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 Extracellular enzymes catalyze plant litter decomposition, including 
enzymes that degrade holocellulose (E2) and lignin (E3). To estimate 
relative enzyme activities associated with observed patterns of 
hollocellulose (C2) and lignin (C3) decay, we set observed decay rates equal 
to reverse Michaelis-Menten equations. Results were consistent with 
empirical studies, showing a negative relationship of E2/(E2+E3) to litter 
lignin content, C3/(C2+C3), above a minimum threshold at which lignin 
begins to decay. This threshold was previously reported to be 40% lignin 
content, but our results demonstrated substantial variability with litter type 
and environment. To our knowledge, this is the first mechanistic 
explanation of microbial allocation of cellulolytic and ligninolytic enzymes 
as a function of the lignin concentration of the lignocellulose complex but 
raises further questions about factors controlling the threshold for lignin 
decay, such as nitrogen availability.  
 

 
1. Introduction 
 
Various aspects of plant litter quality affect 
decomposition rates (Berg and Staaf 1980, 
Melillo et al. 1989, Bengtsson et al. 2018). An 
important one is the carbon quality of litter 
determined by the relative proportions of 
different chemical compounds, such as 
cellulose, hemicellulose and lignin. These are 
the main constituents of the plant cell wall and 
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the most abundant forms of organic matter in 
terrestrial ecosystems (Klemm et al. 2005). 
However, cellulose and hemicellulose are 
energy rich polysaccharides whereas lignin is 
a polyphenolic compound and likely energy 
sink for catalysis (Kirk and Farrell 1987). For 
these reasons, the microbial carbon use 
efficiency (CUE; herein assumed to be the 
fraction of decomposed substrate carbon fixed 
into microbial biomass) of holocellulose is 
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generally considered to be positive, whereas 
the CUE for lignin may be negative if the 
energetic cost of lignin decay is greater than 
the yield despite the possible assimilation of 
some lignin carbon into microbial biomass. 
The two compounds usually decompose at 
different rates and many decomposition 
models have long separated them into different 
pools (Paul and Juma 1981). In brief, microbes 
preferentially attack the high-energy 
holocellulose litter fractions during 
decomposition, yielding monosaccharides like 
glucose and xylose that are readily 
metabolized by microorganisms and thereby 
increasing the lignin concentration of 
remaining litter (Melillo et al. 1989). 
However, biochemical linkages between 
polysaccharides and lignin may also 
necessitate the breakdown of lignin to increase 
access to holocellulose (Sinsabaugh and 
Follstad Shah 2011, Talbot and Treseder 2012, 
Campbell et al. 2016).  
 Hydrolytic enzymes such as beta-
glucosidases (BG) depolymerize cellulose, 
which has a linear chemical structure offering 
sequential binding sites for enzymes. In 
contrast, oxidative enzymes (OX) such as 
phenol oxidases and peroxidases depolymerize 
lignin, which has an irregular structure 
composed of several types of linkages and 
subunits that limits effective binding sites for 
enzymes. Lignin present in plant litter affects 
decomposition rates by reducing holocellulose 
accessibility to enzymatic hydrolysis both 
physically (Boerjan et al. 2003) and 
chemically by non-specific enzyme binding 
(Hammel 1997). Consequently, the 
lignocellulose index (LCI = lignin/[lignin + 
hollocellulose]) of plant litter has long been a 
strong predictor of decomposition rate 
(Meentemeyer 1978, Whittinghill et al. 2012) 
and likely influences the microbial allocation 
of extracellular enzymes that catalyze the 
degradation of lignocellulose. 

To our knowledge, the effects of LCI 
on the relative activities of cellulolytic and 

ligninolytic enzymes have not been explicitly 
examined. In contrast, Moorhead et al. (2013) 
described the control of LCI on empirical, first 
order decay rate coefficients (ki) for 
hollocellulose (C2 = cellulose + hemicellulose) 
and lignin (C3) between LCI values ranging 
from 0 (plant litter contains no lignin) to 0.7 
(the empirical maximum amount of lignin, 
defined by Melillo et al. 1982), by assuming an 
energetic cost-benefit relationship between C2 
and C3 decomposition. Carbon use efficiency 
for C2 was considered to be positive, whereas 
CUE for C3 was negative; as LCI increased, 
realized CUE for lignocellulose decay 
decreased. Although a negative CUE seems 
counterintuitive, it simply represents the net 
cost rather than gain in energy from the 
degradation of lignin (Moorhead et al. 2013), 
a cost that is met by the net yield of energy 
from the degradation of holocellulose. In this 
model, the decay rate coefficient for 
holocellulose, k2, is a piecewise, declining 
linear function of LCI, changing slope at an 
LCI value (LCITHR), at which lignin begins to 
decay and above which the decay rate 
coefficient for lignin, k3, is an increasing linear 
function of LCI. Because hydrolytic enzyme 
activity catalyzes holocellulose 
decomposition, and oxidative enzyme activity 
drives lignin decomposition, LCI should relate 
to the proportion of hydrolytic and oxidative 
enzyme activity (Sinsabaugh 2010) needed to 
estimate the decay rate coefficients (ki) for 
holocellulose and lignin, respectively. 

To our knowledge, previous 
decomposition models have not included LCI 
as a control on enzyme expression. However, 
several recent models of plant litter 
decomposition incorporated enzyme pools 
using either the reverse Michaelis-Menten 
(RMM) or standard Michaelis-Menten (MM) 
equations (Tang 2015). The simplest have one 
substrate pool that is degraded by one enzyme 
(e.g., Schimel and Weintraub 2003), while the 
most complex include multiple enzyme pools 
that degrade multiple substrate pools (Allison 
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2005, Moorhead et al. 2012, Abramoff et al. 
2017). In contrast, a suite of recent soil carbon 
partitioning studies (Cotrufo et al. 2015, Soong 
et al. 2015, Campbell et al. 2016) examined the 
relationship between LCI and soil organic 
carbon formation, but without explicitly 
incorporating extracellular enzyme activities. 
An intermediate example is the Millennial 
model (Abramoff et al. 2018), which used 
microbial biomass as a proxy for enzymes in 
MM formulations. 
 In summary, the mechanisms of plant 
litter decomposition are complicated by the 
physical and chemical links between 
holocellulose and lignin that require different 
enzymes to cleave. However, existing 
enzyme-based models have not addressed 
interactions between these substrate pools. Our 
goal was to develop a model to calculate the 
allocation of hydrolytic and oxidative enzymes 
to match observed decay rates of holocellulose 
and lignin, respectively, given litter LCI 
(Moorhead et al. 2013). 
 
2. Modeling methods 
 
2.1 Rationale 
 

Our model balances holocellulose (C2) 
hydrolysis by cellulolytic enzymes (E2) with 
lignin (C3) degradation by oxidative enzymes 
(E3). A key assumption of this model is that 
enzyme-catalyzed reactions tend to occur at 
roughly half the theoretical maximum rate 
(kMAX) (Sinsabaugh et al. 2014); thus VMAX � 
2 ꞏ kMAX ꞏ C for use in the RMM equation. The 
justification for this assumption is that 
enzymes rarely face selection pressures that 
would require them to operate at maximum 
efficiency and so moderately efficient 
enzymes actually optimize resource gain from 
multiple reactions (Bar-Even et al. 2011, Kari 
et al. 2019). Moreover, the half-saturation 
coefficients in these equations (KM) that 
approximate substrate concentrations optimize 
the responsiveness of reaction rates (Klipp and 

Heinrich 1994). Thus, the relationship 
between VMAX and KM should be tightly 
constrained, as verified in a recent meta-
analysis by Sinsabaugh et al. (2014). Given the 
above assumption, the decay of C2 and C3 can 
be estimated with the RMM equation as dCi/dt 
= (2 ꞏ (kMAXi ꞏ Ci) ꞏ Ei) / (KEi + Ei), where KEi 

is the half saturation constant for enzyme 
concentration (Ei) and kMAXi is the maximum 
decay rate coefficient for first-order estimates 
of decomposition rates of substrates 
(Moorhead et al. 2013). In the present study, 
realized ki varies with LCI so that the 
allocation of enzymes should also change with 
LCI. All model parameters are listed in Table 
1. 

The allocation of enzyme pools was 
determined by setting RMM functions equal to 
decay rates estimated by first-order equations 
for both holocellulose and lignin. The linear 
functions of ki at given LCI described by 
Moorhead et al. (2013) were used in place of 
the decay rate coefficients in these equations. 
When LCI ≥ LCITHR:  

 
(2 ꞏ (kMAX2 ꞏ C2) ꞏ E2) / (KE2 + E2) = 
(m3 ꞏ CUE2/CUE3 ꞏ (LCI - LCIMAX) + 
kMAX3) ꞏ C2 

 

(1)

(2 ꞏ (kMAX3 ꞏ C3) ꞏ E3) / (KE3 + E3) = 
(m3 ꞏ LCI + kMAX3) ꞏ C3 

(2)

  
 
and when LCI < LCITHR: 
 
 
(2 ꞏ (kMAX2 ꞏ C2) ꞏ E2) / (KE2 + E2) = 
(m2 ꞏ LCI + kMAX2) ꞏ C2 

 

(3)

dC3/dt = 0 (4)
  
 
 
  
 where mi are the slopes of ki versus LCI 
(Moorhead et al. 2013). These equations were 
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then solved for E2 and E3 in terms of kMAXi, 
KEi, LCI, LCIMAX, and CUEi, when LCI ≥ 
LCITHR:  
 
E2 = - KE2ꞏ (CUE2 ꞏ LCI ꞏ m3 - CUE2 ꞏ 
LCIMAX ꞏ m3 + CUE3 ꞏ kMAX3) / (CUE2 

ꞏ LCI ꞏ m3 - CUE2 ꞏ LCIMAX ꞏ m3 – 2 ꞏ 
CUE3 ꞏ kMAX2 + CUE3 ꞏ kMAX3); 
 

(5)

E3 = - KE3ꞏ (LCI ꞏ m3 + kMAX3) / (LCI 
ꞏ m3 – kMAX3) 

(6)

 
and when LCI < LCITHR: 
 
E2 = - KE2ꞏ (LCI ꞏ m2 + kMAX2) / (LCI 
ꞏ m2 - kMAX2) 
 

(7)

E3 = 0 (8)
 
  
Using the parameter estimates of Schimel and 
Weintraub (2003) and Moorhead et al. (2013), 
and assuming that KE2 = KE3 (Table 1), the 
only variable in equations 1-8 is LCI, 
assuming that CUE2 and CUE3 are constant. 
Although the values of KE are unlikely to be 
identical, we found that modest variations did 
not substantially alter the patterns of model 
behavior. Thus, the relative allocations of E2 
and E3 may be estimated by LCI of litter 
residue to meet empirical patterns of 
lignocellulose decomposition. 
 
 
2.2 Validation 
  
Relatively few decomposition studies report 
both LCI and extracellular enzyme activity 
(EEA) over sufficient time to show 
substantial changes in LCI and make it 
possible to define LCITHR value. For example, 
Lashermes et al. (2016) conducted a 126-day 
laboratory study of lignocellulose decay in 
maize (Zea mays L.) leaves, steams, and roots  
 
Table 1 

Parameters used in the modelling cellulolytic and 
ligninolytic enzyme allocations. 

Parameter Value  Units 

kMAX2 0.1 Maximum 
substrate decay 
rate coefficient for 
cellulose 

d-1 

m2 -0.170 Slope of substrate 
decay rate 
coefficient for 
cellulose 

d-1 

CUE2 0.5 Microbial carbon 
use efficiency of 
cellulose 

unitless 

kMAX3 0.01 Maximum 
substrate decay 
rate coefficient for 
lignin 

d-1 

m3 0.033 Slope of substrate 
decay rate 
coefficient for 
lignin 

d-1 

CUE3 -0.21 Microbial carbon 
use efficiency of 
lignin 

unitless 

LCITHR 0.4 Threshold at which 
lignin decay begins 

unitless 

LCIMAX 0.7 Maximum LCI unitless 

KE2 0.3 Enzyme half 
saturation constant 
for cellulose 

mg C/g 

KE3 0.3 Enzyme half 
saturation constant 
for lignin 

mg C/g 

 
inoculated with a basidiomycete 
(Phanerochaete chrysosporium). They 
reported a final mean LCI value of about 0.22 
and a mean BG/(BG+OX) value of 0.99; thus, 
LCI was too low to initiate much oxidative 
enzyme activity. In contrast, Snajdr et al. 
(2011) measured mass loss, holocellulose and 
lignin content, and extracellular enzyme 
activity during oak (Quercus petraea) litter 
decomposition in a forest over two years near 
Prague, Czech Republic. Litter lignin content 
was relatively high at 38% of initial mass, and 
LCI values increased to approximately 0.69 by 
the end of the study. Although LCI was not 
reported on all dates of enzyme measurements, 
LCI was linearly related to remaining litter 
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mass (LCI = 0.0021ꞏMass+0.5690, N = 5, R2 
= 0.8733) and we used this relationship to 
estimate LCI for observed values of mass loss 
concurrent with all observations of enzyme 
activities. We selected the activity of BG as an 
index to holocellulose decay and the combined 
activities of peroxidase and phenol oxidase 
(OX) as an index to lignin decay. The observed 
relationships between BG/(BG+OX) and LCI 
in decaying litter were compared to our model 
results.  

We also constructed a second 
validation exercise by combining the datasets 
from studies by Magill and Aber (1998) and 
Carreiro et al. (2000). Magill and Aber (1998) 
conducted field decomposition studies of oak 
(Quercus velutina) and maple (Acer rubrum) 
litter over 2 years at Harvard Forest, Mass., in 
which they measured mass loss, lignin, and 
cellulose content. Although Magill and Aber 
(1998) did not measure EEA, final LCI values 
ranged 0.55-0.65. In comparison, Carreiro et 
al. (2000) measured mass loss and EEA during 
long term decomposition of oak (Quercus 
rubra) and maple (Acer rubrum) litter near 
New York, NY, but did not continuously 
measure lignin or cellulose content. We 
combined the datasets from these field studies 
to extrapolate relationships between EEA and 
LCI given mass loss patterns of similar litter 
types under similar field conditions. In the 
study by Magill and Aber (1998), LCI was 
linearly related to percent mass loss in 
decomposing oak litter (LCI = 0.0018 ꞏ Mass 
+ 0.4554, N = 13, R2 = 0.7503) and maple litter 
(LCI = 0.0010 ꞏ Mass + 0.5368, N = 12, R2 = 
0.5226). These relationships were used to 
estimate LCI at observed values of mass loss 
for both oak and maple litter, concurrent with 
observations of enzyme activities (Carreiro et 
al. 2000). Again, we selected the activity of 
BG as an index to holocellulose decay and the 
combined activities of peroxidase and phenol 
oxidase (OX) as an index to lignin decay and 
compared relationships between observed 
BG/(BG+OX) and LCI in decaying litter to our 

model estimates as a second validation 
exercise.  
 
3. Results 
  

Our model allocated holocellulose and 
lignin degrading enzymes in response to 
residue LCI as functions of carbon use 
efficiency similar to the pattern of first-order 
decay rate coefficients (Fig. 1). The cellulose 
decay rate coefficient (k2) decreased linearly 
by 70% as LCI increased from 0 to 0.4 
(LCITHR), and by another 67% as LCI 
increased from 0.4 to 0.7, whereas the lignin 
decay rate coefficient (k3) increased linearly 
from 0 to 0.01 d-1 as LCI increased from 0.4 to 
0.7 (Fig. 1a). The simulated patterns of 
activities for cellulolytic (E2) and ligninolytic 
(E3) enzymes approximated these patterns for 
decay rate coefficients; the allocation of E2 
decreased by 76% as LCI increased from 0 to 
0.4, and by another 74% as LCI increased from 
0.4 to 0.7 (Fig. 1b). In contrast, E3 increased 
from 0 to 0.3 mg C g-1 soil as LCI increased 
from 0.4 to 0.7 (Fig. 2). Despite differences in 
the relative magnitudes of changes in ki’s and 
Ei’s with changing LCI, simulated enzyme 
activities during decay generally followed the 
patterns of change in empirical decay rate 
coefficients. 
 The relationships between EEA and 
LCI (Fig. 2) support the notion that tradeoffs 
in realized CUE balance lignin and 
holocellulose decay (Moorhead et al. 2013). In 
brief, as LCI increases during decomposition, 
the increased density of biochemical linkages 
between holocellulose and lignin necessitate 
the increased degradation of lignin to access 
holocellulose. The degradation of lignin is an 
energy-expensive process, defined herein as 
having a negative CUE (a net energy cost, as 
per Moorhead et al. 2013), resulting in a 
realized CUE for lignocellulose 
decomposition that declines as LCI increases.  
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Fig. 1. a. Decay rate coefficients (d-1) for holocellulose 
(solid line) and lignin (dashed line) and b. amounts (mg 
C g-1 soil) of apparent cellulolytic (solid line) and 
ligninolytic (dashed line) enzyme activities vs. litter 
LCI.  
 
In all cases, the relationship between 
BG/(BG+OX) and LCI was negative above a 
threshold value of LCI (LCITHR), consistent 
with observations by Herman et al. (2008), 
although the LCI threshold for oxidative 
enzyme activity in experimental studies 
differed from the expected value of LCITHR = 
0.4. In the northeast USA, studies by Magill 
and Aber (1998) and Carreiro et al. (2000) 
suggested a LCI threshold for oxidative 
activity of about 0.45 for oak (Fig. 2b) and 
0.55 for maple litters (Fig. 2c). In contrast, the 
Snajdr et al. (2011) data suggest a LCI value 
of about 0.60 for oak litter decomposing in the 
Czech Republic (Fig. 2a).  

 
Fig. 2. Relationships between the allocation of 

apparent enzyme activities (BG/[BG+OX]) and litter 
LCI during decomposition. Simulations with an LCI 
threshold = 0.4 are in solid lines and alternative model 
thresholds suggested by observations are shown by 
dashed lines: a. estimated oak litter LCI from Snajdr et 
al. (2011) including an alternative model LCI threshold 
= 0.6, b. oak litter LCI estimated from Magill and Aber 
(1998) including an alternative model LCI threshold = 
0.45; c. maple litter LCI estimated from Magill and Aber 
(1998) including an alternative model LCI threshold = 
0.55. Enzyme data used in b and c are from Carreiro et 
al. (2000).   

 
4. Discussion 

 
Overall, model results were consistent 

with observed patterns of decline in 
proportional allocation of cellulolytic versus 
ligninolytic enzyme activity with increasing 
LCI in decaying litter despite differences 
between studies in the threshold value of LCI 
at which this proportion began to decline. To 
our knowledge, this represents the first attempt 
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to calculate the allocations of enzymes 
associated with the degradation of the primary 
polysaccharide and polyphenol components of 
plant cell walls, which together account for the 
largest fraction of dead organic matter in most 
terrestrial ecosystems. Unfortunately, too few 
experimental data exist to provide additional 
insights to the controls on these patterns.  

Variations in the apparent LCI 
threshold among studies may result from 
differences in lignin and polysaccharide 
assays, the oxidative enzymes measured, and 
characteristics of study sites. For example, 
Snajdr et al. (2011) measured Klason lignin 
and Magill and Aber (1998) used near infrared 
reflectance spectroscopy (NIRS) to estimate 
lignin content. These measuring techniques 
yield different values that are not necessarily 
comparable, e.g., Van Soest measurements are 
usually lower than Klason measurements (Van 
Soest et al. 2018). Similarly, polysaccharide 
assay methodology varied across these studies. 
Snajdr et al. (2011) measured cellulose using 
gas chromatography after acid hydrolysis, 
whereas Magill and Aber (1998) used near 
infrared spectroscopy (NIRS). In addition, the 
NIRS technique is predictive, with reflectance 
spectra calibrated using either Van Soest or 
Klason lignin and cellulose measurements, 
adding further variation to estimates of LCI 
(Brinkmann et al. 2002). For both studies, we 
calculated LCI based on the combined 
cellulose and hemicellulose content of 
remaining litter, but differences measuring 
these polysaccharides add uncertainty to 
estimates of LCI. 

Another source of variability when 
comparing studies is that differences in 
oxidative enzyme methods affect assay 
sensitivity (Bach et al. 2013). Moreover, soil 
microbes produce oxidative enzymes for many 
reasons, including ontogeny and defense as 
well as carbon and nitrogen acquisition (Burns 
et al. 2013). Thus, oxidative enzyme activity is 
not a direct proxy for lignin degradation. 
Lastly, oxidative enzyme activities are 

measured only in a relatively small proportion 
of decomposition studies (Chen et al. 2018), 
providing a limited suite of data for 
generalization. For all of these reasons, it is 
remarkable that our simulations showed 
similarities to these uncertain observations. 

Finally, lignin decay is sensitive to a 
variety of factors. Site and litter type, as well 
as litter nitrogen content, have significant 
effects on lignin decomposition (Carreiro et al. 
2000, Herman et al. 2008). Two of the 
decomposition studies used to validate this 
model (Magill and Aber 1998, Carreiro et al. 
2000) took place in the northeastern USA, 
while the other (Snadjr et al. 2011) took place 
in the Czech Republic. Site differences are 
likely a result of variability in soil microbial 
communities, soil pH, atmospheric nitrogen 
deposition, and interactions between these 
controls. At global scales, the effects of 
nitrogen amendment on oxidative enzyme 
activity depend on microbial community 
composition and soil type (Allison et al. 2009, 
Burns et al. 2013). For example, Frey et al. 
(2014) found that nitrogen amendment of 
basidiomycete-dominated temperate and 
boreal forest soils decreased oxidative enzyme 
activity, while Iyyemperumal and Shi (2008) 
found that grassland soils dominated by 
glomeromycota and ascomycota showed little 
response. Because the LCI threshold at which 
oxidative enzymes become active (and lignin 
decays) is responsive to multiple factors, many 
more data are needed to elucidate these 
controls than were available for this study.  

In conclusion, our model predicted the 
proportional allocation of cellulolytic and 
ligninolytic enzymes during decomposition 
consistent with the notion that energetic 
tradeoffs between holocellulose and lignin 
decay control overall lignocellulose 
decomposition. This hypothesis is but one of 
many either proposed or previously observed 
to drive patterns of lignocellulose decay. 
Direct observation of specific enzyme 
activities associated with polysaccharide and 
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polyphenol decay provides a less ambiguous 
explanation for these patterns than measures of 
changing litter chemistry and mass loss alone. 
Moreover, patterns of enzyme allocation with 
respect to LCI were consistent with a simple, 
underlying energy balance rationale for 
lignocellulose decomposition. Thus, this 
model integrates lignocellulose controls and 
extracellular enzymatic activities into a single, 
testable process model. However, our results 
also indicate that defining more precise 
relationships between LCI and EEA requires 
long-term experimental studies that couple 
measurements of litter chemical quality and 
specific enzyme assays over sufficient time to 
observe substantial changes in LCI. 
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