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ABSTRACT

Residual feed intake (RFI) is an increasingly used 
trait to analyze feed efficiency in livestock, and in some 
sectors such as dairy cattle, it is one of the most fre-
quently used traits. Although the principle for calculat-
ing RFI is always the same (i.e., using the residual of a 
regression of intake on performance predictors), a wide 
range of models are found in the literature, with differ-
ent predictors, different ways of considering intake, and 
more recently, different statistical approaches. Con-
sequently, the results are not easily comparable from 
one study to another as they reflect different biological 
variabilities, and the relationship between the residual 
(i.e., RFI) and the underlying true efficiency also dif-
fers. In this review, the components of the RFI equation 
are explored with respect to the underlying biological 
processes. The aim of this decomposition is to provide 
a better understanding of which of the processes in this 
complex trait contribute significantly to the individual 
variability in efficiency. The intricacies associated with 
the residual term, as well as the energy sinks and the 
intake term, are broken down and discussed. Based on 
this exploration as well as on some recent literature, 
new forms of the RFI equation are proposed to better 
separate the efficiency terms from errors and inaccu-
racies. The review also considers the time period of 
measurement of RFI. This is a key consideration for 
the accuracy of the RFI estimation itself, and also for 
understanding the relationships between short-term 
efficiency, animal resilience, and long-term efficiency. 
As livestock production moves toward sustainable effi-
ciency, these considerations are increasingly important 
to bring to bear in RFI estimations.
Key words: feed efficiency, biological processes, 
individual variation, resilience

INTRODUCTION

Improving feed efficiency is of major interest for 
livestock production, and thus it is not surprising that 
there has been an increasing number of publications re-
porting efficiency results. This is especially the case for 
studies using the residual feed intake (RFI) method. 
The RFI method is designed to quantify between-ani-
mal variation in efficiency, and it is well suited to use 
in genetic evaluation and breeding schemes because it 
does not derive efficiency as a ratio between production 
and intake. However, as has been reviewed elsewhere 
(Berry and Crowley, 2013; Kenny et al., 2018), there 
is a confusing array of RFI results, correlations, and 
heritabilities that are not easy to compare because of 
differences in the RFI models used, which often makes 
biological interpretation impossible.

The variability in feed efficiency may hide different 
biologic realities (Cantalapiedra-Hijar et al., 2018). As 
shown in Figure 1, animals may vary in their digestive 
efficiency (i.e., the conversion of feed into nutrients) 
or in their metabolic efficiency (i.e., the conversion of 
nutrients into products). It can be envisaged that (in a 
given feeding environment) the same overall efficiency 
may be achieved by different combinations of digestive 
and metabolic efficiencies. Within that feeding envi-
ronment, these differences may be of no consequence, 
but may well become important in other environments. 
For instance, an animal that has a higher metabolic 
efficiency because it partitions more of its energy to 
milk and less to maintaining body reserves may not 
be penalized in abundant nutritional environments, but 
will probably not cope well in nutritional environments 
with feed shortages where it needs its body reserves.

A further limitation of most RFI models is that they 
typically calculate RFI for a fixed time interval, usu-
ally a short one (typically a few months), and are not 
adapted to characterizing long-term RFI (the entire 
productive life) or time-trends in RFI. These longer-
term measures are important in the context of selecting 
for sustainable efficiency. Indeed, gains in short-term 
efficiency have been associated with negative conse-
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quences in the longer term, for instance on fertility and 
length of productive life (Vallimont et al., 2013; Puillet 
et al., 2016). As can be seen in Figure 1, favoring higher 
production can cause a trade-off with the other life 
functions that underpin animal robustness and lifetime 
efficiency. The issue of trade-offs is more fully discussed 
in Friggens et al. (2017).

Accordingly, the aim of this paper is to first examine 
the RFI method from a biological and theoretical basis 
to clarify the key questions related to the interpretation 
of RFI results, before then tackling some of the more 
pragmatic and statistical considerations. Approaches 
that overcome the current limitations of RFI methods 
are identified, and specific focus is given to making the 
RFI method more adapted to the modern context of 
precision livestock data and to the need to improve effi-
ciency in a sustainable way. Readers looking for full re-
views of the existing RFI literature and its comparison 
with other efficiency metrics are referred to Berry and 
Crowley (2013) or Cantalapiedra-Hijar et al. (2018).

BASIS OF THE RFI EQUATION AND KEY QUESTIONS

The RFI equation is generally constructed from the 
following base:

 Intake = intercept + a × predictor_a + b   

 × predictor_b + c × predictor_c + […] + RFI, [1]

where RFI is the residual of the model. Linear regres-
sion is used to determine, for a given group animals on 
a given diet, the values of the regression coefficients a, 
b, c... as well as the intercept, but typically with only 
1 observation per animal. In theory, the residual (i.e., 
RFI) captures differences in efficiency. Animals with a 
negative value of RFI have an observed intake that is 
less than that predicted for the group and, as such, are 
deemed to be more efficient because they have eaten 
less for a given production level (or produced more for 
a given intake level). Following the same logic, animals 
with a positive RFI are deemed to be less efficient.

The different predictors (i.e., factors considered in 
the intake prediction) are energy sinks. These include 
processes that consume energy such as milk production, 
growth, and maintenance, or internal energy sources 
such as use of body reserves. Because it provides a good 
biological context for highlighting most of the key is-
sues concerning RFI, the rest of this paper focuses on 
RFI estimation in lactating animals. The RFI equation 
raises several questions:

• What is actually contained in the residual? As a 
residual, it is expected to contain both the bio-
logical variability in intake not explained by the 
model and any errors in measurement or in the 
model structure. The biological part of the residu-
al, which equates to true differences in efficiency, 
is the part we wish to isolate. Is it possible to 
distinguish these different components, and if so, 
how best to do this? Alternatively, can we reduce 
the error component of RFI? This is explored in 
the section “Nature of the residual.”

• What is the biological meaning of the intercept? 
From a theoretical point of view, the RFI equa-
tion should not have an intercept. This is evident 
if we consider it on an energy basis because the 
sum of true energy outputs is always equal to the 
true energy input. However, in practice there may 
be reasons to include an intercept in this kind of 
model, which are discussed in more detail in the 
section “Nature of the residual” (and “Intake and 
digestive efficiency”) below.

• Which predictors for the intake should be included 
in the equation? In other words, which predictors 
do we consider as being “required or essential 
energy sinks” for an animal, and which of these 
are likely to be the major determinants of feed 
efficiency differences? When more predictors are 
included in the model, the model performs bet-
ter in terms of properly accounting for resource 
usage. However, when more is explained with the 
equation, less variability remains in the residuals 
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Figure 1. Classes of efficiency. “Maintenance” is considered to in-
clude all the nonproductive life functions that can contribute posi-
tively to longevity.
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as well as a greater proportion of the residuals 
that is simply noise (the error). In addition, many 
predictors are not easy to measure (e.g., heat 
production, gestation). How do we include them 
in the equation? Where do we stop? This issue is 
detailed in the section “Nature of the predictors.”

• An issue that emerges when considering how to 
rationalize the predictors relates to how they 
change with time. As the animal moves through 
different physiological stages, the relative impor-
tance of different predictors in the RFI estima-
tion will change, and this may impact between-
animal variation in these changes. For example, 
animals vary in the extent and duration of body 
reserves mobilization in early lactation, which has 
significant consequences on their subsequent re-
productive efficiency. Capturing these time-trends 
requires time-series measures of the predictors, in-
take, and an expansion of the classical RFI model 
to deal with these repeated measures. Having such 
measures offers considerable opportunities for 
quantifying the relative importance of the differ-
ent biological components of RFI. Approaches to 
do this and the benefits of so doing are discussed 
in the section “Incorporating time-trends in pre-
dictors.”

• Another key question is: how do we consider 
and incorporate intake data? This is especially 
important if data from multiple feeds or feeding 
situations are being used. If we use kilograms of 
DM, then the coefficients a, b, c… are composite 
values of both digestive and metabolic efficiency 
(because they include the conversion from DM to 
energy equivalents). If net energy (NE) is used, 
then, in theory, the digestive efficiency disappears 
from the coefficients. However, as the conversion 
of kilograms of DM to megajoules of NE assumes 
a constant digestive efficiency for all, then any 
interindividual variability for digestibility would 

“pollute” the residual, and maybe the other coef-
ficients. A reflection on digestibility and its inclu-
sion into the equation is presented in the section 
“Intake and digestive efficiency.”

As several abbreviations are used in the development 
of the ideas and equations, their meanings are listed in 
Table 1 for ease of understanding.

NATURE OF THE RESIDUAL

As previously said, the RFI is the residual of the 
equation (Eq. 1); therefore, it contains not only the 
feed efficiency variability, but also all of the errors and 
imprecisions in the data and the RFI model. The re-
sidual can be considered to consist of the following: 
errors in measurement (eim), errors in fitting (eif), 
unidentified energy sinks (ues), deviations from the as-
sumed average digestibility (ded), individual variability 
in metabolic efficiency from the identified energy sinks 
(imf), and a possible nonexplained part (εi). We will 
start by ignoring ded because this is more conveniently 
treated on the left-hand side of the RFI equation, which 
contains information about intake. Thus, the equation 
for the residual is as follows:

 Residual = eim + eif + ues (+ ded) + imf + εi, [2]

where the properties of each of these components of the 
residual are discussed below. 

The eim should be random noise with a population 
mean of zero, but there may be a nonzero mean if there 
is a global bias in (one of) the measures. There may 
be individuals with systematic measurement errors 
(e.g., a cow who systematically spills more feed than 
the rest of the group or who systematically steals feed 
from others). The eif would be due to 1 of 3 issues. 
The first would be ignoring a nonlinear response to 1 
of the predictor energy sinks, which implies variable 
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Table 1. Abbreviations used in this article

Abbreviation  Meaning

BCS  Body condition score
BW  Body weight
ed  Energy density (assumed digestive efficiency)
ded  Deviations from the assumed digestive efficiency
DMI  Dry matter intake
eif  Errors in fitting
eim  Errors in measurement
FI  Feed intake
imf  Individual variability in metabolic efficiency from the identified energy sinks
ues  Unidentified energy sinks
ΔBW  Changes in body weight (gain or loss)
ΔBCS  Changes in body condition score (gain or loss)
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efficiencies for that process. This is more complex to 
deal with and should only be considered when the pos-
sibilities below have been discounted. The second issue 
is an unclean calculation of an energy sink that then 
gives the illusion of a variable efficiency. An example 
of this, discussed more in the following section, is using 
the change in body weight (ΔBW) as an energy sink 
rather than separating it into the underlying changes in 
body lipid and body protein. Such a separation would 
then resolve the apparent eif. This example is really 
due to an ues (changes in body lipid and body protein 
are not explicitly considered as energy sinks), and it is 
to be expected that approximately all eif issues can be 
reconsidered as ues. The third issue is real eif (i.e., ef-
ficiencies differ according to performance level). These 
could result in a nonzero population mean of eif and 
may include individual differences (e.g., high vs. low 
producers). Real eif would imply a need for nonlinear 
RFI models. However, as shown subsequently, the 2 
main sources of eif identified in the literature—an effect 
of intake level on digestibility and changing mainte-
nance requirements as the proportion of metabolically 
active tissues increases with performance level —can be 
accommodated without the need for nonlinear models. 
The ues can give a nonzero population mean (e.g., when 
ignoring animal activity levels) and may include indi-
vidual differences (e.g., an animal with systematically a 
greater activity than the population mean). Given the 
technical difficulty of measuring all energy sinks, ues 
cannot be ignored and may include some “true” com-
ponents of feed efficiency. For the imf, the individual 
variability in metabolic efficiency is what is sought to 
be captured with RFI; it is a “true” component of feed 
efficiency. The population mean per definition is zero.

Given these considerations, it is now possible to 
look at the residual in terms of these components and 
specifically identify systematic elements (mean values, 
indicated by a bar) and animal-specific elements (indi-
cated by subscript i). Thus, the residual is defined as 
follow:

Residual   = + + + + + + +eim eif ues eim eif ues imfi i i i εii .

 [3]

By definition, the mean value of imf is zero. By includ-
ing Eq. 3 in Eq. 1, a new intercept is created equal to

,eim eif ues+ +  and the residual term is now centered 
on zero:

Intake 2= + × + ×
+ +

+ +eim eif ues a predictor b predictor
eim[...]

1

ii i i i ieif ues imf+ + + + ε ,
 [4]

Thus, the intercept adjusts for systematic errors in the 
RFI data and equation based on a mean value common 
among all individuals. Its presence is not mandatory 
(we hope for a zero intercept), but it may help to deal 
with reality, and, as such, can be useful to provide a 
meaningful term for these unaccounted systematic ef-
fects.

It is interesting to differentiate the components of 
RFI with a subscript i, and in particular to isolate the 
“true” individual variation in efficiency (i.e., dedi and 
imfi). However, in practice, it is hard to see how to do 
this (the special case of dedi is dealt with in the “Intake 
and Digestive Efficiency” section), and the appropriate 
alternative approach would be considering them all in 
one. Considering them all in one assumes that all these 
individual deviations can be considered, in practice, 
as elements of global differences in efficiency between 
individuals. This is pragmatic, but may be dangerous 
if the size of these elements is affected by the local 
production environment. For example, uesi may include 
the costs of feeding behavior or activity. These will 
clearly differ in extensive grazing versus indoors feed-
ing situations, and would probably be considered as 
beneficial to the efficiency of the grazing animal but 
not to the housed animal. In the same way, an animal 
that is systematically good at sorting its diet (resulting 
in its intake having a higher energy density than that 
of an animal on the same feed who does not sort) could 
be considered as being more efficient when the environ-
ment provides a heterogeneous feed (i.e., with an op-
portunity to sort), but would lose this advantage when 
on homogeneous feeds. Thus, even if no differentiation 
is done between the components of the residual in RFI 
calculation, it remains important to keep them in mind 
together with a detailed description of the environment 
(and the measurement methods). This applies not just 
to the interpretation of animal variability in RFI, but 
also to how farm, year or experiment effects are fitted 
in these models.

NATURE OF THE PREDICTORS

The predictors of intake in our equation are, by 
definition, all energy sinks (or supplies in case of body 
reserve mobilization) that explain changes in intake. 
If some appear obvious to consider, such as milk pro-
duction, growth, or body reserves changes, it is not as 
simple to consider other predictors such as activity and 
heat diffusion, or other effects such as fertility needs. 
To deal with this fact, we can propose that energy sinks 
can be of 2 types: those that are part of production 
(e.g., milk, meat, fetus) and those that are part of fight-
ing entropy (e.g., maintaining the machinery, protein 
turnover, immune function). In both cases, the benefits 
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of including additional predictors should be weighed 
against the methodological difficulties of measuring 
them and the associated measurement errors that they 
may bring to the estimation of RFI.

From a biological perspective, it is a useful simplifica-
tion to postulate that every production is either lipid 
or protein. This is because the underlying biological 
efficiencies of protein and lipid production are quite 
different from each other. Therefore, lipids and proteins 
can be divided into milk lipid and milk protein (consid-
ering that milk lactose is tightly linked to milk protein, 
and thus can be merged with the protein cost), growth 
lipid and growth protein, and body lipid reserves and 
body protein reserves. The second possible simplifying 
assumption is that the cost of creating 1 g of lipid is the 
same, regardless of the production it is associated with 
(e.g., milk, growth). The assumption is also to a large 
extent the same for protein (we ignore possible minor 
differences in costs between growth and milk produc-
tion), but it has been known for a long time that the ef-
ficiency of synthesis is much lower for proteins than for 
lipids (e.g., 0.45 vs. 0.75 in rats; Pullar and Webster, 
1977; and 0.35 vs. 0.60 in cattle; Geay, 1984).

Using the assumption above, we accept that a pro-
duction cost corresponds to the energy of the produc-
tion itself (39.6 MJ/kg of lipid and 23.8 MJ/kg of pro-
tein) plus the work of building and disassembling the 
product (i.e., the efficiencies of these processes). How-
ever, as the work of building and disassembling mole-
cules have different costs (for lipid and protein in rumi-
nants see Friggens et al. 2007b), the equation should 
differentiate between accretion ⊕( )  and catabolism 

�( )  as follows:

 
Intake    lipids   lipids proteins

  proteins    m

= × + × + ×

+ × +

⊕ ⊕a b c

d

�

� aaintenance  RFI.+
 [5]

For a product such as milk, a well-established approach 
to deal with its variation in lipid and protein content 
is to express milk as fat- and protein-corrected milk 
(i.e., adjust milk volume to a standard fat and pro-
tein content). Alternatively, and in coherence with the 
above postulate, we could use milk fat yield and milk 
protein yield in Eq. 5. For growth, where it is much 
more difficult to precisely measure the composition of 
growth, it is useful to use BCS in combination with 
BW to indirectly obtain body protein change and body 
lipid change. Other methods exist (e.g., calorimetry), 
but only on limited data. Changes in body protein and 
especially body lipid will also capture usage of body 
reserves (by definition, catabolism only occurs for body 

reserves). The details for doing this are developed else-
where (e.g., Friggens et al., 2007b), but this boils down 
to having changes in BW and BCS (ΔBW and ΔBCS), 
and their interaction in the following equation:

Intake  BW BW BCS

BCS BW BCS BW B

= × + × + ×

+ × + × × + × ×

⊕ ⊕

⊕

a b c

d e f

” ” ”

” ” ” ” ”

�

� CCS  
g MLY  h MPY  maintenance  RFI,

�

+ + + +. .
 [6]

where MLY = milk fat yield, MPY = milk protein 
yield, and a through h are regression coefficients. 

Equation 6 raises a problem with respect to its reso-
lution, as 6 different terms need to be estimated from 
only 2 different measures (BW and BCS). This will 
cause obvious correlations among the predictors and 
make resolution difficult, if not impossible. In addi-
tion, for any given time interval between 2 consecutive 
measures, it is not possible to distinguish what was 
gained and what was lost in that interval, with only 
the net difference (Δ) between those 2 being accessible. 
In classical RFI approaches, this will very likely lead 
to an unwanted ues in the residual, affecting the RFI 
estimates as it has been shown that there are differ-
ences between individual cows in their patterns of body 
reserve change (Banos et al., 2005; Kessel et al., 2008). 
This problem is revisited in the section “Incorporating 
time-trends in predictors.”

With respect to the second component, fighting 
entropy, the only function routinely considered in the 
literature is maintenance. Maintenance is usually in-
cluded through the metabolic weight. But in terms of 
energy, similar to production, the maintenance costs 
are different between lipids and proteins; therefore, 
as a minimum, the maintenance should not only be a 
function of the metabolic weight but also of the BCS. 
The equation for adjusting BW to a standard body fat 
content is

 EBW EBW  
BCS

BCSstd
std

= ×
− −( )
− −( )
1

1
² ±

² ±
,  [7]

where EBW is empty body weight (i.e., the animal 
weight without the digestive content), and std implies 
a given standard BCS (e.g., 2.75). The assumptions 
needed to do this (linear relation between BCS and 
body lipid content) are outlined in Friggens et al. 
(2007b). In Eq. 7, the coefficients α and β are assumed 
to be known but depend on the mature size of the breed 
and on the condition score scale used (Zygoyiannis et 
al., 1997; Roche et al., 2004). Typical values estimated 
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from dairy cattle data are α = 0.5 and β = 0.1 (Friggens 
et al., 2007b). If the reasonable assumption is made 
that gutfill is a constant proportion of empty BW, then 
the equation above is exactly the same for BW. Thus, 
the predictor for maintenance, BW0.75, in the RFI equa-
tion can be replaced by BWstd

0.75, thereby eliminating 
spurious variation in maintenance requirements due to 
differences in body fatness.

There is also an issue related to maintenance costs 
associated with “more active than average” tissues or 
organs, which emphasizes the importance to finding 
ways to estimate the size of these tissues relative to the 
whole animal. Maintenance includes the maintenance 
of the digestive tract, but metabolic BW does not ac-
count for the changes in digestive tract size happening 
throughout the lactation nor the changes in digestive 
protein secretion. The intake capacity of the cow in-
creases significantly during the first weeks of lactation 
(i.e., the size of the digestive tract increases), which, 
as a highly active tissue, implies an increase of mainte-
nance requirements (Tulloh, 1966; Smith and Baldwin, 
1974). In practice, this issue is in some way going to 
be linked to intake levels. This will be dealt with below 
(section “Intake and Digestive Efficiency”).

The question arises: what other aspects of “fighting 
entropy” could be included (or to what extent they are 
indexed on maintenance)? From a physiological perspec-
tive, it would seem reasonable to include variables such 
as immunity costs, resilience mechanisms, and activ-
ity. However, there is currently almost no quantitative 
basis for including these specific components, with the 
possible exception of activity. The extent to which dif-
ferences in RFI can be explained by accelerometer and 
body temperature measures can be approached from 2 
perspectives, purely in terms of energetics or as proxies 
for resilience. From the energetics perspective, differ-
ences in overall activity will be associated with a direct 
energy cost of movement, and, likewise, differences in 
the mean temperature of animals reflect a higher ther-
modynamic cost. As such, activity and temperature 
measures could be expected to explain a part of the 
variance in RFI. From the resilience perspective, high-
frequency time-series measures of activity, milk yield, 
BW, and other indicators such as animal temperature 
are currently being explored as proxies to estimate the 
numbers of perturbations an animal experiences during 
a given time period (Adriaens et al., 2020; Poppe et 
al., 2020). Assuming that the animal responses to these 
perturbations have an energetic cost for the animal 
(i.e., activating the underlying physiological and im-
munological resilience mechanisms), then it is expected 
that such proxies (e.g., number of perturbations, cu-
mulated loss, residual standard deviation of production 

records) may be usefully incorporated into efficiency 
considerations (Berghof et al., 2019).

Although this offers avenues for including resilience 
aspects in the efficiency method, it will not cover all 
aspects as is. For instance, the potential negative effect 
of increased production on probability of successfully 
reproducing would not be captured. Intuitively, it does 
not seem reasonable to directly include these in RFI. 
However, if RFI is measured over long enough periods, 
a penalty emerging via those animals that drop out 
of the herd early should be seen. In other words, re-
silience comes into the picture via productive lifespan 
when considering long-term efficiency. With respect 
to short-term efficiency, especially the case of growing 
animals reared for meat production, it is harder to see 
how to incorporate the notion of resilience. The ques-
tion is important because the aim is to avoid selecting 
traits that favor short-term efficiency to the detriment 
of resilience. The issues of resilience and long-term ef-
ficiency are discussed in the final section of this paper.

INCORPORATING TIME TREND IN PREDICTORS

Because RFI requires individual data of feed intake, 
usually expressed as DMI, most of the pre-existing dis-
cussion on the time period over which RFI is estimated 
has focused on how short a time period can be used. 
These discussions typically pit the negative effect of a 
shorter period of measure on the accuracy of estimates 
against the high cost of phenotyping DMI for a longer 
period. The repeatability of intake measurements is 
indeed not that high, often ranging from 0.5 to 0.7 in 
early lactation for weekly measure in dairy (Potts et 
al., 2015; Li et al., 2016; Connor et al., 2019). We can 
consider from the literature on beef cattle that 5 wk of 
measurement is a minimum for intake data (Archer et 
al., 1997; Archer and Bergh, 2000; Wang et al., 2006), 
with a consensus that a measurement period of around 
70 d is a reasonable length for RFI, corroborated by 
dairy studies (Connor et al., 2019). Furthermore, intake 
data are not the only sensitive measurements that have 
an effect on the RFI. Body weight is also a key and 
tricky measurement. Depending on the feed inside the 
digestive tract, the live weight may vary up to 40 to 50 
kg, enough to hide real changes in body condition, and 
hence body reserves.

Within the classical RFI model, there are also biologi-
cal considerations for limiting the measurement period. 
If the measurement period is sufficiently short to be 
able to assume that it is not containing a mix of body 
accretion and mobilization, then the problem of Eq. 6 
having too many correlated predictors can be addressed 
through the following simplification:
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 Intake = (a + BWSIGN × b) × ΔBW   

+ (c + BCSSIGN × d) × ΔBCS  

 + other predictors + RFI, [8]

where BWSIGN is a 0/1 variable, which is 1 when ΔBW 
is negative, and BCSSIGN is the same but applied to 
ΔBCS. Clearly, if the intervals over which these del-
tas are measured are short enough, then in any one 
interval, there will be no significant mixing of gain and 
loss. Assuming this was feasible (i.e., that measurement 
error is adequately dealt with), it allows to simplify 
further:

 Intake = a′ × ΔBW + b′ × ΔBCS   

 + other predictors + RFI, [9]

with the consequence that the values of a′ and b′ [(that 
correspond to (a + BWSIGN × b) and (c + BWSIGN 
× d) at a given time, respectively] differ at different 
times (e.g., stages of lactation). All potential interac-
tions would be included in the term “other predic-
tors.” The possibility of comparing coefficients across 
different stages of lactation has been explored further 
(DEFFILAIT project, unpublished; www .deffilait .fr). 
However, the results suggest that with manual record-
ing of BW and BCS, typically on a weekly or even 
monthly basis, it is not realistic to expect that the es-
timates of ΔBW, and especially ΔBCS, are sufficiently 
accurate for this approach. However, if high-frequency 
automated BW and BCS recording is done (e.g., at 

each milking; Fischer et al., 2015), then the approach 
becomes feasible. The logical conclusion of this is to 
describe these coefficients as function of time (e.g., de-
pendent on the days in milk).

Because precision livestock technologies provide 
high-frequency repeated measures, it becomes possible 
to move from classical methods where RFI is a point-
measure for a given period to methods that explore 
the differences between animals in their trajectories of 
RFI through time. For example, Martin et al. (2020) 
have recently shown that animal variation in RFI tra-
jectories over the entire lactation can be derived from 
a multitrait random regression model using repeated 
measures of milk yield, BW, BCS, and DMI (in this 
case described by third-order Legendre polynomials). 
As shown in Figure 2, this enables the estimation of 
the correlations between the predicted intake and each 
of its predictors (milk, BW, and BCS) at each time 
point. Therefore, it is possible to have an indication 
of the relative importance of the different energy sinks 
in RFI at different stages of lactation. Because of the 
smoothing of the time-series within the model, and the 
continuous daily estimates of RFI, the whole problem 
of the length of measurement periods is circumvented, 
as is the problem of mixing body reserve accretion and 
mobilization. Considering the massive changes expect-
ed in early lactation, it could be more efficient to use 
splines rather than Legendre polynomials. The number 
of knots and degrees of polynomials between each knot 
would need to be defined, but there are precedents for 
this (Friggens et al., 2007a).
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Figure 2. Correlation between the predicted intake and the animal effects of its predictors [fat- and protein-corrected milk (Cmilk), BW 
(Weight), and BCS] across the lactation. Figure adapted from Martin et al. (2020).
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Models of this type also open the door to a better 
biological interpretation of RFI. Classical RFI allows 
identification of animals that are more, or less, effi-
cient (assuming that the errors described in the section 
“Nature of the residual” are properly dealt with), but 
cannot shed light on which biological components of 
the efficiency complex contribute to differences in feed 
efficiency. The paper of Fischer et al. (2018), build-
ing on previous studies (Aggrey and Rekaya, 2013; 
on birds; and Savietto et al., 2014; on beef), explored 
a new method to isolate the cow-specific part of re-
sidual energy intake from the residual. It consists of 
including a random component to the coefficients in 
the RFI equation, and thus capturing the interindi-
vidual variation in efficiency. In theory, models of this 
type, which exploit the repeated measures structure of 
precision livestock data, can quantify which biological 
components are underpinning differences in efficiency. 
Although the approach is promising, it has shown itself 
to present some statistical challenges with difficulties 
to fit the equation because of correlations among the 
factors. The papers listed above have been able to over-
come some of the issues by normalizing the predictor 
measures, by exploiting different correlation structures, 
and by using more powerful software. Fischer et al. 
(2018) used SAS, which is not able to easily take corre-
lations into account; Martin et al. (2020) used Wombat 
(Meyer, 2007), which allows the user to better estimate 
them, and eventually restrict the rank of the matrix. 
However, these methods are also data hungry, requiring 
large numbers of animals and large numbers of mea-
sures per animal.

INTAKE AND DIGESTIVE EFFICIENCY

The base measure of intake is DMI per day (we as-
sume here that the methods for converting fresh mat-
ter intake into DM do not introduce bias in the RFI 
calculations; Seymour et al., 2019), but of course when 
efficiency is considered, consideration should be given 
to the energy density of the diet. If the aim is to pool 
data sets from different trials or locations—this would 
certainly be needed in the context of large-scale genetic 
evaluation of RFI—then the differences in energy den-
sity of the feed need to be accounted for. The literature 
offers ideas on how to deal with this issue [e.g., Tem-
pelman et al. (2015) and Lu et al. (2017) use random 
ration-specific regressions of DMI on milk energy and 
BW], but to get a comprehensive understanding of the 
point, let us go into details. Even within a given situ-
ation where the feed is the same for all animals, there 
are important issues for the RFI method.

Energy intake can be described in terms of gross 
energy, digestible energy, metabolic energy, and NE as 
follows [see Emmans (1994) for full details]:

 Gross energy (GE) intake = intake   

× heat of combustion of the feed,

 Digestible energy intake = GE intake − gas – feces, 

 Metabolic energy intake = GE intake   

− gas − feces – urine,

 Net energy intake = GE intake − gas   

− feces − urine – heat.

We can have individual variation in each step of the 
conversion from one energy level to another, and thus 
differences in (digestive) efficiency already present (see 
Phuong et al., 2013). If the feed is described in terms 
of NE, then it is in the currency that is directly used 
by the processes that are the energy sinks included as 
predictors in the RFI equation. This means that the 
resulting estimated coefficients (a, b, c in Eq. 1) can be 
interpreted as the metabolic efficiencies for the differ-
ent energy consuming processes. However, using NE, 
it is very difficult to isolate any between-animal varia-
tion in digestive efficiency. If, on the other hand, the 
feed measures used in the RFI equation are DMI, then 
each predictor coefficient becomes a combination of the 
metabolic efficiency of that process and the overall di-
gestive efficiency. This can make interpretation tricky. 
It is for these reasons that up until this point in the 
paper, the left-hand side of the equation has always 
been called “intake” without any detail.

To deal with this, the effect on the RFI equation 
of the transformation of the intake into a given en-
ergy unit needs to be considered (i.e., the accounting 
for digestibility and metabolizability). Generally, this 
value, called energy density (ed), usually comes from 
literature based on the feed composition or digestibility 
measures. A priori, it should be assumed that this num-
ber is incorrect in 3 ways:

• It can be systematically off for a given feed [i.e., a 
mean deviation ( ded ) exists from ed].

• It ignores true individual variability in digestive 
efficiency (i.e., dedi, which is a “true” component 
of feed efficiency). It should be noted that the in-
dividual variability in digestive efficiency may be 
due to variation in the digestive processes within 
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the digestive tract, but may also come from sys-
tematic differences in an animal’s ability to select 
the most digestible parts within the feed offered 
(i.e., in feed sorting). It is considered here that 
this variation in feed sorting is one element of the 
animals feed efficiency.

• It ignores the effect of level of intake on digestive 
efficiency. Let’s call this dedFI. When expressing 
intake as digestible energy intake, this term is, in 
theory, considered by the conversion into digest-
ible energy. However, assuming dedFI to be zero 
would be to assume that the digestible energy 
conversion is perfect across all feeds, which is not 
done here.

Taking the above into account, the energy density of 
the feed for a given animal becomes

 ed ded ded DMI dedFI i i ,+ + × +( )  

and thus, when expressing intake in energy terms, the 
left-hand side of Eq. [1] becomes:

 ed ded ded DMI ded DMIFI i .+ + × +( )×  [10]

Given that the aim of RFI is to isolate the individual 
variation in “true” efficiency (i.e., imfi and dedi), the 
rest of this section will first deal with this aspect 
within a uniform feeding situation, and then will look 
at possibilities to extend this for multiple feeding situ-
ations. In both cases, the aim is that the RFI equation 
includes the estimation of the energy density of the 
feed, as well as isolating dedi. Accordingly, DMI can be 
split into the mean value (indicated with a bar) plus 
the individual deviations (i.e., DMI DMIDMI i= + )

Thus [10], the left-hand side of Eq. 1, becomes:

 
ed ded ded DMI ded DMI

ed ded ded DMI

FI i

FI

+ + × +( )×
+ + + × .+( )×ded DMIi i

 [11]

It would be logical to expand the DMI part of dedFI × 
DMI in the same way. However, let’s simplify by assum-
ing that the feeding level effect on ed is sufficiently ac-
counted for by the correction on the mean DMI (this 
effectively means any individual differences in dedFI are 
moved into the individual component of dedi). In other 
words, in the following, ded DMIFI ×  will be used 

rather than ded DMDMIFI i× +( ),  giving:

 
ed ded ded DMI ded DMI

ed ded ded DMI ded

FI i

FI

+ + × +( )×
+ + + × + ii iDMI( )× ,

 [12]

where ed, ded , and ded DMIFI ×  are all constants that 
can be grouped in one edtrue as follows:

 ed ded DMI ed ded DMItrue i true i i+( )× +( )×+ .  [13]

We can now expand the original Eq. 4 to specify these 
elements in the full RFI equation:

ed ded DMI ed ded DMI eim eif

ues a pr
true i true i i+( )× +( )× = +

+

+

+ × eedictor b predictor eim eif

eus imf
i i

i i

1 2× × +[ ]+ +

+ + +

...

ε;

 [14]

ed ded DMI ed ded DMI

a predictor b p
true i true i+( )× = + +( )×−

+ × × ×

int

1 rredictor eim eif

eus imf
i i

i i

2+[ ]+ +

+ + +

...

.ε
 [15]

If DMI is expressed on the left-hand side of the equa-
tion as deviations from the mean (DMIi) and include 
mean DMI among the predictors with a fixed and a 
random coefficient ed ded DMItrue i+( )×− ,  a consider-
able way is covered toward isolating individual vari-
ability in digestive efficiency. For example, a difference 
between 2 cows in dedi of 0.025 (relative to a typical 
edtrue of 0.66) would give a difference in DMIi of 1 kg of 
DM/d (for cows eating on average 21 kg of DM/d with 
identical BW and milk production). To our knowledge, 
this reformulation of the RFI equation has not been 
reported in the literature, and thus it remains to be 
seen if it has practical utility. It should be noted that 
the above equation includes an animal performance 
component in the true digestibility (edtrue), the effect of 
the mean DMI on digestibility ded DMIFJ ×( ).  To avoid 

this, we could redefine edtrue as being only ed ded+ .  
This does not change Eq. 15 and the resolution de-
scribed above; it simply means that the individual 
variation in digestibility (dedi) accounts for the varia-
tion in DMI in absolute terms rather than as a devia-
tion from the mean DMI.

The second issue deals with the fact that different 
experiments will use different feeds, and thus the energy 
density of the feed, ed, and the error associated with its 
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estimation will differ between experiments, as illus-
trated by the results of Tempelman et al. (2015). Ignor-
ing this could create the situation where the regression 
coefficients estimated for the pooled data set are mark-
edly different from those estimated within each feed or 
feeding situation (Simpson’s paradox). Clearly, RFI 
models should be structured to avoid this problem. The 
idea is to include an element that allows the true value 
of ed, edtrue, to be estimated for each feed or feeding 
situation within the RFI model. This may be possible, 
in a relatively straightforward way, by extending the 
random regression model of Martin et al. (2020) to in-
clude the “experiment” factor among the fixed effects. 
This relies on the assumption that the average differ-
ences in ed can be removed by a linear adjustment, as 
suggested by the term ed ded DMItrue i+( )×−   in the 
above equation. However, this assumption should be 
carefully examined and validated on real data to avoid 
oversimplification. Another option would be to explore 
the use of recursive models (Gianola and Sorensen, 
2004; i.e., analyzing one effect after the other itera-
tively with the aim of having a final convergence).

TOWARD SUSTAINABLE EFFICIENCY: SHORT- 
VERSUS LONG-TERM EFFICIENCY

So far, the details of the RFI equation have been 
discussed to contribute to making the RFI method 
more adapted to the modern context of precision live-
stock data. In doing this, the technical issues related 
to the time periods of measurement have been dealt 
with. Here, the focus is back to the important issue 
concerning time periods of measurement (i.e., the value 
and interpretation of short- vs. long-term efficiency 
measures). The underlying idea is that sustainable effi-
ciency should be the goal of any efficiency improvement 
strategies. This means considering the longer-term con-
sequences of any efficiency gains. To do this, 2 notions 
must be considered at the animal level: trade-offs and 
productive longevity (at the animal level; it gets more 
complicated at the herd or farm levels; Faverdin and 
Van Milgen, 2019).

As described above, the most efficient animals are 
those able to produce more at a given level of intake 
(or those eating less at a given level of production). It 
seems obvious that animals that put a greater propor-
tion of their acquired resources into product will be 
more efficient, but this implies a reduced proportion of 
these resources will go to other life functions, which is 
known as a trade-off. A trade-off between productive 
and “fighting entropy” life functions would have pos-
sible negative consequences on animal robustness. In 
dairy cows, a critical function for staying in the herd 

is reproduction, and it is now well-documented that 
a negative (phenotypic and genetic) correlation exists 
between milk production and reproduction (Boichard 
and Manfredi, 1994; Pryce et al., 2004), and thus inten-
sive selection for milk production has degraded repro-
ductive performance (Miglior et al., 2017). There has 
also been a strong reduction in the average productive 
lifespan over the same period (Hare et al., 2006). More 
generally, the majority of evidence suggests that high 
levels of performance, be it milk, meat, or egg produc-
tion, are associated with decreased robustness (Rauw 
et al., 1998). Loyau et al. (2016) reported a negative 
genetic correlation between egg weight and surface 
body temperature under heat stress in laying hens (see 
also review of Mignon-Grasteau et al., 2015). In rabbit 
lines divergently selected for reproductive intensity or 
reproductive longevity, high reproductive intensity does 
were less resilient to an environmental perturbation and 
were less able to use their body reserves (Theilgaard 
et al., 2007). Gilbert et al. (2017) reported that a pig 
line selected for low RFI had significantly less body fat 
and a decreased fasting heat production relative to the 
high RFI line, although there were no clear differences 
in the growth between lines when exposed to a sanitary 
challenge (Chatelet et al., 2018). More recently, studies 
are emerging that seek to characterize resilience to en-
vironmental perturbations (Ben Abdelkrim et al., 2019; 
Adriaens et al., 2020) and to relate variation in these 
resilience measures to frequency of health events and 
productive longevity (Berghof et al., 2019). Poppe et al. 
(2020), building on work of Elgersma et al. (2018) and 
using the residual variance in milk yield from daily milk 
records as a resilience measure, found favorable genetic 
correlations between resilience and health, fertility, and 
longevity. Taken together, this literature suggests that 
short-term efficiency is unfavorably correlated with re-
silience, and that resilience contributes positively to a 
longer productive lifespan, at least in adult producers. 
From the dairy cattle data of the DEFFILAIT project, 
we have recently been able to look at the relation be-
tween RFI and resilience, measured as the accumulated 
loss in milk yield during perturbations (based on 237 
lactations; unpublished). Because the losses in milk 
yield were matched by losses in intake during these 
short-term perturbations (Figure 3; Bareille et al., 
2003), whole lactation RFI was barely affected. This 
suggests that the link between resilience and efficiency 
is mainly through the effect of resilience on productive 
lifespan.

Returning to consideration of the time-span over 
which efficiency is measured and going to the ex-
treme of considering lifetime efficiency, it is probable 
that the more efficient animals may be the resilient 
ones (i.e., those able to cope well with environmental 
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perturbations and thereby minimize effects on both 
production and other life functions such as health and 
reproduction). These longer-lived animals will increase 
the proportion of their lifespan that is productive, and 
thereby dilute the efficiency cost of the nonproductive 
rearing period. Accordingly, as shown in Figure 4, we 
could hypothesize that the correlation between feed 
efficiency and resilience changes with the duration of 
the measurement period. Indeed, results of simulations 
using a model designed to represent resource allocation 
between life functions suggest that different resource al-
location characteristics underpin short-term efficiency 
and long-term efficiency (Puillet et al., 2016, 2021). 
However, these results remain to be validated with 
animal data. Such data would also allow quantification 
of what measurement duration is needed to avoid a 
negative correlation between efficiency and resilience. 
This is important for knowing the period over which we 
need to measure efficiency (i.e., defining the appropri-
ate phenotypes that would allow selection for sustain-
able efficiency).

A key question is then, what kind of feed efficiency 
do we want to select for? Do we want an animal that 
is highly efficient for a specific period of its life (a few 
weeks around the peak of lactation for example), or do 
we want it to have a better accumulated efficiency over 
its life? Selection for a short-term feed efficiency may 
select for a switch in the resource allocation that will 

benefit production but deteriorate resilience and the 
key life functions that contribute to longevity. On the 
other hand, if selection for a longer productive lifes-
pan degrades production too much, then the lifetime 
efficiency of such animals may be not better than that 
of short-lived high producing animals. In this context, 
the idea of selecting for sustainable efficiency seems 
promising. These issues need to be explored not just 
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Figure 3. Relationship between the cumulative decreases in DMI during feed intake perturbations and the cumulative losses of milk yield 
during milk perturbations (average of 250 first days of 237 lactations, DEFFILAIT project data, www .deffilait .fr).

Figure 4. Schematic representation of the possible effect of re-
sidual feed intake measurement period on the correlation between ef-
ficiency and resilience.
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for adult producers, but also in the context of growing 
animals reared for meat production. This opens up for 
consideration of efficiency not just at the animal level, 
but also at herd or farm level. A final point that should 
be considered when coming to selection decisions is 
that in this article the interest was the biological nature 
of RFI, and thus it was defined at the phenotypic scale. 
However, it is possible to model RFI to be genetically 
(and not phenotypically) independent from the energy 
sinks that are used as predictors (Kennedy et al., 1993), 
which ensures the absence of undesired genetic correla-
tions between these traits in selection programs.

SUMMARY

Until very recently, the notion of measuring feed ef-
ficiency over a whole lactation, and even more so over 
a whole lifespan, seemed beyond reach. It is therefore 
not surprising that data sets with long-term measures 
of intake, and thus long-term efficiency, are very rare, 
especially if good resilience measures are also required. 
However, the burgeoning field of precision livestock 
technologies, with its promise of automated high-
frequency measures, has now developed to the point 
where not only milk production but also body reserve 
(weight and condition score) changes (Thorup et al., 
2018; Fischer et al., 2020), and more recently intake 
measures (Lassen et al., 2018), are becoming available 
as a commercial reality that can be used on sufficient 
scale to allow phenotyping of large populations of ani-
mals for long-term efficiency.

The increasing availability of such time-series data 
brought into focus several limitations of the traditional 
RFI methodology, particularly in relation to the time 
periods of measure and the ability to evaluate the 
importance of the different biological components of 
overall feed efficiency. We believe that the technical ad-
vances proposed above will contribute to resolving these 
limitations, and thus to making the RFI method fit for 
purpose in the precision livestock future. This should 
allow the relationships between short- and long-term 
efficiency to be evaluated and to be reframed in terms 
of sustainable efficiency goals that can be included in 
future selection and management strategies.
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