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A B S T R A C T   

China has recently announced a reform of forestry policy, with a major goal being to transform from plantation to 
heterogeneous forests, which have higher resistance to pests and disease and house more biodiversity. One driver 
of reform is increased intensity and frequency of pest-induced tree-dieback events. To inform management, we 
ask what effects these events have on insect biodiversity in Pinus yunnanensis monocultures in Yunnan province, 
the province with one of the highest proportions of forest cover in China. We sampled aerial arthropods (mostly 
insect) biodiversity along gradients of Pinus yunnanensis dieback severity using Malaise traps and used meta-
barcoding to characterise the insect community. We used MS-GDM (‘multi-site generalized dissimilarity 
modelling of zeta diversity’), zeta-decline analysis, and iNEXT (‘Interpolation and extrapolation for species di-
versity’) to assess community change as functions of forest-structure covariates. Metabarcoding of Malaise- 
trapped insects reveals that bark-beetle induced forest dieback does not result in detectable differences in spe-
cies diversity but does result in compositional change, with the biggest turnover occurring between 0% and 
infested-0%-open-canopy forests and 20%-infested-20%-open-canopy forests. Zeta-decline analysis found that 
the insect community in low-infestation forests is characterized by a stochastic assembly, while in high- 
infestation forests, the community structure is consistent with niche assembly. Our results thus suggest that 
bark-beetle dieback mimics natural forest-gap dynamics, consistent with the interpretation of bark beetles as a 
keystone species in European conifer forests, where it has been proposed that forest heterogeneity can be created 
efficiently by allowing natural disturbances, including bark-beetle outbreaks, to proceed naturally, without being 
mitigated by deadwood removal and dense replanting. In Yunnan’s situation, and given predicted increases in 
bark-beetle dieback severity and frequency, this strategy should probably be supplemented with anthropogenic 
treatments, such as deadwood enhancement and planting of multiple tree species, to accelerate the succession of 
plantations into heterogeneous forests.   

1. Introduction 

The largest reforestation programmes in the world are China’s Nat-
ural Forest Protection Program (NFPP) and Grain for Green Program 
(GFGP), which were implemented after widespread flooding in 1998 

(Liu et al., 2008; Vina et al., 2016; Xu et al., 2006; Yin et al., 2009). The 
NFPP protects native forests in the upstream watersheds of the Yangtze 
and Yellow rivers (Liu et al., 2008; Ren et al., 2015), and the GFGP 
controls soil erosion by paying farmers to plant trees on sloping land that 
had been used for food production (Delang & Yuan, 2015; Liu et al., 
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2008; Ma et al., 2017; Xu et al., 2006; Zhai et al., 2014). The GFGP 
reforested 9.06 million ha of cropland between 1999 and 2014, and not 
surprisingly, the GFGP has primarily established low-diversity tree 
plantations (‘plantations’ hereafter), rather than restoring native forest 
(Hua et al., 2018, 2016; Zhai et al., 2014). 

Studies have previously shown that these plantations support lower 
levels of bird, bee, and general insect diversity than do native forests in 
the same locations (Hua et al., 2016; Wang et al., 2019). These findings 
complement those of Cao et al. (2019), who recently calculated that 
plantations in China return a lower net value of ecosystem services 
relative to native forests, even after counting income from timber sales. 
Plantations require a high initial outlay for tree planting, some non- 
native tree species like Eucalyptus require more water input than do 
native tree species, and more management effort is required to protect 
plantations from pest attack (Brockerhoff et al., 2013). In contrast, in-
come from timber sales is low. Thus, to better protect and restore 
terrestrial biodiversity, studies have recommended that reforestation 
policy in China should prioritize the conservation and restoration of 
native forest over plantations (Hua et al., 2016; Wang et al., 2019). 

These initial results in China are consistent with those from a larger 
body of research on forest biodiversity and ecosystem functioning in 
Central Europe, where professional silviculture has long promoted 
plantations, which have now grown to be dominated by dense tree 
stands with few canopy gaps and low volumes of deadwood (Doerfler 
et al., 2018; Thorn et al., 2018, 2019). Such forests support a low di-
versity of plants and animals, especially of saproxylic species (Thorn 
et al., 2018, 2019) and are more vulnerable to large-scale bark-beetle 
(Curculionidae, Scolytinae) outbreaks because the forests are even-aged 
and thus grow to provide an extensive and continuous cover of the large 
trees that are ideal hosts for bark beetles (Seidl et al., 2016). 

Bark-beetle outbreaks are now a primary killer of coniferous forest in 
central Europe (Thorn et al., 2019), as well as North America (Robertson 
et al., 2009) and China (Gan, 2015; He & Zhang, 2004). Moreover, 
climate change is increasing the frequency of bark-beetle outbreaks 
(Carroll et al., 2004; Esper et al., 2007; Sambaraju et al., 2012; Seidl 
et al., 2017). For instance, more frequent and severe droughts and high 
temperatures impede pines from producing enough toxic resin to disable 
attacking beetles (Erbilgin et al., 2017; Kichas et al., 2020; Raffa & 
Berryman, 1983), and consequently, bark-beetle populations can more 
easily grow to outbreak levels (Cullingham et al., 2011). 

Bark-beetle outbreaks leave many standing dead trees, leading to an 
overall increase in deadwood amount and stand structural heterogenity 
(Swanson et al., 2011). Forest managers often carry out salvage logging 
by removing infected trees in order to stop the expansion of the beetles 
(Stadelmann et al., 2013) and to recover the economic value of wood 
(Lindenmayer et al., 2008). The removal of infected trees has a negative 
impact not only on bark beetles but also on other species associated with 
dead wood (Thorn et al., 2018) but can have positive effects by on 
species that are normally associated with open areas (Rost & Clavero, 
2012). 

Our study region of Yunnan province, southwestern China, has one 
of the highest proportions of forest cover in China (Ren et al., 2015; SFA, 
2016), and Pinus yunnanensis plantations account for 28.2% of this forest 
cover (YNFA, 2018), 80% of which is monoculture (Cai et al., 2006). 
Most of the Pinus yunnanensis forest has grown up on land where primary 
evergreen broadleaved forests had been destroyed (Deng et al., 2014). 
The provincial forestry bureau carries out salvage logging by cutting and 
removing ‘snags’ (upright dead trees) to control local outbreaks of three 
species of pine shoot beetles of genus Tomicus (Coleoptera: Curculioni-
dae: Scolytinae) (Gan, 2015; Kirkendall et al., 2008; Lu & Zhang, 2000; 
Lu et al., 2014; Wang et al., 2015). In addition, locals remove logs for 
firewood, leading to very low volumes of dead wood in Pinus yunnanensis 
plantations, despite massive shoot beetle outbreaks affecting over 
200,000 ha of pine plantations in Yunnan (Ji et al., 2007; Lieutier et al., 
2003). This combination in Yunnan of GFGP-financed plantation 
dominance, Tomicus outbreaks, and salvage logging results in conifer 

forests similar to those in Central Europe: structurally simple, even-aged 
tree cover that, despite cut-and-removal of infested trees, remains 
vulnerable to bark-beetle outbreaks (Cai et al., 2006) and supports low 
levels of native biodiversity compared to native forest. 

However, China announced its intention to implement a new forest 
restoration plan in 2019 (Xinhua News Agency, 2019), with a major 
policy goal being to transform plantations into heterogeneous forests 
that have higher resistance to pests and disease. 

In this study, we used Malaise traps to sample aerial insect biodi-
versity (dominated by Diptera and Hymenoptera) along gradients of 
Pinus yunnanensis dieback severity. The initial goal of our study was to 
study the ecological impact of bark-beetle-induced dieback on flying 
insect diversity. In particular, we were interested in whether patterns of 
forest insect diversity in Yunnan plantations are similar to those in 
Central Europe, where impacts of tree-dieback on habitat structure and 
salvage logging have been extensively studied (Doerfler et al., 2018; 
Hilmers et al., 2018; Müller et al., 2010; Seibold et al., 2016a, 2016b, 
2018; Thorn et al., 2018). If similar, then this increases our confidence in 
applying lessons learned there to Yunnan and neighboring provinces (e. 
g. the efficacy of deadwood enrichment as a means of promoting sap-
roxylic taxa; Doerfler et al., 2018; Seibold et al., 2016a, 2016b). Sec-
ondly, given China’s recent forest-policy reform announcement, our 
results serve as a baseline survey of aerial insect biodiversity in Yunn-
an’s Pinus yunnanensis plantations, to allow comparison with future 
forests in which, we presume, China will promote, or at least allow, the 
accumulation of greater structural and age heterogeneity and more 
deadwood. 

We characterized the Malaise-trap samples using DNA metabarcod-
ing, which combines DNA barcoding with high-throughput DNA 
sequencing to generate large sample X species tables that can be used to 
test the effects of candidate environmental variables on biodiversity. We 
did not specifically collect saproxylic taxa because the current cut-and- 
remove policy means that there are no Pinus yunnanensis forests in 
Yunnan with high volumes of deadwood to act as a contrast. Meta-
barcoding has been tested against morphologically identified samples 
and been shown to be a reliable and efficient method of characterizing 
the species compositions of bulk samples of insects and invertebrates 
generally (Aylagas et al., 2018; Cordier et al., 2017; Edwards et al., 
2014; Ji et al., 2013; Lejzerowicz et al., 2015; Pawlowski et al., 2016; 
Wang et al., 2019; Yu et al., 2012). Accessible explanations of meta-
barcoding are available in Bush et al. (2017), Ji et al. (2013), Piper et al. 
(2019), Yang et al. (2020), and Zinger et al. (2019). 

2. Methods 

2.1. Field sampling and environmental variables 

Following the distribution of Pinus yunnanensis in Yunnan province, 
southwest China, we sampled in five counties across the elevational 
range of optimal growth (1800–3000 m, Table 1) (Deng et al., 2013). In 
each county, we sampled in six P. yunnanensis-dominated forest stands 
of at least 1 Ha extent along a gradient of bark-beetle-induced dieback 
severity: two sites each in low, medium, and high severity (Fig. 1) 
(sampling locations and elevations in Table S1). Severity was judged by 
local forestry officials, who are charged with responding to bark-beetle 
outbreaks, using a method defined in 2006 by the then-State Adminis-
tration of Forestry (now National Forestry and Grassland Administra-
tion) (SFA, 2006). All sampling plots are reported to have been attacked 
the first time in the 1980s (Zhao & Långström, 2012). Our goal with this 
initial blocking was only to maximize coverage of the local gradient of 
dieback severity. 

We set out and retrieved Malaise traps during 4–14 July 2016, 
placing two traps 10 m apart in each forest site (pairs were pooled at 
DNA extraction before downstream processing) for a total of 60 samples 
(5 counties X 6 sites/county X 2 traps/site). We used absolute ethanol as 
the killing and preserving agent, and the traps were left out for seven 

W. Cai et al.                                                                                                                                                                                                                                     



Forest Ecology and Management 491 (2021) 119173

3

days each. For efficiency, we set out all traps in one county and then 
moved the next day to another county. Retrieval followed the same 
schedule, and we replaced the ethanol in each trap with fresh ethanol for 
transport at ambient temperature to our laboratory, where samples were 
stored at − 80 ◦C until DNA extraction. In addition, in each of the 30 
sampling sites, we centered a 30 X 30 m quadrat over the Malaise traps 

and measured six environmental covariates: elevation, mean tree height, 
mean diameter at breast height (DBH), percentage canopy openness, 
mean infestation rate (the percentage of trees with one or more bark 
beetle emergence holes on all four cardinal sides), and stump number 
(details in Table 1). 

2.2. DNA extraction and PCRs 

Before DNA extraction, the storage ethanol was decanted, and the 
sample was air-dried on single-use filter papers. To reduce PCR domi-
nance by large-biomass individuals (Elbrecht et al., 2017), we used two 
legs from all individuals larger than a housefly and whole bodies of 
everything smaller. Tissue was digested using a modified non- 
destructive protocol from Gilbert et al. (2007) and Nielsen et al. 
(2019) in one 50-ml falcon tube per sample, followed by DNA extraction 
with the DNEasy Blood & Tissue Kit (Qiagen GmbH, Germany). After 
extraction, we pooled the DNA from the paired Malaise traps, leaving us 
with 30 samples, one per site. 

We used mlCOIintF–Fol-degen-rev primers (Leray et al., 2013; Yu 
et al., 2012), which amplify a 313-bp fragment of the COI barcode, and 
we followed the DAMe metabarcoding protocol (Alberdi et al., 2018; 
Bohmann et al., 2018; Zepeda-Mendoza et al., 2016), which is a co- 
designed wet-lab and bioinformatic pipeline that combines qPCR- 
optimized PCR conditions, multiple, independent PCR replicates per 
sample, twin-tagging, and negative and positive controls to (i) remove 
sequence-to-sample misassignment due to tag-jumping (Schnell et al., 
2015), (ii) reduce sequence dropout and taxonomic bias in amplifica-
tion, and (iii) reduce erroneous sequences. Twin-tagging means that the 
same tag is used on both the forward and reverse primers in a reaction 

Table 1 
Environmental covariates and definitions.  

Environmental 
covariates 

Definitions Range(of 

means) 

Elevation Recorded by GPS at the plot center. 1757–3052 
m 

Height Mean height of 40 trees in the quadrat, 
where the trees are the first 10 trees north, 
south, east, and west of the quadrat centre. 

4.61–13.00 
m 

DBH Mean diameter at breast height of 40 trees 
in the quadrat, using the same trees used 
for the height measurement. 

7.9–23.6 cm 

Canopy openness Mean proportion of sky visible in the 
quadrat, measured by spherical 
densiometer (Paletto & Tosi, 2009). 
Measurements were taken at quadrat 
centre and each corner, and averaged. 

0.01–0.68 

Infestation rate The percentage of trees that are infested. 
Trees with one or more bark beetle 
emergence holes on the north, south, east, 
and west sides of their trunks were scored 
as infected, using the same trees used for 
the height measurement. 

0–0.79 

Stumps The total number of tree stumps in the 
quadrat. 

0–22  

Fig. 1. Map of study area, Yunnan province, southwest China. Blue insets are the five sampled counties. Green squares indicate Pinus yunnanensis forest distribution. 
Coloured circles indicate sampling sites, stratified by severity of bark-beetle outbreak, as judged subjectively by local forestry officials. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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(F1-R1, F2-R2,…), and multiple, independent PCR replicates per sample 
means that a different twin tag is used for each of the six PCRs per 
sample, which lets them be distinguished in bioinformatic processing. 
The DAMe logic is that tag-jump events can be filtered out by removing 
reads carrying non-twinned tags (e.g. F1-F2, F3-F5) and that nearly all 
erroneous sequences (indels, substitutions, chimeras) can be filtered out 
by removing sequences that appear in only one (or a low number of) PCR 
replicate(s) at a low copy number, while true sequences are more likely 
to appear in multiple PCRs at higher copy numbers. Extensive testing 
with a recently updated version of DAMe (now called Begum) using 
mock samples finds that erroneous sequences can be nearly eliminated 
at the cost of only a small rise in drop-outs, and a detailed explanation of 
the protocol can be found there (Yang et al., 2020). 

We used qPCR on a subset of samples to optimize PCR annealing 
temperature, cycle number, and initial DNA template concentration, as 
recommended by Murray et al. (2015) and Bohmann et al. (2018). Af-
terwards, for each sample, we ran 6 independent PCRs with 6 different 
twin-tags, under the following qPCR-optimised conditions: initial 
denaturation 95 ◦C for 5 min, followed by 27 cycles of 95 ◦C for 10 s, 
45.5 ◦C for 45 s, 72 ◦C for 1 min, and finishing at 72 ◦C for 10 mins. All 
PCRs were performed in 20 µl reactions containing 0.6 U Ex Taq HS DNA 
polymerase, 1 X Ex Taq Buffer (Mg2+ plus), 0.2 mM dNTP Mixture 
(TaKaRa, Biotechnology Co. Ltd, Dalian, China), 0.4 µM of each primer, 
1 µl DMSO, 0.1 µg/µl BSA (Bovine Serum Albumin Solution, TaKaRa 
Biotechnology Co. Ltd, Dalian, China), and 2 µl genomic DNA. We 
visualized the PCR products on 2% agarose gels. The PCR plate also 
included three extraction blanks and a row of PCR blanks. Finally, we 
included a positive control containing seven insect species from France. 
The 30 samples were combined into six, approximately equimolar pools 
for bead purification (Agencourt AMPure XP kit, Beckman Coulter, Inc., 
USA) and subsequent library preparation using the NEXTflex Rapid 
DNA-Seq Kit for Illumina (Bioo Scientific Corp., Austin, USA). The six 
libraries were sequenced on the Illumina MiSeq platform (300PE) at the 
Southwest Biodiversity Institute Regional Instrument Center in 
Kunming. 

2.3. Bioinformatic processing 

Raw MiSeq data were first trimmed for remnant Illumina adapters 
with AdapterRemoval 2.2.0 (Schubert et al., 2016), followed by Schirmer 
et al.’s (2015) recommended pipeline: we trimmed low-quality ends 
using sickle 1.33 (Joshi & Fass, 2011), denoised reads using the Bayes-
Hammer module in SPAdes 3.10.1 (Nikolenko et al., 2013), and merged 
read pairs using PandaSeq 2.11 (Masella et al., 2012). In all cases, we 
used default parameters. 

Sequence were demultiplexed to sample and filtered for tag-jumps 
using a modified version of DAMe that ignores heterogeneity spacers 
in the primers (github.com/shyamsg/DAMe, accessed 10 October 
2020). We then filtered out putatively erroneous sequences by keeping 
only those that appeared in > 2 of the 6 PCRs per sample, at a minimum 
copy number of 30 per PCR, which is the stringency level that minimized 
false negatives and maximized true positives in the positive control. We 
further filtered by removing sequences ≤ 300 bp length and using the de 
novo chimera search function in vsearch 2.4.3 (Rognes et al., 2016). After 
filtering, sequences were clustered into 97% similarity Operational 
Taxonomic Units (OTUs) using SUMACLUST 1.0.20 (Mercier et al., 
2013), from which we created a Sample X OTU table, and we used the R 
package ‘lulu’ 0.1.0 (Frøslev et al., 2017) with default parameters to 
combine likely ‘parent’ and ‘child’ OTUs that had failed to cluster. 
Finally, we assigned taxonomies to the remaining OTUs with the RDP 
Classifier function (Wang et al., 2007) on the Midori metazoan mito-
chondrial gene website (Leray et al., 2018). OTUs assigned to Arthro-
poda with < 80% probability were removed. No OTUs remained in the 
extraction-blank and PCR negative controls, and the positive control and 
samples shared no OTUs. We also tried assigning taxonomies on BOLD 
(Ratnasingham & Hebert, 2007), but only a few OTUs received hits, due 

to a lack of samples from this region. 

2.4. Statistical analyses 

All statistical analyses were carried out in R 3.6.3. Read numbers per 
OTU per sample were transformed to presence/absence (1/0). We first 
used the ‘boral’ 1.6.1 R package (Hui, 2016) to cluster sites by com-
munity composition. Boral is a Bayesian, model-based ordination 
method that allows the selection of an appropriate error distribution. We 
used a binomial error distribution and no row effect to fit the model 
since we were using presence/absence data. For the same reason, we 
used ‘mvabund’ 3.12.3 (Wang et al., 2012) to test for the effects of 
environmental covariates on community composition. 

Because the boral ordination showed that the dominant driver of 
change in community composition is geographic distance, which is not 
surprising given the large spatial extent of our sampling (Fig. 1), we 
followed up with Multi-Site Generalized Dissimilarity Modelling (MS- 
GDM), using the ‘zetadiv’ 1.2.0 package (Latombe et al., 2017). Classical 
GDMs try to identify the dominant drivers of change in community 
composition by using a combination of pairwise (i.e. between-two-sites) 
differences in geographic distance and in environmental-covariate 
values to explain pairwise differences in community composition (Fer-
rier et al., 2007). However, pairwise differences in composition (e.g. 1- 
Jaccard) are dominated by the contributions of the many species that are 
present in just two samples (i.e. rare species), resulting in GDMs that 
more heavily weight the variables that explain turnover in rare species, 
such as geographic distance. 

To identify the environmental variables that are more important for 
explaining the distributions of widespread species (i.e. those present in 
multiple samples), Latombe et al. (2017) combined GDMs with the 
concept of zeta diversity (Hui & McGeoch, 2014) to create MS-GDMs. 
Zeta diversity is a generalization of pairwise beta diversity and is the 
mean number of species shared by i number of sites, where i is known as 
the zeta order. Zeta diversity order 4, for instance, is the mean number of 
species shared by 4 sites (in a dataset of 100 sites, there are ~ 3.9 million 
combinations of 4 sites). Zeta diversities can be converted to multi-site 
equivalents of the pairwise Jaccard dissimilarity and used as response 
variables in an MS-GDM (Latombe et al., 2017, 2019), with the six 
environmental covariates as candidate predictors (Table 1), rescaled 
between 0 and 1. We also used zeta diversity to ask if the insect com-
munities in low- and high-infestation forests show evidence for different 
assembly mechanisms, by using the ‘zetadiv’ package to calculate zeta 
diversity decline and species retention rates for low- and for high- 
infestation forests. Finally, we partitioned variation in zeta diversity 
into environmental, distance, indistinguishable, and unexplained 
components. 

To compare alpha diversity across infestation levels (Species rich-
ness, Shannon and Simpson diversities), we used the sample-based 
rarefaction-extrapolation approach in the ‘iNEXT’ 2.0.12 package 
(Hsieh et al., 2016). Significant differences in estimated alpha diversity 
were judged by non-overlapping confidence intervals, which is consid-
ered slightly conservative (MacGregor-Fors & Payton, 2013). In case we 
had oversplit some biological species into multiple OTUs, leading to 
artefactual differences in species richness, we also carried out a 
phylogenetic-diversity (PD) analysis because a single species split into 
multiple OTUs should cluster on a phylogenetic tree and thus contribute 
less to PD than two OTUs from two different biological species. Our 
protocol followed that of Wang et al. (2019), in which we aligned the 
OTU sequences, built a maximum-likelihood (ML) phylogenetic tree 
(details in S2), and estimated PD with the ‘iNextPD’ 0.3.2 package 
(Hsieh & Chao, 2017). We omitted two OTUs because they produced 
long branches. 
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3. Results 

3.1. Bioinformatic processing and taxonomic composition 

The six libraries yielded 11,128,217 paired-end reads. After 
removing a very large number of tag-jumped, paired-end reads 
(7,526,449), followed by DAMe filtering (retaining 1,217,449 sequences 
in ≥ 2 of the 6 PCRs per sample at ≥ 30 copies per PCR), and removal of 
chimeras and OTUs not assigned to Arthropoda, we ended up with 
1,107,100 reads, clustered into 880 97% OTUs, for downstream anal-
ysis. Mean reads per OTU was 1,258 (Range = 66–54,775; SD = 2930), 
and mean reads per sample was 36,903 (n = 30; range 3,881–72,575; 
SD = 17,396). These 880 OTUs were assigned to 35.8% Diptera, 21.7% 
Lepidoptera, 19.1% Hymenoptera, 9.7% Coleoptera, 7% Hemiptera, and 
6.7% other orders. 

Read depth varied across samples (Fig. S3A), and we found a positive 
correlation between read depth and species richness (Pearson, p <
0.001). Thus, to test the robustness of our results, we removed eight 
samples that had < 25,000 reads, which removed the positive correla-
tion (Pearson, p = 0.68, Fig. S3B), reran the analyses below (3.2–3.5), 
and as we report below and in Supplementary Information (S4, S6, S9, 
S10), found essentially the same results. We report the full-dataset re-
sults in the Main Text. 

3.2. Boral ordination 

Boral ordination (Fig. 2) clustered the 30 sites by the five counties in 

which we sampled (Fig. 1) and arranged the clusters by elevation (latent 
variable 1) and tree-infestation rate (latent variable 2). Mvabund anal-
ysis confirmed the same effects (Table 2) and found no evidence for an 
interaction effect. Boral results without low-read-depth samples in 
Fig. S4. 

3.3. Multi-site generalized dissimilarity modelling 

We carried out MS-GDM to identify the main drivers of change in 
community composition after controlling for geographical distance. 
Initially, we ran the model with five environmental covariates from 
Table 1 (omitting elevation), plus geographic distances between sites, 
because geographic distance and elevation are correlated. At zeta order 
2 (equivalent to the Jaccard index, which is pairwise and thus domi-
nated by rare species), distance is the dominant driver of compositional 
turnover, followed by the local environmental variables canopy open-
ness and DBH (Fig. 3A, Order2). Distance is largely linear in its effects, 

Fig. 2. ‘Boral’ ordination of beta diversity by disturbance type. Color codes for outbreak severity as in Fig. 1. Symbols (and surrounding ovals) indicate the five 
counties, and points represent samples. Latent variable 1 predicts elevation (2296.43–169.31*LV1, R2 = 88.0%, df = 28, p = 4.42e-15), and latent variable 2 predicts 
tree-infestation rate (0.31–0.07*LV2, R2 = 31.5%, df = 28, p = 0.0007). Boral residuals in Fig. S5. 

Table 2 
Mvabund analysis. Testing for the effects of Elevation, Infestation rate, and their 
interaction on community composition.   

Res.Df Df.diff Score Pr(>score) 

Intercept 29    
Elevation 28 1 100.1 0.001 
Infestation rate 27 1 136.8 0.044 
Elevation:Infestation rate 26 1 131.1 0.935  
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meaning that changes in community composition occur along the full 
range of distance, as rare species turnover from site to site and county to 
county. In contrast, for canopy openness, most compositional turnover 
occurs in the first 20% of its range, in the transition from closed to 
partially open-canopy forest, and for DBH, most change occurs in the last 
20% of its range, in the transition to sites with the largest trees. MS-GDM 
with low-read-depth samples removed in Fig. S6. 

By definition, as zeta order rises, common species increasingly 
dominate the analysis, and starting at zeta order 4 (Fig. 3A, Order4), the 
distance variable starts to be less important than the local variables of 
infestation rate and canopy openness, which both exert their effects 
primarily in the first ~ 20% of their ranges. That is, most of the 
compositional change occurs in the transition from 0% to infested-0%- 
open-canopy forests to 20%-infested-20%-open-canopy forests. At 
higher zeta orders, distance explains even less of the change in 
composition, except at very large distances, since common species are by 
definition more widespread. 

We then re-ran the MS-GDM with elevation included, which returned 
similar results: as zeta order increases, the five environmental covariates 
other than elevation (Table 1) explain an increasingly larger proportion 
of total variation, while distance and elevation become less important 
(Fig. S7). 

3.4. Zeta diversity decline and retention ratios 

Another application of zeta diversity is to infer the relative roles of 
niche partitioning and stochastic assembly in community assembly 
(McGeoch et al., 2019). Zeta diversity declines as zeta order increases, 
since fewer and fewer species are shared amongst more and more sites. 
Steeper rates of decline indicate greater numbers of rarer species over 
more common species. Here, we asked how infestation affects commu-
nity assembly over the infestation-rate gradient. To simplify the com-
parison, we divided the sites roughly evenly into ‘low’ (≤0.25, n = 14) 
and ‘high’ (>0.25, n = 16) infestation-rate categories (Figs. 4 and S8), 
and tested the goodness of zeta-diversity decline functional forms using 

the Akaike information criterion (AIC). 
In the low-infestation forests, zeta-diversity decline is both steeper 

and better fit by an exponential function than by a power-law function 
(− 7.54AIC_exp < 10.67AIC_pl) (Fig. 4A). This is consistent with low- 
infestation forests being characterized by a stochastic assembly pro-
cess. In the extreme form, there is no niche partitioning; all the species 
have equal probability of occurring at any given site despite environ-
mental variation across sites, and across-species variation in occupancy 
and turnover arises only stochastically, due to, for instance, random 
dispersal governing establishment (Hui & McGeoch, 2014; McGeoch 
et al., 2019). Consistent with this, the zeta-ratio analysis shows fewer 
common species and generally low retention of species when a new site 
is sampled (McGeoch et al. 2019, Fig. 4B). 

In contrast, in the high-infestation forests, zeta-diversity decline is 
relatively shallower and better fit by power-law function (8.52AIC_exp >

0.80AIC_pl) (Fig. 4A), which obtains when the probability that a species 
occurs in a newly sampled site increases with that species’ overall oc-
cupancy, which in turn is consistent with community assembly being 
driven by niche differentiation. Each OTU has a species-specific proba-
bility of occurring at a site due to environmental conditions at that site 
(Hui & McGeoch, 2014; McGeoch et al., 2019). The zeta-ratio analysis 
shows that species in the high-infestation forests generally have higher 
occupancy, even beyond order 6 (Fig. 4B), which is the number of sites 
per county (Fig. 2) and which thus shows that high-infestation forests 
share species across large geographic distances, apparently because of 
shared environmental conditions (Fig. 3A). (See Fig. S9 for the same 
analysis with low-read-depth samples removed). 

3.5. Alpha diversity 

The iNEXT and iNextPD analyses found no evidence for a difference 
in species or phylogenetic diversity between low- and high-infestation 
forests (Fig. 5, iNEXT analyses with low-read-depth samples removed 
in Fig. S10). 

Fig. 3. Multi Site Generalised Dissimilarity Modelling (MS-GDM) analysis. A. Contributions of five environmental covariates and distance to explaining zeta diversity 
and B. and variation partitioning. Environmental covariates were rescaled between 0 and 1. The vertical axes indicate the relative contributions of each environ-
mental variable, at each zeta order. Geographic distance is most important at low zeta orders, which are dominated by rare species, and as zeta order increases 
(increasing the importance of common species), canopy openness and then infestation rate become increasingly more important, with most of the compositional 
change occurring in the first 20% of change in those two covariates. Overall when zeta order > 4, environmental covariates explain more compositional change 
than distance. 
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4. Discussion 

Metabarcoding of Malaise-trapped insects reveals that bark-beetle 
induced forest dieback does not result in detectable differences in spe-
cies richness or phylogenetic diversity (Fig. 5) but does result in 
compositional change (Figs. 2 and 3). For rarer species, MS-GDM and 
boral ordination explain this turnover with distance and elevation 
(Figs. 2 and 3), which are correlated in our sampling design (Fig. 1). For 
more common species, local-forest environmental variables explain 
relatively more of the compositional differences, with the biggest 
compositional change occurring between 0% and infested-0%-open- 
canopy forests and 20%-infested-20%-open-canopy forests (Figs. 3 and 
S7). Bark-beetle dieback thus appears to affect the larger insect 

community (at least the portion that can be sampled by Malaise traps) by 
mimicking the transition between closed-canopy forest and structurally 
heterogeneous forest. That said, at higher zeta orders, just over half of 
compositional variation across sites remains unexplained (Fig. 3). 

The zeta-decline analysis found that low-infestation sites showed 
evidence of stochastic assembly, while high-infestation forest sites 
showed evidence of niche partitioning as the dominant community as-
sembly mechanism (Fig. 4). This suggests that the species which colo-
nize the higher-infestation-rate (and higher-energy-availability) sites 
are adapted to these conditions. 

Interestingly, Müller et al. (2010) have also reported that saproxylic 
beetle composition changes nonlinearly with canopy openness 
(measured as LiDAR penetration), with rapid compositional change 

Fig. 4. Community assembly mechanism. A. Comparison of zeta diversity decline and B. retention rate between low- and high-infestation forests. Zeta orders 1 to 11 
are shown, as zeta diversity equals zero for orders > 11. High-infestation sites A. are characterized by a power-law decline and B. share more common species, 
consistent with a niche-differentiated community. Low-infestation sites A. are characterized by an exponential zeta decline and B. share fewer common species, 
consistent with a stochastic community-assembly process. 

Fig. 5. Alpha diversity analysis by A. iNEXT and B. iNextPD. Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines) sampling curves for three 
measures of A. species diversity and B. phylogenetic diversity in low-infestation and high-infestation forests. Shaded areas represent 95% confidence intervals. 
Symbols indicate sample size per forest type. Overlapping confidence intervals indicate no evidence for difference between forest types. 
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occurring from closed canopy up to 23% penetration (11–49% 95% CI), 
after which composition changes slowly. Our results are thus remark-
ably similar (Figs. 3 and S7), despite differences in geography, dominant 
tree species, and focal taxa, and we speculate that the driving mecha-
nism is the effect of light availability on understorey vegetation and 
microclimate. Seibold et al. (2016a) have also reported that canopy 
openness is a major driver of species assemblage composition of non- 
saproxylic epigeal arthropods after intensive logging (see also Bishop 
et al., 2009; Bouget et al., 2013; Franc et al., 2007). Unfortunately, 
unlike Müller et al. (2010), we were unable to measure the biodiversity 
effects of deadwood volume (and thus, the effect of deadwood removal), 
given that, to our knowledge, there are no Pinus yunnanensis sites in 
Yunnan with high amounts of deadwood to contrast with low- 
deadwood-volume sites. If possible, there would be value in running 
deadwood enrichment experiments in Yunnan, in order to test the pre-
diction that saproxylic animal and fungal species will benefit (Doerfler 
et al., 2018; Seibold et al., 2015, 2018). With that important omission, 
our results in Yunnan seem consistent with Thorn et al.’s (2020) diag-
nosis of biodiversity decline in European forests, which they attribute to 
the loss of tree species diversity and the loss of age and structural het-
erogeneity, which together provide microhabitats for light-demanding 
plant and insect species. Species, age, and structural heterogeneity 
also likely contribute to resilience against large-scale bark-beetle out-
breaks (Seidl et al., 2016). On the other hand, Trzcinski & Reid (2008) 
argue that deadwood removal could be effective at preventing the long- 
distance spread of bark-beetle outbreaks. 

Given China’s recent announcement that afforestation and refores-
tation efforts should now aim to create heterogeneous forests that are 
higher in biodiversity and more resilient to disease and pests, what is the 
best way to achieve this? Part of the solution is to allow natural dis-
turbances to create forest structural and age heterogeneity, which in 
turn will benefit light-demanding plants and animals and also provide 
deadwood volume for saproxylic taxa (Thorn et al., 2020). These natural 
disturbances include windstorms, bark-beetle outbreaks, and drought- 
induced diebacks, as long as dead trees are not subsequently removed 
and open areas not replanted with plantation trees (Thorn et al., 2020). 
In particular, bark beetles can be seen as a keystone species (Müller 
et al., 2008), with their attacks on weak and old trees accelerating the 
succession of monoculture forests into heterogeneous forests (Cai et al., 
2006; Yue et al., 2011). However, extreme climate events are predicted 
to increase, resulting in a greater rate and severity of natural distur-
bances (Allen et al., 2010, 2015; Thom et al., 2017; Thom & Seidl, 
2016), including an expansion of bark beetles to higher latitudes and 
elevations (Bentz et al., 2010; Hlásny et al., 2011), which raises the 
short-term costs of allowing bark beetle outbreaks to proceed unim-
peded. Thus, in many areas, anthropogenic treatments could be imple-
mented to accelerate the succession of plantation forests into 
heterogeneous forests (Baeten et al., 2019; Felipe-Lucia et al., 2018; 
Schall et al., 2018; Yue et al., 2011), especially given that Pinus yunna-
nensis covers large areas of poor soil, where tree growth is generally slow 
and seed sources of other tree species distant. 

Methodological considerations. – The combination of metabarcoding 
and Malaise traps, which preferentially capture species-rich Hymenop-
tera and Diptera, naturally produces datasets with a large proportion of 
low-prevalence species. In consequence, we used zeta diversity and MS- 
GDM to analyse community subsets of increasingly more common spe-
cies, which showed that local environmental covariates were more 
important for explaining species distributions at higher orders (Fig. 3). 
Zeta-decline analysis showed that high-infestation and low-infestation 
sites differed in their community assembly mechanisms (Fig. 4). In 
short, removal of the lowest-prevalence species made clearer the effects 
of forest structure on community composition. In contrast, we failed to 
find any differences in alpha diversity across low- and high-infestation 
forests, even for the measures that clearly reached an asymptote: 
Simpson diversity, Phylogenetic entropy, and Rao’s quadratic entropy 
(Fig. 5). That said, our study is underpowered for comparing alpha 

diversities, and we draw only a tentative conclusion on this front. 
Finally, to test robustness, we reran all analyses after removing the eight 
lowest-read-depth samples, which removed the correlation between 
read-depth and species richness, and we recovered the same results (S4, 
S6, S9, S10). 

Another aspect of metabarcoding is that it can be applied to samples 
from locations where taxonomic coverage is poor, such as arthropods 
from Southwest China. The resulting OTU dataset, identified only to 
higher taxonomic ranks, can be used to visualise biodiversity patterns. 
However, with limited taxonomic information, we are unable to carry 
out functional (trait-based) analyses to try to explain why particular taxa 
are favoured or disfavoured under different silvicultural regimes (e.g. 
Cours et al., 2020; Thorn et al., 2018). We also note that our dataset 
represents only a single time point, while temporal turnover of forest 
arthropod communities appears to be high (Barsoum et al., 2019). 
However, we have shown elsewhere (Zhang et al., 2016) that meta-
barcoding sample sets taken in rainy season and in dry season are 
equally able to differentiate forest disturbance gradients, and we have 
shown in two large studies that Malaise-trapped invertebrates show 
similar responses to several other methods and taxa in their responses to 
forest structure and disturbance (Ji et al., 2013; Edwards et al., 2014). 
Thorn et al. (2018) also found taxonomic congruence in biodiversity 
response to salvage logging. In the future, one partial way around the 
lack of taxonomic information for functional inference is to apply joint 
species distribution modelling to DNA-based time series datasets to infer 
the relative contributions of environmental covariates and species in-
teractions to changes in species abundances (Abrego et al., 2021). 

Conclusion. – Long-term monitoring will be necessary for tracking the 
biodiversity consequences of conversion from simple to heterogeneous 
forests and for comparing different anthropogenic treatments. Studies in 
China, the UK, and Borneo have shown that DNA metabarcoding is an 
efficient and standardizable tool for measuring how animal biodiversity 
in forests varies as a function of management and inherent condition 
(Barsoum et al., 2019; Edwards et al., 2014; Hua et al., 2016; Ji et al., 
2013, 2020; Wang et al., 2019; Yang et al., 2014; Yang et al., 2016; 
Zhang et al., 2016). We also think that there is considerable scope for 
using remotely sensed measures (multispectral and LiDAR) to efficiently 
generate environmental covariates for the large-scale mapping and 
monitoring of pest outbreaks like bark beetles in particular (Ji et al., 
2007; Wang et al., 2015) and terrestrial biodiversity in general (Bush 
et al., 2017). 
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