. finmarchicus in the high Arctic during summer solstice period when the sun remains high above 
the horizon with minimal altitude variation. Sampling of C. finmarchicus stage V copepodites was performed 
at 4 h intervals within a 24 h cycle at two ocean stations along a latitudinal gradient. The northern station (82.5 
°N, Nansen Basin) was characterized by sea ice-coverage, while the southern one (74.5 °N, Barents Sea) was sea 
ice-free. In addition to providing the raw data, we describe its quality assessment and the alignment to the refer-
ence transcriptome to verify reliability and determine transcript quantification. Finally a complete annotation is 
performed and two normalized datasets are provided for further transcriptomic data exploration of this species.

Methods
Sampling design.  The sampling strategy was specifically designed for the detection of rhythmic tran-
scripts25,26 although it does not exclude classic differential expression analysis27. Sampling design and analysis 
strategy are presented in Fig. 1, Table 1 and Supplementary Table 1. Sampling covered a complete 24 h cycle at 
4 h intervals, resulting in seven time points per station. At each station, samplings were performed at similar 
time intervals of: 14–15 h, 18–19 h, 22–23 h, 2–3 h, 6–7 h, and 10–11 h (all times noted in local time (UTC + 2)). 
Sampling at “North” station, JR85, started on 18th June (3 days before the summer solstice) at 10–11 h and ended 
on 19th June at 10–11 h. Sampling at “South” station, B13, started on 30th June (9 days after the summer solstice) 
at 14–15 h and ended on 1st July at 14–15 h. At each timepoint the water column was sampled from 200 m to the 
surface with vertical hauls of a WP2 plankton net (opening ∅: 57 cm, net length: 236 cm, mesh size: 200 µm) with 
a meshed bucket cod end (mesh size: 200 µm) at a speed of 0.5 m*s−1. Transferring the animals from the net into 
the stabilization solution was done within less than 12 minutes for all samplings. A 12 h period of incubation at 
2–4 °C was allowed to soak the samples thoroughly with the RNAlater stabilization solution (Ambion, UK) before 
they were transferred to −80 °C for further transport and storage.

Sites description.  Sampling has been conducted during Cruise JR17006 of the RRS James Clark Ross in 
summer 2018 at two stations along a latitudinal gradient. The station “North” was sea ice-covered and located 
in the Nansen Basin (JR85; 82.56°N, 30.85°E). The station “South” was sea ice-free and located in the southern 
Barents Sea (B13; 74.5°N, 30°E). Water depth at “North” was 3700 m and at “South” was 360 m. The sun’s altitude 
was always above the horizon but still showed diel oscillations of altitude above the horizon from 16 ° at midnight 
to 30.9 ° at midday at “North”, and from 7.7 ° at midnight to 38.6 ° at midday at “South” at the times of sampling 
(all times noted in local time (UTC + 2)). Sites were exposed to semidiurnal tide regimes, i.e., 2 tides per day, with 
a maximum amplitude of ± 0.47 m at JR85 and ± 0.36 m at B13 at times of sampling. Maps with the location of the 
sea ice edge at the time of sampling at “North” are available from the meereisportal28 (https://data.meereisportal.
de/gallery/index_new.php?active-tab1=method&ice-type=satellite&satellite=A&region=n&resolution=dai-
ly&minYear=2018&minMonth=6&minDay=18&maxYear=2018&maxMonth=6&maxDay=19&show-
Maps=y&dateRepeat=n&submit2=display&lang=en_US&active-tab2=satellite). Modeled data of sun altitude 
were obtained from the United States Naval Observatory (https://aa.usno.navy.mil/data/docs/AltAz.php, USNO, 
USA). Information on the tidal dynamics have been drawn from the TPX08 model29 by using the OTPS pack-
age (Tidal Prediction Software, http://www-po.coas.oregonstate.edu/~poa/www-po/research/po/research/tide/
index.html), via the mbotps program30 (MB-System). Solar altitude, tidal height and sea-ice cover during the 
sampling campaign at both latitudes are detailed in Supplementary Table 2. Temperature, pressure (depth), con-
ductivity (salinity), oxygen saturation (SBE 43, Sea-Bird Electronics) and Chlorophyll a (Chl a) fluorescence 
(Aquatracka III fluorometer, Chelsea Technologies Group, UK) were measured from the surface to 200 m depth 
and are available in Hueppe et al.31.

Copepod sorting.  Copepods were sorted at 2 °C under a stereo microscope for species (C. finmarchicus) and 
stage (CV). To distinguish C. finmarchicus from its closely related congener C. glacialis, morphological indicators 
were used, in particular the redness of the antenna, which has been shown to be a good indicator in the regions 
of sampling32; see also the molecular validation of morphological identification, below. For each timepoint and 
station, 3 replicates of 15 C. finmachicus CV were sorted. The choice to pool 15 individuals was made to (1) get 
the sufficient amount of RNA required for RNA sequencing and quantitative real-time PCR analyses and (2) 
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increase the number of individuals (315 copepods per station in total) thereby decreasing the effect of individual 
variability.

RNA extraction.  Each replicate was distributed to a 2 ml Precellys® homogenization tube (Bertin 
Instruments, France), containing a mix of 1.4 mm and 2.8 mm ceramic beads and homogenized in 600 µl of 
TRIzol® reagent (ThermoFisher Scientific, USA) with a Precellys® 24 Tissue Homogenizer (Bertin Instruments, 
France), using two times 15 sec. of homogenization at 5000 rpm with a 10 sec. break between. For RNA extraction, 
a Phenol/Chloroform based single-step extraction in combination with a spin column based solid phase extrac-
tion (Direct-zol™ RNA MiniPrep Kit, Zymo Research, USA) was used. Genomic DNA was removed by DNase I 
digestion on column as part of the RNA extraction kit and total RNA was eluted in ultra-pure water. A portion of 
the RNA of each of the samples was used to investigate relative expression of 8 candidate genes with SYBRGreen 

10-11h 14-15h 18-19h 22-23h 2-3h 6-7h 10-11h

“North”, JR85, 82.5 °N, 30 °E, ice-covered / 18.06.2018 – 19.06.2018

14-15h 18-19h 22-23h 2-3h 6-7h 10-11h 14-15h

“South”, B13, 74.5 °N, 30 °E, ice-free / 30.06.2018 – 01.07.2018

Protocol 1

Sampling at 4h intervals in the water column from 200 m to the surface, to cover a 24h 

cycle, at two high Arctic stations.

Protocol 3

RNA extraction of 42 samples.

Protocol 4

RNA-sequencing of 42 samples.

Protocol 2

Sorting of 3 replicates of 15 C. finmarchicus stage CV per time and per station.

One day during the high Arctic summer solstice

Horizon

Time

12h 12h00h

Fig. 1  Overview of the experimental workflow used to generate the transcriptomic data output (all times noted 
in local time (UTC + 2)). Sample details are available in Supplementary Table 1.

Station
Number of 
timepoint

Sampling 
frequency

Total 
duration of 
sampling

Number of 
replicate per 
timepoint

Total 
number of 
samples

Sequencing 
strategy Reads Platform

“North” 7 4 h 24 h 3 21 RNA-seq paired-end 
2 × 150 pb Illumina NovaSeq

“South” 7 4 h 24 h 3 21 RNA-seq paired-end 
2 × 150 pb Illumina NovaSeq

Table 1.  Summary of sampling and sequencing strategy. Details are available in Supplementary Table 1.
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based quantitative real-time PCR (qPCR) on candidate genes, using the 2−∆Ct method32 and the geometric mean 
of elongation factor 1α and 16 s rRNA as reference, as described by Hueppe et al.31. Another portion of each sam-
ples was send to GeT-PlaGe core facility in dried-ice for RNA sequencing.

RNA sequencing.  RNA sequencing was performed at the GeT-PlaGe core facility, INRAE Toulouse. The 42 
RNA sequencing libraries were prepared according to Illumina’s protocols using the Illumina TruSeq Stranded 
mRNA sample prep kit to analyse mRNA. Briefly, mRNA were selected using poly-T beads. Then, RNA were 
fragmented to generate double stranded cDNA and adaptors were ligated to be sequenced. 11 cycles of PCR 
were applied to amplify libraries. Library quality was assessed using a Fragment Analyser (Advanced Analytical 
Technologies, Inc., Iowa, USA) and libraries were quantified by qPCR using the Kapa Library Quantification Kit 
(Roche). RNA sequencing experiments have been performed on a NovaSeq S4 lane (Illumina, California, USA) 
using a paired-end read length of 2 × 150 pb with the Illumina NovaSeq Reagent Kits.

Reads alignment and quantification.  42 RNA sequencing libraries were obtained (Fig. 1, Table 1, and 
Supplementary Table 1). The number of paired reads per library was between 74 million and 276 million with an 
average of 126 ± 5 million (mean ± SE) reads. The RNA sequencing libraries reads quality were evaluated using 
FastQC33. Contamination was checked by aligning reads against E. coli, Yeast and PhiX genomes.

The Calanus finmarchicus de novo transcriptome22, based on different life stages and deposited to Bioproject 
PRJNA236528, was used as the reference transcriptome. It is composed of 206,012 contigs and presents good 
results of quality assessment, with a nearly complete BUSCO set22,34. Reads were aligned to the de novo tran-
scriptome with BWA-MEM (http://bio-bwa.sourceforge.net/bwa.shtml). Quantification was performed with 
SAMtools35 idxStats to generate the quantification matrix. The matrix was filtered with edgeR36 and only contigs 
with more than 1 CPM (Count Per Million) in at least one sample were kept, providing a matrix of 76,550 contigs. 
Information on the datasets resulting from this study is available in Table 2.

Annotation.  We provided different annotations for all further analysis. Contigs were aligned with 
DIAMOND37 on NR (2019-09-29), Swissprot and Trembl (2018-12) to retrieve corresponding best annotations. 
An annotation matrix was then generated by selecting the best hit for each database if: i) the percent of the 
query length covered by the alignment was higher than 60%; ii) the percent of the subject length covered by 
the alignment was higher than 40%; iii) the percent of identity of the alignment was higher than 40%. Contigs 
were also processed with InterProScan38 to scan InterProScan signatures. A GO was assigned to each contig 
with an InterProScan hit containing a GO annotation. Information on the datasets resulting from this study is 
available in Table 2. Note that a previous annotation of Calanus finmarchicus reference transcriptome22 against 
Non-redundant (NR) protein database is also available at https://doi.org/10.5061/dryad.11978.

Normalization.  Two normalizations are proposed (down-sampling normalization and RLE normalization) 
but the choice of normalization depends on the analysis required downstream. For a rhythmic analysis, we sug-
gest down-sampling the mapped reads to the lowest number among the 42 samples (down-sampling normali-
zation), i.e. to 70.4 million properly mapped reads per sample for all samples (after filtering), in order to adjust 
for differences in sequencing depth among samples23,25,39. This was performed with StreamSampler.jar (https://
github.com/shenkers/sampling). EdgeR36 was used to perform RLE normalization, since it is more appropriate 
for differential expression analysis. Information on the datasets resulting from this study is available in Table 2.

DOI Availability File Name Description File format

— https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA628886

SRR11748365.fastq.gz to 
SRR11748406.fastq.gz Raw RNA sequencing data fastq

https://doi.org/10.6084/
m9.figshare.c.5127704

https://doi.org/10.6084/
m9.figshare.c.5127704

PRJNA628886_raw_
quantification_206K.tsv.gz

Raw count matrix of the 206,012 
contigs tsv

76k_ids_list.txt List of identifiers corresponding to 
the 76,550 contigs after filtering txt

PRJNA628886_quantification_
downsampled_76k.tsv.gz

Down-sampling normalized 
quantification matrix tsv

PRJNA628886_quantification_
RLE_76k.tsv.gz

RLE normalized quantification 
matrix tsv

Interprot_annot_206K.gff3 Gff3 InterProScan annotation of 
the 206,012 contigs gff3

Interprot_annot_206K.tsv Tabulated InterProScan 
annotation of the 206,012 contigs tsv

diamond_annotation_206k.tsv
Tabulated DIAMOND annotation 
matrix of the 206,012 contigs 
(NR,swissprot,trembl)

tsv

diamond_annotation_76k.tsv
Tabulated DIAMOND annotation 
matrix of the 76,550 contigs 
(NR,swissprot,trembl)

tsv

Table 2.  List of available datasets related to the study (NCBI Bioproject PRJNA62888640 and figshare collection 
512770441). Details are available in Supplementary Table 1.
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Data Records
Raw reads were gathered in the NCBI BioProject PRJNA62888640 which includes all BioSamples used for the 
study (Table 2, Supplementary table 1). We also provide the following in figshare collection 512770441 (Table 2): 
the quantification matrix for the 206,012 contigs; the list of identifiers corresponding to the 76,550 contigs after 
filtering; the two suggested normalization matrices (down-sampling and RLE) and; the datasets annotations 
(DIAMOND annotation matrix, InterProScan annotation, GO association).

Technical Validation
Molecular validation of morphological identification.  Since C. finmarchicus’ Arctic congener C. gla-
cialis also occurs in the region of sampling and differences between the species can be very subtle42, morpho-
logical identification was validated by molecular species identification on a subset of samples from the same 
stations21,43. DNA was extracted from individual copepods using the HotShot method44, and the species-specific 
nuclear insertion/deletion (InDel) marker G-150 was amplified using a modified protocol from Smolina et al.45. 
Identification was done by accessing the size of the resulting amplicon via electrophoresis on a 2% agarose gel. 
Results have shown that 99% of the individuals identified as C. finmarchicus by the morphological identification 
method were also clearly identified as C. finmarchicus by the molecular identification method, while 0.1% were 
not clearly identified and 0.7% were identified as the Arctic congener Calanus glacialis (n = 305 individuals).

Extraction and RNA integrity.  RNA extraction procedures were performed with randomization of sam-
ples to ensure reliable and unbiased data production. RNA purity was assessed by OD measurements with a 
NanoDrop 8000 spectrophotometer (ThermoFisher Scientific, USA), and all 260/280 and 260/230 OD ratio was 
superior to 1.9. RNA integrity was evaluated with a Fragment Analyzer (Advanced Analytical Technologies, Inc., 
Iowa, USA; RNA Kit (15nt) Standard Sensitivity, Agilent). Due to a non-conventional 28 S/18 S ribosomal ratio 
in this species, sample quality was evaluated on the electropherogram46. No degradation in the inter region was 
observed. Total RNA samples were stored at −80 °C.

Raw reads assessment and quantification overview.  All samples passed the FastQC33 “base quality 
control”. No relevant contamination hit was found after the alignment against E. coli, Yeast and PhiX. The map-
ping rate against the reference transcriptome22 of 206,012 contigs was higher than 72.4% for properly paired reads 
and higher than 93.6% considering both paired and single mate reads, validating the raw reads quality (Fig. 2, 
Supplementary Table 3). Furthermore, over the 42 samples, the maximal percentage of multi-mapped alignment 
is of 3.31% (Fig. 2, Supplementary Table 3).

For an overview of the quantification matrix, a principal component analysis (PCA) was generated on the 
raw pseudo-count (log2 (count + 1)) non-normalized matrix (Fig. 3). Results showed a clear separation between 
samples from “North” and “South” stations, indicating environmental variations that might be due to latitude 
and/or sea ice-coverage.

Filtering.  Of the 206,012 transcripts, 37% (76,550) were expressed above the threshold of 1 CPM. This result 
corroborates previously observed results on the C. finmarchicus transcriptome22. Thus a large proportion of 
the whole contigs (63%) exhibited an extremely low level of expression, representing only 1.32 ± 0.04% of total 
aligned reads at “North”, and 1.27 ± 0.05% at “South” (Table 3, Supplementary Table 4).

Contigs annotation.  By selecting the best hit for each database, the annotation matrix generated with 
Diamond37 has led to 36,274 and 22,527 contigs with an annotation in at least one database out of the 206,012 and 
76,550 contigs respectively (Table 4). Moreover, the number of unique hits for each database is always lower than 
the number of contigs annotated by the respective database, highlighting the contigs’ functional redundancies.

The InterProScan annotation provided annotations from many protein signature databases. The main results 
are presented in Table 5 and Supplementary Table 5. A GO was attributed to 65,924 contigs over the whole tran-
scriptome (206,012 contigs), while 33,057 contigs out of the 76,550 contigs with an expression level higher than 1 
CPM in at least one sample had a GO annotation (Table 5, Supplementary Table 5).

   
   

   
   

   

 

Fig. 2  Mapping statistics of the 42 samples against the set of 206,012 contigs. Number of million (M) reads: 
paired, single mate, and unmapped. Details are available in Supplementary Table 3.
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Quantitative real-time PCR data for normalization verification.  The relative expression of six 
core circadian clock genes (clock, cycle, period1, timeless, cryptochrome2, vrille) and 2 circadian clock-related 
genes (cryptochrome1 and doubletime2) was investigated by quantitative real-time PCR and are available in 
Supplementary Table 6, allowing the verification of RNA sequencing normalization for further investigations. 
Regarding the two normalizations, the down-sampling normalization was selected for a rhythmic analysis 
based on concordant temporal expression profiles with qPCR data (using RAIN algorithm47), while the RLE 

Fig. 3  Principal component analysis of the 42 samples based on expression levels of the whole transcriptome 
(206,012 contigs). “Groups” grouping the 3 replicates per time and per station.

Station
Average number of aligned reads 
on full dataset (206,012 contigs)

Average number of aligned reads 
after filtering (76,550 contigs)

Percentage of aligned reads 
discarded by filtering

“North” 117.9 ± 5.4 116.3 ± 5.3 1.32 ± 0.04%

“South” 129.9 ± 9.3 128.3 ± 9.2 1.27 ± 0.05%

Table 3.  Average number (million, mean ± SE) of alignments per station and percentage of alignments 
discarded by filtering contigs with very low expression. Details are available in Supplementary Table 4.

Dataset Database Number of contigs
Number of unique hit 
in target database

206,012 contigs

NR 32,637 16,165

Trembl 28,845 15,518

Swissprot 11,668 5,486

With an annotation in at least one database 36,274 —

76,550 contigs

NR 21,171 11,045

Trembl 17,988 10,051

Swissprot 8,456 4,343

With an annotation in at least one database 22,527 —

Table 4.  Number of contigs annotated with DIAMOND against NR, TREMBL and Swissprot and number of 
unique hits in the target database.
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normalization has been validated for differential expression analysis of the mean level of expression between 
stations, using the 21 samples of each stations as replicates.

Usage Notes
We present here the first in situ daily transcriptomes from the high Arctic, where molecular investigations of 
biological rhythms are exceptionally limited15,16. The samplings have been realized during drastic Polar photic 
conditions, i.e. the summer solstice, when daily oscillations of the Sun are minimal, high in the sky and always 
above the horizon15. The proposed datasets are thus novel and of interest due to the unique geographical location 
and time of year, the ecological importance of C. finmarchicus, and the rigorous temporal sampling strategy. 
Another strength of this dataset is the high depth of the RNA sequencing, with an average of 126 ± 5 million of 
reads (mean ± SE) per sample, which optimizes the detection of rhythmic transcripts25 in a species with a large 
genome20,21. Finally, the elaborate annotation of the large transcriptome is now publicly available and is thus 
accessible for further research.

The sampling strategy is optimized for rhythmic analysis, and particularly adapted for RAIN algorithm analy-
sis23,25,47. Moreover, dataset allows powerful differential gene expression analysis using the 21 samples per station 
as replicates providing time-integrated detection of differentially expressed genes in C. finmarchicus with latitude/
sea ice-cover. With climate driven environmental changes, this dataset ultimately constitutes new insights into 
transcriptomic regulation in the northward migrating copepod C. finmarchicus.

Code availability
Parameters to software tools involved are described in the following paragraph.

FastQC: version 0,11,2, --nogroup --casava.
DIAMOND: version v0.9.22, parameters: -f 6 qseqid qlen qcovhsp pident score evalue length sseqid slen stitle.
InterProScan: version 5.29–68.0, --goterms -t n -dp -f TSV, gff3 parameters.
BWA: version 0.7.17, standard parameters, mem algorithm.
SAMtools programs (view, sort, index and idxStats, flagstat): version 1.8, standard parameters.
EdgeR: version 3.26.5.
StreamSampler.jar: version 1.0.
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