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Abstract 10 

Granular materials have a complex collective behavior based on simple interactions between grains. The 11 

global behavior stems from dynamic rearrangements in the micro-structure. The local increase (resp. 12 

decrease) of the density generates jamming (resp. unjamming). In this paper, instabilities in the form of 13 

localized bursts of kinetic energy are studied at both the micro-scale (i.e. grain scale) and meso-scale 14 

(i.e. cluster scale). The bursts are defined from the variation of kinetic energy. The meso-domains (grain 15 

loops in 2D) are built from the tessellation of the medium. We analyze the gain and loss of meso-16 

structures during a localized burst. Surprisingly, micro-structural reorganizations are able to keep the 17 

overall statistical equilibrium constant. The introduction of strain-like and stress-like quantities at the 18 

mesoscopic scale makes it possible to propose an expression that can be assimilated to mesoscopic 19 

second-order work. At this intermediate scale, the negative values of the second-order work are 20 

correlated to the appearance of bursts of kinetic energy, which stands for a meso-scale counterpart of 21 

Hill’s macroscopic criterion of mechanical instability. 22 
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1. Introduction 1 

Granular materials exhibit a complex behavior. A set of solid grains can behave collectively like a solid, 2 

in quasi-static regime, or like a fluid, in an inertial regime. Understanding and modeling the diversity of 3 

behavior and especially the inertial transition has been an active subject for many years (Cambou, Jean, 4 

& Radjaï 2013, Forterre & Pouliquen 2008, Vescovi et al. 2018). Inertial transition has a key role to 5 

play in the triggering of natural hazards such as landslides or avalanches, or in the failure of civil 6 

engineering structures such as earth dams or levees (Wautier et al. 2018b). For such events, bursts of 7 

kinetic energy are signatures of mechanical instability and they stand for early clues of inertial 8 

transitions (Darve et al. 2004, Gaume et al. 2011, Wautier et al. 2018a). Thus, a close look at these bursts 9 

makes a lot of sense to anticipate regime changes in granular materials (Peng et al 2016, Gaume et al. 10 

2018, Marteau et al. 2018, Walker and Tordesillas 2016, Welker and McNamara 2011). Although these 11 

instabilities can have consequences at the macro-scale, they come from sources at the microscopic scale. 12 

By looking at small scales, we tend to find precursors to the bursts and identify inertial transition 13 

mechanisms. However, it should be emphasized that the constitutive features of granular materials stem 14 

from grain rearrangements and subsequent geometrical transformations. Although local behaviour 15 

dictates the mutual interaction between contacting particles, mechanisms at the mesoscopic scale are 16 

also thought to be very important. As a desire to bridge the gap between constitutive purposes at the 17 

macro-scale and elementary considerations at the micro-scale, multi-scale approaches are often 18 

considered to study granular materials (Liu et al. 2018, Nguyen et al 2009, Nguyen et al. 2012, Staron 19 

et al. 2005, Zhu 2016). Meso-structures such as force chains (Peters et al. 2005, Radjai et al. 1996, 20 

Tordesillas 2007, Wautier et al. 2017, Wautier et al. 2018b) and grain loops (Liu et al. 2018, Liu et al. 21 

2020, Zhu et al. 2016) have already proven to be relevant to give information on how forces and 22 

geometrical reorganization take place. It is also on a meso-scopic scale that experimental investigations 23 

are currently being carried out (Le Bouil et al. 2014). 24 

In the context of continuum mechanics, including granular materials, instabilities depend on a 25 

strain/stress state in comparison with loading conditions. Nicot and Darve (2007) and Nicot et al. (2009, 26 

2012) have formulated a criterion resuming Hill’s sufficient condition of stability (1958). For a material 27 

point and for small increments, this criterion reads as follow : “For a given equilibrium (σ,ε) reached 28 

after a given loading history, the material point is unstable if there exists at least one stress increment 29 

∆σ, associated with a strain response ∆ε such that ∆σ:∆ε<0”. For granular materials, Nicot and Darve 30 

(2007) have already derived the relationship between kinetic energy variations and the second-order 31 

work at the material point scale. In this work, the second-order work is calculated from either 32 

macroscopic (stress and strain tensors) quantities or as a summation of local terms built on microscopic 33 

quantities (contact forces and inter-granular velocities). The ability of the microscopically defined 34 

second-order work to anticipate the occurrence of micro-burst of kinetic energy has been highlighted 35 

(Darve et al. 2004, Nicot et al. 2007 and 2011, Wan et al., 2017). However, no works proposed yet a 36 
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meso-scale definition of the second-order work attached to physical meso-structures relevant to capture 1 

the driving elementary mechanisms giving rise to the overall behavior of granular materials.  2 

In this paper, we use meso-domains to study bursts of kinetic energy through numerical simulations 3 

based on a discrete element method (DEM) which has proved to be a relevant and powerful tool to study 4 

granular material either from a solid or a fluid like point of view (Méjean et al. 2017, Sibille et al. 2019, 5 

Nguyen et al. 2016). Grain loops are well-defined meso-structures in 2D, but their extension to the 3D 6 

case is still an open question (Nguyen et al. 2020). Therefore, DEM simulations are performed in a two-7 

dimensional set up. Inertial transition potentials and consequences at the micro- and macro-scale are 8 

examined. The evolution of the second-order work is studied on a mesoscopic scale to link potential 9 

instability and inertial transition, which has not yet been done to our knowledge. This paper is organized 10 

as follows. In the first section, 2D biaxial tests are presented. In the second section, we analyze the 11 

evolution of kinetic energy during the biaxial test. The third section proposes a definition of the meso-12 

structures of interest (namely grain loops), and a rationale formulation of strain and stress increments 13 

attached to them. The last section is devoted to the analysis of the results obtained in terms of meso-14 

scale evolutions of micro-structure. 15 

 16 

2. Numerical Set Up 17 

Numerical experiments are carried out with quasi-2D numerical samples using DEM's open-source 18 

YADE code (Šmilauer et al. 2010). Quasi 2D conditions refer to planar samples composed of spheres, 19 

in comparison to the real 2D characterized by planar samples made of discs (Staron et al. 2002, Hadda 20 

et al., 2016). Although 3D simulations are possible, meso-structures are, for the moment, only well 21 

defined in two-dimensional samples by grain loops (Zhu et al. 2016, Liu et al. 2018, Liu et al. 2020, 22 

Nguyen et al. 2012). The definition of meso-domains in 3D samples is still an object of research (Nguyen 23 

et al. 2020) and is out of the scope of this paper. 24 

An idealized granular sample consisting of 25,000 spheres in interaction through an elasto-frictional 25 

contact law is considered in this paper (Figure 1a). The particle radii are uniformly distributed with a 26 

size ratio 𝐷𝑚𝑎𝑥/𝐷𝑚𝑖𝑛 of 3.5. All sample parameters are recalled in Table 1. The spheres are placed 27 

randomly in a square domain which allows working at the material point scale, i.e. at a scale where it is 28 

possible to obtain both global (continuum) and local (discrete) views of the granular medium. In order 29 

to create a dense sample, the friction coefficient 𝜇 at each contact is gradually reduced from 0.7 to 0, 30 

while maintaining a pressure of 100 kPa on the lateral boundaries in the preparation step. For a clear 31 

understanding of the procedure in quasi 2D, the third and unused dimension of the specimen has been 32 

set to one unit length, so that stresses applied on the boundaries can be expressed either in kPa or in N/m 33 

simply by dividing the sum of the contact forces by the sample length or width. Numerical damping is 34 

chosen low, so as not to inhibit the creation and propagation of kinetic energy bursts (Table 1).   35 
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The biaxial compression test is broken down into two phases. An isotropic compression of 𝜎0= 100 kPa 1 

is firstly applied. The confining pressure 𝜎0 is then maintained constant on the lateral boundaries while 2 

imposing a strain rate 𝜀̇ in the vertical direction (Figure 1b, Table 1).  3 

The 2D expressions of the deviatoric stress 𝑞 and the volumetric strain 𝜀𝑣 are 4 

     ,    (1) 5 

The 𝑞 − 𝜀𝑦𝑦 curve is typical of the response of a dense sample as shown in Figure 2, where the vertical 6 

lines A and B represent respectively the characteristic point of the volumetric strain 𝜀𝑣 and the maximum 7 

of the deviatoric stress 𝑞. The curve shows a hardening regime represented by a strong increase leading 8 

to a peak ; then a softening regime takes place, with a small decrease of the deviatoric stress followed 9 

by a plateau. Here the 𝑞 peak is obtained at less than 1% of the axial strain (line B in Figure 2). An early 10 

𝑞 peak is often found with numerical simulations compared to experimental simulations, which is 11 

attributed to the use of the perfect spheres in DEM instead of irregular shapes as with real particles. The 12 

𝜀𝑣 curve is also characteristic of a dense material with, firstly, a small compression behavior, the 13 

maximum of which is reached before the 𝑞 peak (vertical line A in Figure 2), and secondly, a dilation 14 

until the end of the test. 15 

 16 

3. Analysis of bursts of kinetic energy 17 

Using numerical simulation, the data can be analyzed either at the whole sample level or at the grain or 18 

cluster scale. Figure 3 shows the changes in elastic, plastic and kinetic energies as a function of axial 19 

strain during the biaxial test. Kinetic energy is represented with a different scale to highlight the 20 

frequency of large variations. In Figure 3, dashed blue vertical lines highlight the occurrence of the 21 

bursts studied in this paper given by: 22 

   (2) 23 

where 𝑚𝑔 is the grain mass, 𝑅𝑔 is the grain radius, 𝒄𝑔and 𝜔𝑔 are the translation velocity vector and the 24 

rotation velocity of the grain, respectively. 25 

For elasto-frictional contacts (Figure 1a), the stored elastic energy of a contact is  26 

   (3) 27 

where 𝑘𝑛 and 𝑘𝑡 are the normal and tangential stiffnesses, 𝑢𝑛
𝑐  and 𝐮𝑡

𝑐 the normal and tangential relative 28 

displacements at contact, 𝐹𝑛
𝑐 and 𝐅𝑡

𝑐 are the normal and tangential contact forces. 29 

When contact sliding occurs (‖𝐅𝑡
𝑐‖ = 𝜇𝐹𝑛

𝑐), some energy is dissipated. A non-reversible tangential 30 

displacement velocity �̇�𝑡
𝑐 generates a positive plastic dissipation 31 

   (4) 32 
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From the Eqs. (2)-(4), energy variations at the sample scale during the deviatoric loading over a given 1 

time range [t0,t] are obtained by summing the kinetic energy 𝐸𝑐 on the grains, and by summing the 2 

elastic energy 𝐸𝑒 and the plastic dissipation 𝐸𝑝 on the contacts: 3 

   (5) 4 

Local outbursts of kinetic energy are detected if the kinetic energy of a part of the sample is greater than 5 

the mean kinetic energy. The overall kinetic energy of the sample is of the order of 10-8 J. The mean 6 

kinetic energy of a grain (out of 25,000) is therefore of the order of 10-13 J. As shown in Figure 3, there 7 

are many important variations from the mean value. Four bursts of kinetic energy are chosen and studied 8 

(Figure 4). They occur on the 𝑞 plateau (Figure 4a) where a quasi-stationary regime corresponding to 9 

the so-called ‘critical state’ is reached (state at which a granular material can be continuously sheared 10 

under a constant mean pressure without any change in volume). A close look on the deviatoric stress 11 

curve around the appearance of the bursts is provided in Figures 4b, 4c and 4d. This highlights the fact 12 

that the onset of each burst corresponds to a drop in 𝑞. A localized explosion of kinetic energy has thus 13 

some macroscopic consequences in the form of a small transient instability. Burst No.2 and No.3 were 14 

initially detected as a single burst, but after a more detailed examination, they appeared to be two 15 

consecutive bursts that propagate in slightly different areas.  16 

For the sake of clarity, only burst No.4 is investigated in the following. All the presented results are 17 

similar for other bursts. Figure 5 shows a reduced time lapse for the burst 4. It highlights the typical 18 

onset and evolution of kinetic bursts of energy observed on the constant 𝑞  plateau of a drained biaxial 19 

test. In Figure 5, grains that have a kinetic energy at least twice the mean kinetic energy of a grain are 20 

highlighted. From a state where most grains have a low kinetic energy (less than the mean kinetic energy 21 

of a grain), the initiation affects only a few grains, before spreading to nearly half of the sample and 22 

disappearing. In its initiation, propagation and attenuation, the center of the burst moves slightly in the 23 

positive direction of x-axis, but the set of grains with large kinetic energy remains limited and the burst 24 

does not propagate to the whole sample, as it could be observed in case of material instability (Wautier 25 

et al. 2018a). 26 

To better understand the mechanisms that trigger a burst and drive its propagation, we need to 27 

distinguish the area where the burst occurs and propagates from the rest of the sample domain. This is 28 

done with use of a fixed box defined around the burst, considering the location of the start and the 29 

direction of propagation (Figure 5c). On the Figure 5c, the box is displayed, showing a rectangle of 30 

dimensions [0.03 m, 0.032 m] centered on the point (0.045 m, 0.046 m). The same energy variation 31 

analysis as in Figure 3 at the scale of the defined box is reported in Figure 6. The energy variations show 32 

that, when the kinetic energy breaks up (vertical lines), the kinetic energy passes through a peak, while 33 

the elastic energy decreases, and the plastic energy increases (Figure 6). On the basis of these variations, 34 

it is concluded that there is an excess of elastic energy stored in the contacts, which is then transformed 35 
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into kinetic energy (the grains move linearly or rotate) and dissipated by friction (corresponding to a 1 

slip between the grains in the contacts). However, the variations in kinetic energy are very small 2 

compared with the variations in plastic energy. Frictional dissipation is thus the main mechanism active 3 

during the burst of kinetic energy. Kinetic energy, which is the easiest signature of local instabilities, 4 

represents indeed only a small part of the energy transfer from the elastic energy for kinetic outbursts 5 

occurring at critical state in drained biaxial tests. It should be underlined that this analysis depends on 6 

the contact friction. In the two extreme cases of frictionless grains (𝜇 = 0) of fully elastic contacts (𝜇 =7 

+∞), no plastic dissipation can occur, and the elastic energy transforms entirely into kinetic energy. 8 

However, for intermediate friction (corresponding to more realistic materials), and for similar stress 9 

levels, the above analysis holds with dissipative mechanisms being prominent. 10 

These energetic considerations are only a first step towards understanding the origins of bursts. 11 

Additional parameters are required to investigate the location of the burst in a specific area. The sliding 12 

index 𝐼𝑝 for each contact is defined as follows: 13 

   (6) 14 

This index, belonging to the [0,1] interval, is an indicator of the potential instability of a contact (the 15 

value 1 corresponding to contact sliding). The probability density of 𝐼𝑝 for contacts inside and outside 16 

the kinetic energy burst zone is given in Figure 7. Before the burst, a larger fraction of the contacts is 17 

close to sliding (𝐼𝑝 close to 1) in the burst domain than outside. After the occurrence of the burst (Figure 18 

7), no unstable contacts remain in the burst domain (the tail of the 𝐼𝑝 probability density function inside 19 

the burst domain converges to the one out of the burst domain). The probability curve outside the zone 20 

does not change much. 𝐼𝑝 close to 1 is a necessary condition to observe a burst of kinetic energy. Similar 21 

findings were obtained by Wautier et al. (2018a). 22 

This last result reinforces the delineation of the burst zone and provides clues to relate the burst spatial 23 

extension to some underlying microstructure characteristics. There is a strong contrast between the 24 

behavior of grains inside and outside of the area. The burst is likely to be rooted in a zone with high 25 

level of stored elastic energy and high concentration of unstable contacts. The analysis will now be 26 

carried out on a mesoscopic scale, which requires the definition of relevant mechanical quantities at this 27 

scale. 28 

 29 

4. Definition of quantities at the mesoscopic scale 30 

4.1. Definition of meso-domains 31 

In order to define clusters of grains, a convenient method in 2D is to tesselate the sample area with grain 32 

loops. As a result, the sample domain can be seen as the union of loops involving a variable number of 33 

grains. Recent studies have shown the relevance of defining such a meso-scale based on grain loops to 34 
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characterize changes in the micro-structure of granular materials (Nguyen et al. 2012, Zhu et al. 2016, 1 

Liu et al. 2018).  2 

A unique tessellation is obtained, with loops of order 3, 4, 5 and 6+ according to the number of spheres 3 

they contain (Figure 8 show a small portion of the tessellation). The loop porosity is expected to increase 4 

with the loop order. Thus, lower order loops are on average less deformable than higher order loops. 5 

Grain loops play a key role in the reorganization of the micro-structure, as a means of adapting to 6 

external loadings. Non-contact or single-contact grains, called rattlers, are visible inside the high-order 7 

loops in Figure 8. They are also good indicators of reorganization since they are created from broken 8 

meso-structures and they can be trapped in meso-structures under construction. 9 

 10 

4.2. Definition of a mesoscopic second-order work 11 

The ability of a system to develop kinetic energy with no external disturbance from an equilibrium state1 12 

is described by the balance equation of second-order works 13 

   (7) 14 

    ,     (8) 15 

where 𝐸𝑐 represents the overall kinetic energy, 𝑊2
𝑒𝑥𝑡 is the external second-order work, 𝑊2

𝑖𝑛𝑡 is the 16 

internal second-order work, 𝐟 = 𝛔 ∙ 𝐧 and 𝐮 denote the stress and displacement vectors on 𝜕Ω, 𝛔 and 𝛆 17 

denote the stress and strain tensors in Ω, and ∆ is the increment between times t and t +∆t. 18 

There are two requirements for using second-order work criteria for a stability analysis: 19 

- this criterion is most often used when the system control parameters are kept constant, or ∆𝐟 ∙ ∆𝐮=0 on 20 

𝜕Ω, to highlight situations where the deformation of the system can be carried on without any input of 21 

external energy; 22 

- the system must be in balance initially (𝐸𝑐(𝑡) = 0). As 𝑊2
𝑒𝑥𝑡 = 0, the system evolves from a static 23 

situation to a inertial regime (𝐸𝑐(𝑡 + ∆𝑡) > 0) is only if 𝑊2
𝑖𝑛𝑡 < 0.Therefore, Eq. (8) does not apply 24 

once the system is out of equilibrium. 25 

There is a priori no reason for the selected meso-domains to check these two conditions. Despite these 26 

restrictions, we propose to define adequate quantities 〈𝛔〉Ω𝑙
 and 〈𝛆〉Ω𝑙

, corresponding to stresses and 27 

strains in a mesoscopic domain Ω𝑙(𝑡), and to analyze the evolution of a so-called mesoscopic second-28 

order work 29 

   (9) 30 

This approach assumes that the Macro-Homogeneity condition (second-order Hill-Mandel lemma) is 31 

respected on the domain Ω: 32 

                                                           
1 An equilibrium state is characterized by a nil kinetic energy, and by the fact that any variation of energy from the current state 

is a second order function of the applied perturbation. 
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    ,     (10) 1 

 The necessary conditions to ensure the validity of this second-order Hill-Mandel lemma has been 2 

discussed in details in Nicot et al. (2017). Such a relationship has not yet been discussed for mesoscopic 3 

quantities, for which the domain Ω cannot be considered as a representative elementary volume. 4 

Therefore, the specific form of equation (7) at the mesoscale remains to be discussed. Such an analytical 5 

discussion is saved for future investigations as it is out of the scope of the present paper.  6 

 7 

4.3. Definition of the mesoscopic incremental strain 8 

The average strain rate 〈𝛆〉Ω𝑙
on a domain Ω𝑙 is completely defined in terms of quantities on the boundary 9 

∂Ω𝑙 as follows: 10 

   (11) 11 

where 𝐮 is the displacement vector, 𝐧 is the outer normal to Ω𝑙, and ⨂𝑠 denotes the symmetric tensor 12 

product (𝐮⨂𝑠𝐧 = 1

2
(𝐮⨂𝐧 + 𝐧⨂𝐮)). The analysis of kinetic energy at the microscopic scale is carried 13 

out in very small-time steps ∆t. It is therefore relevant to assume that the system undergoes small 14 

perturbations between Ω𝑙(𝑡), and Ω𝑙(𝑡 + ∆𝑡). This point is debatable though and will have to be 15 

considered by further research.  16 

The incremental meso-strain between time t and t+∆t can be expressed by means of the incremental 17 

displacement vector ∆𝐮 = 𝐮(𝑡 + ∆𝑡) − 𝐮(𝑡): 18 

   (12) 19 

where Ω𝑙 and 𝐧 are considered at time t.  As the domain Ω𝑙 is updated at each increment, it is an updated 20 

Lagrangian description which allows large strains at the mesoscopic level over a large number of time 21 

steps.  22 

A grain loop is delimited by branch vectors joining the center of neighbor spheres (Figure 9a). This is 23 

the polygon on which the meso-strain calculations are based. The meso-strain tensor as a grain loop 24 

quantity can be expressed as a function of a linear interpolation of the incremental displacements of the 25 

peripheral grains (Nguyen et al. 2012, Bonelli et al. 2012): 26 

   (13) 27 

where 𝐮𝑘
0  and 𝐮𝑘

1  are the incremental displacement vectors of the vertices of the kth edge (grains centers), 28 

𝑙𝑘 is the length of the kth edge, and 𝐧𝑘 is the normal to the kth edge (outer to Ω𝑙). 29 

 30 

4.4. Definition of the mesoscopic incremental stress 31 
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For the stress tensor, deriving an incremental formulation is more complex than it might appear at first 1 

glance. Indeed, defining a meso-stress is relatively simple with use of Love-Weber or Bagi formulas 2 

(Bonelli et al., 2012, Nicot et al., 2013, Yan et al., 2019), but an incremental formulation requires that 3 

the loops are not reorganized between two close configurations. To address this issue, we are looking 4 

for a definition of incremental meso-stress based on the incremental stresses in the grains. The meso-5 

stress is expressed as the spatial average on Ω𝑙of the micro-stress (Figure 9b): 6 

   (14) 7 

As the local stress tensor 𝛔 is equal to zero in empty space, the integral can be transformed into a sum 8 

over the portions of the spheres included in Ω𝑙, noted 𝑉𝑔 ∩ Ω𝑙: 9 

   (15) 10 

By introducing the average stress on the parts of the spheres included in Ω𝑙, noted 〈𝜎〉𝑉𝑔 ⋂Ω𝑙
, it comes  11 

   (16) 12 

In addition, if the average stress calculated on the part of the spheres included in the loop is assumed to 13 

be equal to the average stress of the grain: 〈𝛔〉𝑉𝑔 ⋂Ω𝑙
= 〈𝛔〉𝑉𝑔 

, the meso-stress is then proportional to the 14 

sum of the grains stress weighted by their volume fraction in Ω𝑙 (Figure 9b): 15 

   (17) 16 

Although the grains are assumed rigid in DEM, they are subject to a local stress 𝛔, which is a 17 

symmetrical second-order tensor and verifies the equation of motion 𝜌�̈� = div(𝛔) and 𝛔 = 𝛔𝑻. Thus, 18 

in dynamic evolution, the average stress 〈𝛔〉𝑉𝑔 
is equal to 19 

   (18) 20 

The grain is only subjected to punctual contact forces vectors 𝐟𝑐 on 𝜕𝑉𝑔, therefore, the left-hand side 21 

term of Eq. (18) is equal to 22 

   (19) 23 

where the index c runs through all contacts of the grain g, 𝐷𝑔 is the grain diameter, and 𝐧𝑐 is the outer 24 

normal to 𝑉𝑔 at contact c.  25 

The kinematics of the rigid grain is described by �̇� = �̇�𝑔 + 𝐐𝑔 ∙ (𝐱 − 𝐜𝑔 ) for any 𝐱 ∈ 𝑉𝑔, where 𝐜𝑔is the 26 

grain center, and 𝐐𝑔 is the second-order skew-symmetric tensor describing the grain rotation. Therefore, 27 

the second right-hand side term of Eq. (19) is equal to  28 



 10 

   (20) 1 

as �̈� = �̈�𝑔 + (�̇�𝑔 + 𝐐𝑔
2 ) ∙ (𝐱 − 𝐜𝑔 ). It is assumed here that the contribution of grain rotation is 2 

negligible compared to the contribution of contact forces. This is justified by the fact that the ratio 3 

between rotation term Eq. (20) and contact force term Eq. (19) scales with 𝐷𝑔
4. Nevertheless, since 4 

contact forces are likely to become very weak during a burst of kinetic energy, this point is debatable 5 

and will have to be verified by further research. 6 

Finally, the expression of the meso-stress is of a form similar to, but different from the Love-Weber 7 

formula for the set of grains concerned: 8 

   (21) 9 

This difference is due to the fact that the domain Ω𝑙is defined by the centers of the grains and does not 10 

contain the entire volume of grains. This definition is similar but not identical to that of Liu et al (2020). 11 

Moreover, this expression is not restricted to a quasi-static evolution and can be extended to dynamical 12 

situations when the contribution of rotations given by Eq. (20) is non-negligible. Note that Eq. (18) is 13 

consistent with the macro-stress definition computed at the scale of the sample Ω: 14 

   (22) 15 

The hypothesis of small geometric transformations between times t and t+∆t allows to suppose that 16 

   (23) 17 

Thus, the incremental meso-stress between time t and t+∆t is now simply defined as follows 18 

   (24) 19 

where Ω𝑙 is considered at time t.  As the domain Ω𝑙 is updated at each increment, it is an updated 20 

Lagrangian description. 21 

 22 

5. Analysis of the changes at the mesoscopic scale during the outburst of kinetic energy 23 

5.1. Evolution of meso-structures during the burst of kinetic energy 24 

The ratio of each loop category (L3, L4, L5, L6+) depends on the nature of the sample and the loading 25 

history. In Figure 10, the evolution of the loop ratios along a biaxial test is given against the volumetric 26 

strain. Before maximum contractancy (vertical line A in figure 4), low order loops are the majority 27 

(about 70% of loops of order 3 and 4), and loops of order 6 or higher are the minority (between 10 and 28 

15% of the total fraction of the loop). However, from the maximum deviatoric stress state (vertical line 29 

B in Figure 4), loops of order higher than 6 are more numerous than those of lower order, while the 30 

fraction of loops of order 5 remains stable. Referring to Liu et al. (2018), two distinct evolutions can be 31 
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envisaged for dense sample when a strain localization develops. In the present biaxial test, no strain 1 

localization is observed. As a result, it is observed that the final proportion of loops found in at the 2 

steady-state are very similar to those reported in Liu et al. (2018) when restricting the analysis to the 3 

shear band domain only. With the help of Figure 2, we can also interpret this evolution from less 4 

deformable loops to more deformable loops as a mesoscopic equivalent of the macro-evolution of the 5 

volumetric strain: the appearance of the dilatancy goes hand in hand with the increase of the fraction of 6 

loops that contain more void. 7 

The evolution rate of grain loops and rattlers are now studied during the burst of kinetic energy, inside 8 

and outside the burst zone. The relative evolution of the number of loops is equal to 
𝑁𝑡

𝑁0
− 1 where 𝑁𝑡 is 9 

the number of loops at time t. Figure 11 shows the concentration of the changes within the burst zone, 10 

even if small reorganizations persist after the burst. Figure 11a shows the rate of change of the 4 main 11 

orders of loops, within the burst area. There is about the same amount of loops created and lost for each 12 

type of loop. This means there are reorganizations of the contacts, but the mesoscopic structure remains 13 

stable on average and regains a similar structure after bursting (note that the contact force distribution 14 

is modified with less contacts close to sliding). However, we can note that the 3, 4 and 5 order grain 15 

loops are broken first (peak of lost loops in the first part of the burst) and then created (peak of gained 16 

loops in the second part of the burst). This is not obvious for 6+ order loops, which are the most affected 17 

meso-structures. Thus, low order loops are lost and transformed in higher-order loops, while higher-18 

order loops are constantly being created and destroyed to ensure the stability of the sample during an 19 

inertial disturbance. Figure 11b shows the evolution of the proportions of new and disappeared rattlers 20 

within the bursting zone in relation to the number of rattlers just before the start of the burst. The 21 

maximum numbers of gained and lost rattlers are not reached simultaneously. This means that the 22 

rattlers are first generated and then lost. This finding is in line with the results obtained with grain loops. 23 

Before the peak of kinetic energy, a significant amount of low order loops are lost, which creates rattlers. 24 

While kinetic energy decreases, lower-order loops are created by capturing the rattlers. The loss of lower 25 

order loops in the first part of the burst (i.e. loops containing little void) is consistent with the existence 26 

of local dilatation as raised in Section III.2 and Figure 6. 27 

Outside the burst zone, no significant trends can be highlighted (Figure 12). Neither grain loops (Figure 28 

12a) nor rattlers (Figure 12b) outside the burst zone are altered in number and nature. Figure 12 shows 29 

that the location of changes in micro-structures depends on the spatial location of the kinetic energy 30 

burst. 31 

Identifying changes at the microscopic scale remains a difficult task, especially since the micro-structure 32 

changes are limited and concern a very small fraction of all loops. These limited changes are most likely 33 

related to the fact that, in this dense set of grains subjected to a drained biaxial compression, most of the 34 

energy is dissipated by friction rather than kinetic energy. However, the meso-domains have made it 35 
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possible to evidence the changes occurring in the burst zone. Grain loops highlight the microscopic 1 

reorganization undergone by the area due to bursting. 2 

 3 

5.2. Analysis of the meso-stress 4 

In Figure 13, each component of the macroscopic stress is compared to the corresponding component 5 

of the weighted average sum of all meso-stresses (the loop contributes for its fraction area of the total 6 

sample domain). The comparison is made on the whole sample domain and on all the biaxial test long. 7 

The dotted lines represent the components of the sum of the meso-stress. They follow very well the 8 

evolution of each corresponding macro-component. The proposed definition of a meso-stress is thus 9 

sound as it corresponds to the usual macroscopic definition of a stress when weighted average of the 10 

meso-stresses is considered. 11 

 12 

5.3. Evolution of mesoscopic second-order work during the kinetic energy burst 13 

Figure 14 shows the spatial distribution of mesoscopic second-order works during the propagation of 14 

the No. 4 kinetic energy burst. Meso-stress and meso-strain increments are defined on macroscopic 15 

increments of axial strain |Δ𝜀𝑦𝑦| = 10-6. Thus, each panel in Figure 14 leads to the same panel of index 16 

in Figure 5, with the exception of the panel (*). The vanishing of mesoscopic second-order work follows 17 

the spatial evolution of kinetic energy, with even wider and more detailed limits. Mesoscopic second-18 

order work reveals some details that cannot be seen simply by looking at kinetic energy. For example, 19 

the panel (*) in Figure 13 is an intermediate step between (a) and (b). In Figure 5, it can be suggested 20 

that the burst appears at the upper center of the sample. However, the panel (*) shows that the instability 21 

originates from the lower right corner and propagates to the upper center of the sample. The origin of 22 

the burst at the lower right corner is also visible in panel (b) of Figure 14, but to a lesser extent. 23 

Although maps of second order mesoscopic work seem to reveal more clearly the origins of the kinetic 24 

burst, one thing to emphasize is that the whole burst area does not only have loops with negative second 25 

order mesoscopic work. Negative and positive mesoscopic second-order loops are often next to each 26 

other. By looking at the volume-weighted average second order work, one can assess the predominance 27 

of negative or positive mesoscopic second order work. For the bounding box of the domain Ω𝑏 shown 28 

in Figure 5, the volume-weighted average of the second-order work reads  29 

   (25) 30 

The evolution of  〈𝑊2〉Ω𝑏
 during the outburst of kinetic energy is shown in Figure 15.  〈𝑊2〉Ω𝑏

 is negative 31 

only at the nucleation of the burst. It then increases to positive values during the burst and then returns 32 

to its pre-burst value. The decrease of 〈𝑊2〉Ω𝑏
 prior to bursting can be seen as a signature of underlying 33 

mechanical instability in the bursting domain. The following increase shows that the active 34 

reorganizations of the micro-structure that occur during the burst allow for rapid restabilization of the 35 

sample and prevent the burst from continuing to grow. As a result, the burst quickly disappears and 36 
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remains localized. On the other hand, it has been shown by Wautier et al. (2018a) that bursts propagating 1 

throughout the sample domain are related to mechanical instabilities at the material point scale.  2 

  3 
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 1 

6. Conclusion  2 

In this paper, we have emphasized the importance of meso-domains in the analysis of a burst of kinetic 3 

energy that can be observed in granular materials. Changes in grain loop highlight structural 4 

displacements at the microscopic scale during bursts. The opening and closing of the grain loops release 5 

kinetic energy, while the micro-structure after bursting is very similar to that before, which ensures the 6 

statistical equilibrium at critical states. Furthermore, focusing on indicators of inertial transition and 7 

mechanical instabilities, we show that the area where the burst occurred contains precursors of kinetic 8 

energy release. On the one hand, a large number of contacts with a sliding index close to 1 is required 9 

to enable the burst to be triggered in a specific area. On the other hand, the criterion of the second-order 10 

work, defined at the mesoscopic scale, predicts the burst of kinetic energy and even gives information 11 

on its origins. These results encourage the further use of meso-domains in the study of instabilities. From 12 

a more theoretical point of view, the proposed introduction of a mesoscale attached to meso-structures 13 

is based on a number of assumptions that will need to be further investigated to assess their validity 14 

where inertial terms could have a larger contribution.  15 

 16 
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 1 

Table 1. Parameters of the numerical simulation. 2 

Grain density 3000 kg/m3 

Friction coefficient 𝜇 0.7 

𝑘𝑛/𝐷 356 MPa 

𝑘𝑡/𝑘𝑛 0.42 

Loading rate 𝜀̇ 0.01 s-1 

Numerical damping coefficient 0.05 

𝐷𝑚𝑎𝑥/𝐷𝑚𝑖𝑛 3.5 

Confining stress 𝜎0 100 kPa 

 3 

 4 

  5 
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Figure 1. (a) Contact law used in discrete element method. The sketch shows the definition of the 1 
stiffness coefficients and how the different components of the force contact are calculated. 2 

(b) Drained biaxial test: representation of the quasi 2D dense sample of 25,000 spheres and loading 3 
conditions. 4 

 5 

 6 

Figure 2. Deviatoric stress and volumetric strain as a function of the axial strain during the biaxial test. 7 

 8 
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 1 

Figure 3. Evolution of elastic energy 𝐸𝑒, plastic dissipation 𝐸𝑝 (left y-axis) and kinetic energy 𝐸𝑐 2 
(right y-axis) as a function of the axial strain during the biaxial test. The reference state corresponds to 3 
the isotropic compression state reached before the deviatoric loading is applied. State A and B 4 
correspond to the characteristic and the peak points shown in Figure 2. The burst of kinetic energy 5 
analysed in this paper corresponds to −𝜀𝑦𝑦 = 0.104 (green dashed line). 6 

 7 

 8 

Figure 4. Analysis of the four bursts considered in the manuscript, in terms of deviatoric stress q 9 
evolution during the biaxial test. The vertical lines correspond to the beginning of bursts. 10 
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 1 
 2 

Figure 5. Reduced time lapse of the burst of kinetic energy No.4. Particles are coloured according to 3 
their kinetic energy (in Joule). The bounding box used to provide an approximate definition of the 4 
burst domain is shown in red. 5 

 6 

 7 

Figure 6. Evolution of the plastic dissipation 𝐸𝑝,of the elastic energy  𝐸𝑒 (left y-axis), and of the 8 

kinetic energy 𝐸𝑐 (right y-axis) during the burst of kinetic energy No. 4. 9 
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 1 

 2 

Figure 7. Sliding index's probability density before (a) and after (b) the burst of kinetic energy inside 3 
(red) and outside (blue) the surroundings of the burst area. 4 
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 6 

Figure 8. Insight of the tessellation of the sample domain into loops. Focus on four loops of different 7 
order (L3, L4, L5 and L6). 8 
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 22 

Figure 9. Sketch of the calculation of the strain (a) and stress (b) defined at the scale of a meso-1 
domain. 2 

 3 

 4 

Figure 10. Evolution of loop fractions as a function of the axial strain during the biaxial test. The 5 
macroscopic volumetric strain is recalled in black. The characteristic point (A) and stress peak (B) 6 
defined in Figure 2 are shown with vertical dashed lines. 7 
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 9 
 10 

Figure 11. Relative variation of grain loops (a) and rattlers (b) in the bounding box domain shown in 11 
Figure 5 (in the vicinity of the burst of kinetic energy).  12 
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 1 
 2 

Figure 12. Relative variation of grain loops (a) and rattlers (b) outside the bounding box domain 3 
shown in Figure 5 (far from the burst of kinetic energy).  4 
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 7 
 8 

Figure 13. Comparison between the macroscopic stress 𝜎𝑚𝑎𝑐𝑟𝑜 and the volume average of the 9 
mesoscopic stress 〈𝜎𝑚𝑒𝑠𝑜〉.  10 
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 1 
 2 

Figure 14. Reduced time sequence of mesoscopic second-order work (𝑊2 based on the Figure 7. (a) 3 
(b) (c) (d) (e) (f) correspond to the same step of Figure 7 while (*) corresponds to an additional step 4 

between (a) and (b). A macroscopic axial strain increment |𝜀𝑦𝑦| =10-6 is used to compute the 5 
incremental meso-strains and meso-stresses. The box delimiting the burst shown in Figure 5 is 6 
reproduced here.  7 
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 1 

Figure 15. Volume weighted average of the second-order work during the burst of energy, in the 2 
neighbour of the initiation of the burst.  3 
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