
ABSTRACT

Feed efficiency (FE) is a complex phenotype made 
up of multiple traits for which there is potential for 
substantial genotype by environment interaction (G × 
E). The objective of this study is to evaluate the extent 
of G × E for FE traits with a simulation approach. We 
used a mechanistic model of the dairy cow that simu-
lates trajectories of phenotypes throughout lifetime, 
depending on trajectories of resource acquisition and 
allocation, driven by 4 genetic scaling parameters, and 
depending on the nutritional environment (quantity and 
quality of feed resources). The cow model, calibrated 
for a grass-based farming system and seasonal calving, 
was combined with a genetic module. This simulated 
genetic variation in the 4 genetic scaling parameters 
related to resource acquisition and allocation, based 
on a simple balanced pedigree structure (200 paternal 
half-sib groups each of 100 daughters). The population 
of 20,000 cows generated was simulated in 4 nutritional 
environment scenarios, representing a gradient of feed-
ing constraints. In each scenario, 6 traits derived from 
the model outputs were analyzed to obtain popula-
tion genetic parameters. Genetic correlations between 
second-lactation production and FE were positive and 
high in all scenarios and increased as the nutritional 
environment became more constraining. A measure of 
lifetime FE was positively correlated with second-lacta-
tion production under a less constrained environment, 
but these correlations decreased as the environment 
became more constraining. The genetic correlation be-
tween body reserves at second calving, and lifetime FE 
was positive and low in the least constraining scenario 
and increased as the environment became more con-
straining. In addition to genetic parameters, we looked 
at the distributions of acquisition and allocation pa-

rameters among the best performing cows for lactation 
and life FE, in the 2 most contrasted scenarios. The 4 
subpopulations of best cows had acquisition and alloca-
tion strategies different from the whole population. In 
conclusion, this simulation study identifies the poten-
tial underlying biological basis for important G × E 
in FE traits. This highlights the importance of having 
a balanced breeding goal when undertaking selection 
that should also be based on phenotypes relevant to the 
target performance environment.
Key words: lifetime efficiency, biological trade-off, 
body reserves, multitrait selection

INTRODUCTION

Feed efficiency (FE) in dairy cows is traditionally 
measured as a ratio between energy captured as milk 
product divided by the gross energy consumed by the 
cow (Tempelman and Lu, 2020). Alternative definitions 
to this conversion ratio exist (for instance, residual 
feed intake) and are subject to debate regarding their 
applications and benefits (Hurley et al., 2016). These 
debates highlight that FE is an increasingly important 
trait for the dairy sector: primarily motivated by saving 
feed costs to improve farm profitability, this trait is 
also contributing to a more sustainable way of produc-
ing animal products. Efficient cows make best use of 
resources, which limits competition with land dedicated 
to crops for human food, and produce less waste such 
as greenhouse gases or nitrogen losses. To implement 
successful breeding programs for improved FE, 2 chal-
lenges need to be addressed. First, it is important to 
ensure that improvement in short-term FE (e.g., at 
lactation scale) avoids detrimental correlated responses 
in cow functionality and resilience. Second, it is impor-
tant to ensure that animals with high merit for FE are 
able to accommodate changes in environmental condi-
tions. The first challenge pertains to the complexity of 
FE, which is a composite trait; it results from various 
underlying component traits, or subtraits, which are 
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dynamic in the way they interact (Fischer et al., 2018). 
As these subtraits are generally very costly to measure 
(e.g., feed intake), new selection strategies are based on 
using multitrait genetic evaluations for FE. However, 
different combinations of the underlying component 
traits may achieve the same gain in FE. These different 
combinations will likely target different aspects of ani-
mal physiology that may incur unwanted consequences 
arising from the selection for FE (e.g., decreased fertil-
ity or decreased propensity to withstand environmental 
challenges). The second challenge pertains to genotype 
by environment interactions (G × E): benefits from 
selecting animals with high FE genetic merit should 
ideally hold up across a wide range of farm systems 
and environments (Richardson and Herd, 2004; Berry 
and Crowley, 2013), both in the current conditions but 
also in the future. The relative importance of the un-
derlying component traits will vary both through time 
and according to the environment, making it difficult 
to ascribe them a weight in the multitrait evaluation.

Using mechanistic models or any theoretical frame-
work to relate observed animal traits and genetic varia-
tion in their underlying mechanistic drivers is a prom-
ising avenue to better explain the observed variation 
in FE and also to better describe correlations among 
FE subtraits, which can facilitate the development of a 
more informed and rational approach to multiple-trait 
prediction of FE. Existing models have been developed 
for a single function (growth: Doeschl-Wilson et al., 
2007; body reserves mobilization: Friggens et al., 2004; 
reproduction: Dennis et al., 2018). At the whole-animal 
level, a mechanistic model of the dairy cow (Puillet et 
al., 2016) that simulates lifetime dynamics of energy 
utilization has been developed. The core concept of this 
model is that energy utilization is made of 2 processes: 
feed intake (acquisition) and energy partitioning among 
biological functions (allocation). These processes can 
be manipulated by changing values of input param-
eters, which allows the exploration of the functions 
underlying FE. This model has shown that the same 
value of a trait (such as FE) can be obtained with 
various combinations of resource allocation and acquisi-
tion. It has also shown that combinations of acquisition 
and allocation mechanisms that maximize short-term 
(single lactation) and long-term (lifetime) FE are not 
the same.

Based on this mechanistic model, the overall aim of 
this study was to evaluate the existence of genotype by 
environment interactions for FE traits with a simula-
tion approach. The specific aims were to: (1) estimate 
genetic parameters of efficiency traits in contrasted 
environments; (2) estimate genetic correlations of ef-
ficiency, production, and functional traits; and (3) 
quantify the level of G × E on efficiency traits.

MATERIALS AND METHODS

Dairy Cow Lifetime Model

A model of the dairy cow lifetime trajectory was 
developed (Puillet et al., 2016). On the basis of ac-
quisition and allocation trajectories, which are driven 
by 4 genetic scaling parameters, and the nutritional 
environment (DM availability and energy density), the 
model simulates trajectories of phenotypes: DMI, body 
mass components (body reserves, nonlabile mass, and 
uterus), milk production, and quantities of energy used 
by biological functions (maintenance, lactation, gesta-
tion, body reserves mobilization, and repletion). Using 
conception and survival probabilities, which are driven 
by phenotypes and by management rules (reproduction 
and culling), the model also simulates timings of repro-
ductive events throughout the lifespan of an individual 
cow. The virtual cow can die naturally or can be culled 
for reproductive reasons. Natural death occurs when the 
simulated cow has no body reserves left and therefore 
is not able to cover maintenance requirements. Longev-
ity is therefore an output of the simulation. All the 
simulated phenotypes result from the acquisition and 
allocation trajectories, reflecting the innate characteris-
tics of the cow, and the expression of these trajectories 
permitted by a given environment (resource availability 
and quality, management rules).

The model was calibrated to simulate a reference 
dairy cow within farming systems with grass-based 
diets and seasonal calving, typical of New Zealand, 
and to obtain the values for the 4 input parameters 
of acquisition and allocation. We assumed that mating 
season starts on October 10 each year and lasts for 
10 wk. At the end of the mating season, if the cow is 
not pregnant, she is culled at the next drying-off (or 
immediately for heifers). Drying-off occurs 90 d before 
calving but never after mid-May (end of milking for the 
whole herd).

Scenarios of Nutritional Environment

The dairy cow model is connected to the nutritional 
environment through 2 variables: ME content (MEC) 
of feed resource (MJ/kg of DM) and DM offer (DMO, 
kg of DM/cow per day). Regarding feed resource qual-
ity, MEC was set according to data from Roche et al., 
2009 to account for seasonal changes consistent with 
the New Zealand context. It varied between 10.85 MJ/
kg of DM in February to 12.45 MJ/kg of DM in August 
with a yearly average of 11.7 MJ/kg of DM. Regarding 
feed resource availability, the seasonal changes in DMO 
over a year were based on Doole et al. (2013). This 
baseline was then modified to generate 4 scenarios of 
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nutritional environment, with a gradient of constraints 
on feed availability. The first scenario, namely high 
and stable (HS), is the most favorable and represents 
a nonlimiting environment where DMO is high and 
stable between years. The second scenario, namely 
moderate and stable (MS), represents a seasonal and 
moderately constraining nutritional environment where 
DMO can be limiting for high acquisition cows. The 
average yearly offer was 12.2 kg of DM/cow per day, 
with a minimum of 10 kg of DM/cow per day in June 
and July and maximum of 16.8 kg of DM/cow per day 
in December. The third scenario, namely moderate and 
perturbed (MP), represents the same environment as 
MS, but every 3 years DMO decreased in late winter 
and spring, representing a slowdown in grass growth 
due to cold and wet weather, and decreased in summer, 
representing a drought. The average yearly offer during 
a bad year was 11.1 kg of DM/cow per day with a mini-
mum of 8 kg of DM/cow per day and a maximum of 
15 kg of DM/cow per day. Finally, the fourth scenario, 
namely low and stable (LS), is the less favorable and 
represents a very limiting environment, stable between 
years. The average yearly offer was 9.8 kg of DM/cow 
per day with a minimum of 8 kg of DM/cow per day 
and a maximum of 13.4 kg of DM/cow per day. The 3 
scenarios with limited feed resources, MS, MP, and LS, 
are illustrated in Figure 1.

Genetic Module

The original version of the model described the char-
acteristics of one virtual cow (Puillet et al., 2016). To 
allow study of G × E, a genetic module was added 
to simulate genetic variation in the 4 genetic scaling 

parameters related to acquisition (basal acquisition 
and lactation acquisition, kg of DM/d) and allocation 
of energy resource (growth allocation and lactation 
allocation, dimensionless). With this new module, it 
is possible to generate phenotypic trait values of the 
parameters for a set of cows with a simple balanced 
pedigree structure. This pedigree structure is important 
for simulating the underlying genetic variation among 
cows so as to facilitate efficient computation of genetic 
parameters for aggregate genetic traits obtained as 
model outputted cow phenotypes. Unrelated sires and 
dams were simulated to generate a single generation of 
cows with traits in 200 paternal half-sib groups each of 
100 animals. The sire and dam genetic contributions 
along with a Mendelian sampling term were combined 
to generate a true breeding value (TBVi,j) for the ith 
parameter of the jth animal as follows:
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deviates N(0,1), corresponding to sire, dam, and Men-
delian sampling components of the additive genetic 
variance for jth animal, hi

2 is the heritability and σPi
2  is 

the phenotypic variance of the ith parameter being 
simulated.

Then, the phenotypic value of the ith parameter for 
the jth animal (αi,j) is calculated as:

 = + + − ⋅ ⋅α λi j i j i P j
eTBV h
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where μi is the mean of the trait, and λj
e  is a random 

standard deviate representing environmental variance.
For each trait, the mean value μi was equal to the 

value of the corresponding genetic scaling parameter of 
the reference cow. We assumed a heritability of 0.35 for 
the 4 traits and a phenotypic variance corresponding 
to a coefficient variation of 10%. This assumption was 
made based on the reported values for genetic varia-
tion in milk volume and liveweight in the New Zealand 
context. Indeed, the parameters related to acquisition 
and allocation are theoretical and reflect underlying 
processes. As they cannot be experimentally measured, 
information on related phenotypes were used. All ge-
netic correlations among these underlying traits were 
assumed to be zero. This allowed easier interpretation 
of the genetic correlations that emerged from the genet-
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Figure 1. Example of the DM offer dynamics in the 3 simulated 
scenarios with limiting resource (plain red: moderate and stable; dot-
ted red: moderate and perturbed; plain blue: low and stable).
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ic analysis of the simulated phenotypes. The variability 
generated by the genetic module for acquisition and 
allocation input parameters around the mean values 
corresponding to a reference cow is illustrated in Figure 
2.

Simulation Study

A population of 20,000 cows generated by the genetic 
module was simulated in the 4 nutritional environment 
scenarios, generating 80,000 simulated lifetime trajec-
tories. For each individual trajectory, simulated daily 
phenotypes (for instance DMI, energy allocated to milk 
production) were used to compute 6 aggregated traits: 
milk production in second lactation (kg), efficiency in 
second lactation (%, energy invested in milk over en-
ergy acquired from the environment throughout second 
lactation), life efficiency (%, energy invested in milk 
over energy acquired from the environment throughout 
lifetime), body weight (BW) at second calving (kg), 
level of body reserves at second calving (%) and delay 
from the start of the mating season until the second 
conception (days). For simulated cows that failed to 
conceive during the second mating season, a penalty 
phenotype value of 84 d was attributed for the concep-
tion delay trait. For milk production in second lacta-
tion and efficiency metrics, only cows that achieved at 
least 220 d of the second lactation were considered. The 
workflow of the study is illustrated in Figure 3.

To estimate the genetic parameters of the 6 aggregat-
ed traits, 3 types of models were tested. The first type 
of model is a single-trait animal model, implemented 
for each of the 6 traits in each of the 4 scenarios (24 
single-trait models):

 yi = μ + ai + ei,  

where yi is the value of the trait for cow i in the nutri-
tional environment scenario, μ is the fixed effect of the 
scenario (average value of the trait), ai is the random 
genetic effect of cow i and ei is the residual effect.

The second type of model is a multiple-trait animal 
model, implemented for each scenario (4 models with 
6 traits each):

 y = b + Za + e, 

where y is the vector of values for the 6 traits in a 
nutritional environment scenario, b is the vector of 
fixed effects of the scenario (average value of the trait), 
a is the vector of random additive genetic effects, Z 
is an incidence matrix, and e is the vector of random 
residuals.

The third type of model is a multiple-trait animal 
model implemented for each FE metric across the 4 
scenarios (2 models with 4 traits each):

 y = b + Za + e, 

where y is the vector of values of the efficiency metric 
in the 4 nutritional environment scenarios, b is the vec-
tor of fixed effects, a is the vector of random additive 
genetic effects, Z is an incidence matrix, and e is the 
vector of random residuals. We assumed that correla-
tions of random residuals were zeros, as scenarios were 
independent. All analyses were carried out using the 
WOMBAT software (Meyer, 2007).

As a complementary approach to genetic parameters 
evaluation, simulations were also analyzed to find out 
the best performing genotypes, i.e., the best combina-
tions of genetic scaling parameters for acquisition and 
allocation. In the 2 most contrasted scenarios (HS; LS), 
the 5% best simulated cows for second lactation and 
lifetime efficiency were selected. The distributions of 
acquisition and allocation parameters of these cows 
were compared with the rest of the population to as-
sess if efficiency in a given environment results from 
a particular combination of acquisition and allocation 
strategies.

RESULTS

Phenotypic Traits Simulated

The mean (±SD) values for the simulated traits in 
the 4 nutritional environment scenarios are presented 
in Table 1. The number of cows that reached at least 
220 d of their second lactation decreased along the 
gradient of environments from 17,945 cows in HS (90% 
of total cows simulated) to 13,640 cows in LS (68% of 
total cows simulated). The average level of constraint 
imposed by the nutritional environment scenario on 
simulated cows (DMI compared with total potential 
acquisition) was 0% in HS, −5.5% in MS, −8.2% in MP 
and −14.7% in LS. Milk production in second lactation 
decreased from 4,866 to 3,543 kg between HS and LS, as 
the environment became more constraining. Efficiency 
in second lactation was very similar across scenarios 
with only a slight decrease as the environment became 
more constraining. The proportion of energy invested 
in lactation, and therefore second-lactation efficiency, 
is driven by the parameter for lactation allocation, 
which is independent from the environment. This ex-
plains why the decrease in resource availability along 
the gradient of environments only slightly affected the 
efficiency in second lactation. Life efficiency decreased 
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Figure 2. Illustration of the variability in lifetime trajectories for BW, DMI, and milk production from birth to fourth lactation, generated 
by the genetic module around the mean value of acquisition and allocation parameters corresponding to a reference cow, representative of a 
typical seasonal grass-based system. The solid line corresponds to the reference cow. The gray lines correspond to 100 cows randomly chosen. 
The points correspond to experimental data from Roche et al. (2009), used to determine the reference cow (triangle = maximum value; cross = 
average value; circle = minimum value).
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from 38.9 to 32.15% between HS and LS environments. 
This is mainly explained by a decrease in longevity and 
total number of days in lactation. At lifetime scale, 
productive time is playing a major role and allows the 
dilution of the fixed costs associated with unproductive 
days (i.e., time before first calving and during the dry 
period). A decrease in total number of productive days 
leads to a decrease in life efficiency. The cow BW and 
the proportion of body reserves at second calving de-
creased when the environment became more constrain-
ing. When resource availability is limited, body reserves 
are used to compensate for the low offer of DM. As the 
probability of conception is depending on BCS and en-
ergy balance, limiting environments induce a decrease 
in conception and an increase in risk of being culled 
for infertility, leading to less lactations. The delay to 
second conception was slightly affected by the environ-
ment with an increase of 2 d between HS and LS.

Genetic Parameters of Simulated Traits

The estimates of heritability for each trait and each 
nutritional environment are given in Table 2. Herita-
bility estimates for milk production and efficiency in 
second lactation decreased between the most favorable 
environment HS and the less favorable environment 
LS. An opposite trend was found for life efficiency, 
for which the heritability estimate tended to increase 
from the most favorable environment HS to the less 
favorable environment LS. Estimates for BW at second 
calving were roughly constant across environments. For 
body reserves at second calving, a decrease of herita-
bility was observed in the less favorable environment 
LS. Finally, estimates of heritability for delay to second 
conception were low across all environments.

The estimates of heritability and genetic correla-
tions with a multiple-trait model in each environment 
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Figure 3. Description of the workflow used in the simulation study (illustrated here with 2 nutritional environment scenarios) with: (1) 
the genetic module used to create a virtual population of 200 sires with breeding values for the 4 input parameters (α1, α2, α3, α4) of the dairy 
cow lifetime model and generate 100 half-sib group of daughters; (2) the simulation of the lifetime trajectories of 20,000 cows corresponding to 
the acquisition and allocation parameter combination (αi,j), in each nutritional environment scenario, and (3) the calculation of 6 aggregated 
phenotypes (ti,j) and estimation of their genetic parameters to study genotype by environment interactions. The 6 aggregated phenotypes cor-
respond to: milk production in second lactation (kg), efficiency in second lactation (%, energy invested in milk over energy acquired from the 
environment throughout second lactation), life efficiency (%, energy invested in milk over energy acquired from the environment throughout 
lifetime), BW at second calving (kg), level of body reserves at second calving (%) and delay from the start of the mating season until the second 
conception (days).
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are presented in Table 3. Heritability estimates from 
multiple-trait models were consistent with estimates 
from univariate models, except for delay to second con-
ception in MP scenario. However, multiple-trait models 
tended to lead to slightly higher estimates of heritabil-
ity than univariate models (Table 2).

Genetic correlations between milk production and 
efficiency in second lactation were positive and high in 
all scenarios and increased as the nutritional environ-
ment became more constraining. Lifetime efficiency 
was positively correlated with milk production and 
efficiency in second lactation but these correlations 
decreased and became substantially less than one as 
the environment became more constraining. BW at 
second calving was negatively correlated with milk 
production and efficiency traits, except for milk pro-
duction in the HS scenario. These genetic correlations 

became more negative as the environment became 
more constraining. Regarding level of body reserves 
at second calving, the genetic correlation with milk 
production and efficiency in second lactation was low 
across all environments. The genetic correlation for 
body reserves at second calving with life efficiency was 
positive and low in HS scenario and increased as the 
environment became more constraining. Finally, the 
genetic correlation with BW at second calving was 
moderate and similar across environment, except for 
the most constraining environment LS. The genetic 
correlation estimates between the delay to second 
conception and the other traits were generally moder-
ate. Sampling errors for genetic correlation estimates 
were large for this trait, reflecting the low heritability. 
The results of genetic parameters for the 2 efficiency 
metrics are presented in Table 4.
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Table 1. Phenotypic description of traits simulated (mean ± SD) in the 4 nutritional environment scenarios 

Trait

Nutritional environment scenario1

HS MS MP LS

n 17,945 17,518 15,643 13,640
Second-lactation milk production (kg) 4,866.3 4,357.6 3,842.2 3,543.1

±569.5 ±414.7 ±368.1 ±322.2
Second-lactation efficiency2 (%) 54.4 54.2 53.7 53.4

±4.2 ±4.3 ±4.0 ±4.0
Life efficiency3 (%) 38.9 36.6 35.6 32.1

±4.5 ±4.2 ±4.2 ±3.8
n 18,171 18,059 17,967 17,019
BW at second calving (kg) 529.9 524.4 524.3 486.9

±59.4 ±55.3 ±55.1 ±39.8
Body reserves at second calving (%) 21.8 21.5 21.5 18.1

±5.8 ±5.6 ±5.6 ±5.3
Delay to second conception4 (d) 18.7 18.9 18.9 20.4

±20.0 ±20.2 ±20.0 ±21.0
1n = number of simulated cows that reached at least d 220 of their second lactation; HS = high and stable, 
nonlimiting environment where DM offer is high and stable between years; MS = moderate and stable, seasonal 
and moderately constraining nutritional environment where DM offer can be limiting for high-acquisition cows; 
MP = moderate and perturbed, same environment as MS, but every 3 years DM offer decreased in late winter 
and spring, representing a slowdown in grass growth due to cold and wet weather, and decreased in summer, 
representing a drought; LS = low and stable, very limiting environment, stable between years. 
2Second-lactation efficiency is calculated as the percentage of energy invested in milk over energy acquired from 
the environment throughout the second lactation. 
3Life efficiency is calculated as the percentage of energy invested in milk over energy acquired from the environ-
ment throughout the lifetime. 
4Delay to conception is calculated as the number of days from the start of mating season until the second 
conception.

Table 2. Heritability of traits within each nutritional environment scenario (single-trait analysis)

Trait
High 

and stable
Moderate 
and stable

Moderate 
and perturbed

Low 
and stable SE

Second-lactation production 0.302 0.241 0.194 0.179 0.023–0.032
Second-lactation efficiency 0.343 0.315 0.314 0.291 0.032 –0.035
Lifetime efficiency 0.124 0.143 0.146 0.179 0.016–0.023
BW at second calving 0.395 0.419 0.405 0.390 0.039–0.041
Body reserves at second calving 0.307 0.291 0.302 0.262 0.029–0.032
Delay to second conception 0.007 0.017 0.003 0.008 0.005–0.006
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The estimation process based on restricted maximum 
likelihood led to a reduce rank matrix. The estimates 
of heritability for second-lactation efficiency and life 
efficiency were consistent with estimates from previ-

ous models (Table 2 and Table 3). For second-lactation 
efficiency, all genetic correlations were equal to 1 show-
ing no G × E for this short-term metric of efficiency. 
Regarding life efficiency, the genetic correlations were 
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Table 3. Genetic parameters (diagonal: heritability; lower diagonal: genetic correlations) of the 6 simulated traits estimated with a multitrait 
model for each nutritional environment scenario1

Parameter
Second-lactation  

production
Second-lactation  

efficiency
Lifetime  
efficiency

BW at second  
calving

Body reserves  
at second  
calving

Delay to second  
conception

High and stable
 n 17,945 17,945 17,945 18,171 18,171 18,171
 Second-lactation production 0.301      
 Second-lactation efficiency 0.697 0.348     
 Lifetime efficiency 0.708 0.854 0.123    
 BW at second calving 0.265 −0.425 −0.394 0.396   
 Body reserves at second 
  calving

0.136 −0.225 0.184 0.366 0.307  

 Delay to second conception 0.126 0.432 0.080 −0.251 −0.473 0.008
Moderate and stable       
 n 17,518 17,518 17,518 18,059 18,059 18,059
 Second-lactation production 0.243      
 Second-lactation efficiency 0.929 0.325     
 Lifetime efficiency 0.631 0.656 0.143    
 BW at second calving −0.188 −0.449 −0.636 0.419   
 Body reserves at second 
  calving

−0.053 −0.279 0.333 0.326 0.291  

 Delay to second conception −0.071 0.114 −0.478 0.112 −0.609 0.017
Moderate and perturbed       
 n 15,463 15,463 15,463 17,967 17,967 17,967
 Second-lactation production 0.182      
 Second-lactation efficiency 0.977 0.332     
 Lifetime efficiency 0.592 0.609 0.149    
 BW at second calving −0.292 −0.458 −0.679 0.405   
 Body reserves at second 
  calving

−0.032 −0.198 0.366 0.322 0.302  

 Delay to second conception 0.450 0.527 −0.274 −0.119 −0.784 0.007
Low and stable       
 n 13,640 13,640 13,640 17,019 17,019 17,019
 Second-lactation production 0.185      
 Second-lactation efficiency 0.983 0.311     
 Lifetime efficiency 0.526 0.477 0.211    
 BW at second calving −0.528 −0.598 −0.768 0.390   
 Body reserves at second 
  calving

0.011 −0.139 0.616 0.015 0.263  

 Delay to second conception 0.241 0.402 −0.314 −0.285 −0.862 0.011
1Sampling errors ranged from 0.006 to 0.041 for heritability estimates and from 0.012 to 0.30 for genetic correlations.

Table 4. Genetic parameters (diagonal: heritability; lower diagonal: genetic correlations) of the 2 efficiency metrics (second-lactation efficiency 
and lifetime efficiency) estimated with a multitrait model across nutritional environment scenarios1

Parameter High and stable Moderate and stable Moderate and perturbed Low and stable

n 17,945 17,518 15,463 13,640
Second-lactation efficiency     
 High and stable 0.331    
 Moderate and stable 1.000 0.309   
 Moderate and perturbed 1.000 1.000 0.312  
 Low and stable 1.000 1.000 1.000 0.292
Lifetime efficiency     
 High and stable 0.124    
 Moderate and stable 0.907 0.147   
 Moderate and perturbed 0.862 0.995 0.154  
 Low and stable 0.760 0.963 0.985 0.186
1Sampling errors ranged from 0.033 to 0.87 for heritability estimates and from 0.016 to 0.058 for genetic correlations.
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close to 1 between constrained environments (MS, MP, 
and LS). However, the genetic correlations with HS 
scenario decreased from 0.907 to 0.760, showing a G 
× E interaction for this long-term metric of efficiency.

Best Performing Cows in High and Low Nutritional 
Environment Scenarios

As a complementary approach to genetic parameters 
evaluation, simulations were also used to look at the 
best performing genotypes, i.e., combinations of genetic 
scaling parameters for acquisition and allocation, in the 
different nutritional environments. In the 2 most con-
trasted scenarios, HS and LS, the 5% best cows for lac-
tation efficiency and the 5% best cows for life efficiency 
were selected, thus forming 4 subpopulations of cows. 
The distribution of allocation and acquisition param-
eters in these 4 subpopulations were compared with the 
distribution of parameters in the whole population of 
simulated cows. The results are given in Figure 4. This 
allowed us to evaluate which acquisition and allocation 
strategies lead to the highest efficiency in the short 

and in the long term and depending on the nutritional 
environment.

In the HS scenario, the best cows for second-lactation 
efficiency had values of acquisition parameters close to 
the rest of the simulated population. Regarding alloca-
tion parameters, on average they had lower allocation 
to growth and higher allocation to lactation. The best 
cows for life efficiency in the HS scenario had higher 
values for acquisition in lactation than the rest of the 
population. They had lower values for allocation to 
growth and higher values for allocation to lactation.

In the LS scenario, the best cows for second-lactation 
efficiency had distributions of parameters similar to 
those of the best cows for second-lactation efficiency 
in the HS scenario, except that they allocate less to 
growth and less to lactation. Finally, the best cows for 
life efficiency in the LS scenario, in contrast with the 
best ones for life efficiency in the HS scenario, had the 
same lactation acquisition as the rest of the population 
but they had a lower basal acquisition than the rest of 
the population and the other subpopulations of best 
cows.

Puillet et al.: EXPLORING G × E INTERACTIONS IN DAIRY COW FEED EFFICIENCY

Figure 4. Distributions of genetic scaling parameters of the 5% best simulated cows for second-lactation and life efficiency in high and low 
nutritional environment scenarios (red dotted = best for second-lactation efficiency in high and stable scenario; blue dotted = best for second-
lactation efficiency in low and stable scenario; red plain = best for life efficiency in high and stable scenario; blue plain = best for life efficiency 
in low and stable scenario; gray area = all cows distribution)
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DISCUSSION

This study aimed at assessing the extent of genotype 
by environment interactions for FE traits with a simu-
lation approach, using a mechanistic model of the dairy 
cow. The strategy consisted of generating a simple ad-
ditive genetic determinism among underlying drivers of 
FE, that is to say resource acquisition and allocation. 
This then allowed us to estimate the genetic parameters 
of phenotypic traits expressed in contrasted nutritional 
environments within a seasonal calving system.

The HS scenario can be considered as the environ-
ment that allows full expression of the cow’s acquisition 
and allocation strategy (i.e., the intake of the animal 
is not constrained by the nutritional environment but 
is instead determined by the genetic value of resource 
acquisition). It was assumed to be the scenario that 
best reflects the nutritional environment used in herds 
focused on producing elite breeding stock within the 
New Zealand context. The heritabilities found for this 
scenario were consistent with the national genetic 
evaluation (0.36 for milk volume, 0.35 for BW, and 0.25 
for body condition score, Dairy NZ, 2020). Heritability 
for lifetime efficiency was low (0.12 in HS) which is 
consistent with the fact that in general, longevity is a 
low heritability trait (0.06, Dairy NZ, 2020). Heritabil-
ity for delay to second conception was very low (0.007 
in HS) compared with values found in real data studies 
(Berry et al., 2014). This suggests that the model is 
missing some variation in fertility that is not driven by 
nutritional stress.

The heritability estimates in the 4 simulated sce-
narios showed that the contribution of genetic variation 
to milk production in second lactation decreased (from 
0.30 to 0.19) as the nutritional environment increasingly 
constrained feed availability. Milk production in second 
lactation is a trait resulting from both acquisition (de-
termining the amount of energy acquired that can be 
transformed) and allocation parameters (determining 
the proportion of energy allocated to lactation). When 
the environment is nonlimiting, genetic variations in 
these parameters are fully expressed. When feed avail-
ability decreases, the expressed variation in acquisition 
is constrained and the energy transformed is based on 
what is available in the environment, whatever the value 
of the acquisition parameter. Accordingly, the genetic 
variation for acquisition contributes less to variation 
in milk, which becomes more based on variation in al-
location parameters. The heritability estimates for effi-
ciency in second lactation were stable in the 4 scenarios 
(around 0.32) and close to the heritability assigned to 
the underlying parameters in the genetic module (0.35). 
The genetic correlations for second-lactation efficiency 
across environments were equal to 1. These results are 

mainly due to the strong role that allocation plays in 
determining efficiency at the level of a single lactation 
cycle (Puillet et al., 2016). The parameter for lactation 
allocation determines the time-profile of allocation and 
therefore the cumulated proportion of energy trans-
formed into milk. As efficiency is calculated as the ratio 
between energy invested into milk over energy acquired 
throughout lactation, this trait is closely linked to the 
lactation allocation parameter. Further, as lactation ef-
ficiency is evaluated in second parity in our case, that 
is to say at an early stage of productive life, the effect 
of previous reproductive cycles is low and the trait is 
reflecting more directly the expression of the underly-
ing acquisition and allocation parameters.

The heritability estimates for lifetime efficiency in 
the 4 different scenarios show that the genetic varia-
tion relative to the phenotypic variance increased as 
the environment became more constraining (0.12 to 
0.21). Achieving high lifetime efficiency does not only 
imply a good production level (dilution of maintenance 
costs) but also a better ability to have many lacta-
tion cycles (dilution of nonproductive days). This time 
dimension is of great importance for lifetime efficiency 
and therefore reproductive success is a key component, 
as it triggers the next lactation and increases total 
production time. When the environment becomes more 
constraining, body reserves are more mobilized and 
the probability of conception decreases. There is less 
opportunity for random success of some acquisition 
and allocation strategies: only the ones that lead to 
enough body reserves at breeding can achieve a good 
lifetime efficiency. This increase in selection pressure as 
resource availability decreases may explain the increase 
in heritability for lifetime efficiency.

Comparing correlations estimated in different envi-
ronments is a way to estimate G × E interactions. In 
this study, we found that genetic correlations between 
milk production and efficiency in second lactation were 
positive and increased as the environment became more 
constraining (from 0.69 to 0.98). Indeed, as resource 
availability decreases, variation in intake is squeezed. 
Thus, differences in second-lactation production and 
efficiency become more strongly correlated with dif-
ferences in allocation to milk. Lifetime efficiency was 
positively correlated to both milk production and ef-
ficiency in second lactation but, in contrast, this cor-
relation decreased when the environment became more 
constraining. This means that if selecting on second-
lactation traits improves lifetime efficiency in a favor-
able environment, this is not the case in less favorable 
environments. In addition, the genetic correlations be-
tween life efficiency in the most favorable environment 
and life efficiency in the 3 constrained environments 
decreased. This suggests that there is a significant G × 
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E effect and thus it seems likely that animals selected 
in highly favorable environments could have reduced 
fitness when they are in a poor environment. This has 
to some extent been observed in studies that compared 
New Zealand and North American Holstein cows under 
Irish grazing conditions (Horan et al., 2005, 2006).

Correlations among BW at second calving and pro-
ductive traits (milk production and efficiencies) were 
mainly negative and increased when feed availability 
decreased. This effect is due to the trade-off between 
growth and survival in the dairy cow model. A high 
BW is mainly achieved by having a high structural 
mass, which is the nonlabile component of the total 
mass and which directly competes with the resources 
available for survival, principally body reserves.

Beyond the effect of the level of resource availabil-
ity on genetic correlations, the results of MS and MP 
scenarios show that dynamics of resource availability 
is also a factor to consider when evaluating G × E 
interactions. The genetic correlation between second-
lactation production and delay to conception goes from 
zero in the MS scenario to 0.45 in the MP scenario (i.e., 
the trade-offs between production and reproduction are 
only revealed in the perturbed environment). The ge-
netic correlation between lifetime efficiency and delay 
to conception is also strongly affected by the pertur-
bations in the MP scenario (from −0.478 to −0.274). 
Even if the number of perturbations is relatively small 
(1 perturbed year every 3 yr), the MP scenario further 
erodes the genetic correlation between second-lactation 
and lifetime efficiency (from 0.656 to 0.609). This sug-
gests that both the level and the variability in time 
of the nutritional resources should be considered. Such 
effects of the environment have already been shown in 
ecology or evolutionary biology studies (e.g., Muller 
and Nisbet, 2000; Fischer et al., 2009; Lee et al., 2016). 
Exploring how the characteristics of perturbations in 
the nutritional environment (e.g., number, intensity, 
and timing) interact and shape G × E interactions is 
an interesting perspective for future simulation studies.

As a complementary approach to genetic correlations 
among traits in different scenarios, simulations were 
also used to determine the best performing genotypes, 
in the sense of the best strategies of acquisition and 
allocation, in the 2 most contrasted environments, HS 
and LS, and for 2 metrics of efficiency (second-lactation 
and life efficiencies). The best strategy in the short term 
(lactation level) and in a favorable environment is to 
allocate more to lactation. In an adverse environment, 
the previous strategy has to be adapted by slightly re-
ducing allocation to lactation and to growth, so as to 
preserve body reserves. The best strategy in the long 
term (lifetime level) and in a favorable environment 

is to acquire more resource in lactation (thus saving 
body reserves), allocate more to lactation and less to 
growth. In an adverse environment, the best strategy is 
to have a lower acquisition and to reduce both alloca-
tion to lactation and to growth so as to ensure that 
functional lifespan is preserved. These results highlight 
the interest of using theoretical biological frameworks 
that integrate underlying mechanisms to better under-
stand how phenotypes are elaborated depending on the 
environmental conditions. The need to combine both 
an adequate specification of animal’s genotype and an 
interaction between genetic and environmental compo-
nents is essential for evaluating G × E (Bryant et al., 
2005).

Results from this simulation study highlight the 
importance of having a balanced breeding goal when 
undertaking selection. Based on our knowledge of un-
derlying nutritional principles, we hypothesize that se-
lection criteria that target short-term efficiency through 
dilution of maintenance might not directly correspond 
with lifetime efficiency, and that this misalignment 
could be environment dependent. In practice, selection 
is typically applied simultaneously across a broad range 
of traits, which should help circumvent problems, for 
example antagonistic genetic relationships between FE 
and fertility and survival. Selection for short-term FE 
is not straightforward to apply in practice. Our results 
indicate that the value of short-term FE as a selection 
criterion within a breeding objective targeting a broad 
cross section of traits, might be more adequate when 
genetic improvement is targeting dairy systems with a 
reasonably benign environment. When the target is for 
dairy production in lower input pastoral environments, 
with large year-to-year variability in feed availability, 
the value of short-term FE as a selection criterion may 
be quite modest, especially after consideration of the 
additional recording cost. Further, it will be critically 
important to make sure that selection candidates are 
accurately predicted for functional traits reflecting ge-
netic variation in fertility and survival. The wholesale 
switch to selection of young industry sires based on 
genomic predictions of merit and will further build on 
predictions for fertility and survival traits are not that 
well validated. In this context, there may be consider-
able risks of unintended deterioration in cow functional-
ity. Our results indicate that these risks will be greatest 
for dairy farm systems where nutritional management 
is subject to unpredictable seasonal and annual varia-
tion in pasture availability. Biologically-grounded simu-
lation models, such as this one, are a cost-effective tool 
for exploring different future genetic selection strategies 
ahead of more costly implementation and evaluation 
with field data.
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CONCLUSIONS

From this simulation study, we found that G × E 
interactions exist between efficiency, productive, and 
functional traits. The interactions with functional traits 
imply that selection strategies based on short-term ef-
ficiency will probably not improve lifetime efficiency. 
Preserving body reserves and survival while investing 
in productive functions is a complex balance, requiring 
a well-tuned resource allocation strategy and largely 
affected by how the environment limits resource acqui-
sition. Further research is required to understand the 
role of resource fluctuations in G × E and better adapt 
genetic improvement to farming system context with 
less control on the feed resource environment.
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