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Spatiotemporal Large-Scale
Networks Shaped by Air Mass
Movements
M. Choufany1*, D. Martinetti 1, R. Senoussi 1, C. E. Morris2 and S. Soubeyrand1

1INRAE, BioSP, 84914 Avignon, France, 2INRAE, Pathologie Végétale, 84143 Avignon, France

The movement of atmospheric air masses can be seen as a continuous flow of gases and
particles hovering over our planet, and it can be locally simplified by means of three-
dimensional trajectories. These trajectories can hence be seen as a way of connecting
distant areas of the globe during a given period of time. In this paper we present a
mathematical formalism to construct spatial and spatiotemporal networks where the
nodes represent the subsets of a partition of a geographical area and the links between
them are inferred from sampled trajectories of air masses passing over and across them.
We propose different estimators of the intensity of the links, relying on different bio-physical
hypotheses and covering adjustable time periods. This construction leads to a new
definition of spatiotemporal networks characterized by adjacency matrices giving, e.g.,
the probability of connection between distant areas during a chosen period of time. We
applied our methodology to characterize tropospheric connectivity in two real
geographical contexts: the watersheds of the French region Provence-Alpes-Côte
d’Azur and the coastline of the Mediterranean Sea. The analysis of the constructed
networks allowed identifying a marked seasonal pattern in air mass movements in the two
study areas. If our methodology is applied to samples of air-mass trajectories, with
potential implications in aerobiology and plant epidemiology, it could be applied to
other types of trajectories, such as animal trajectories, to characterize connectivity
between different components of the landscape hosting the animals.

Keywords: aerobiology, air masses dynamics, connectivity, spatiotemporal network, spatial network

1 INTRODUCTION

Atmospheric air masses are volumes of air with a defined temperature and water vapor content that
have long been known to rule fundamental atmospheric phenomena like weather and air currents.
Their composition is mostly inert gases, but both organic and inorganic particles have been found to
linger in high-altitude air as a consequence of the constant interaction of air masses with the earth’s
surface below them. A non-exhaustive list includes gases and minerals like wildfire smoke,
radioactive material, dust, sand, volcanic ash and sea salt, but also living organisms such as
pollen, fungal spores, bacteria, virus and small insects. Despite the relative sparse density of
these particles with respect to the volume of an air mass, their presence and transportation
across the planet has proven to have strong effects on many phenomena impacting human
health and safety (pollen [1–3], dust concentrations [4, 5], nuclear byproducts [6, 7], human,
animal and plant epidemics [8–13], air pollution [14–16], and rainfall [17–19]).

Edited by:
Quoc Thong Le Gia,

University of New South Wales,
Australia

Reviewed by:
Xin Guo,

Hong Kong Polytechnic University,
Hong Kong
Lu Xiong,

Middle Tennessee State University,
United States

Michele Bellingeri,
University of Parma, Italy

*Correspondence:
M. Choufany

maria.choufany@iplesp.upmc.fr

Specialty section:
This article was submitted to

Mathematics of Computation and
Data Science,

a section of the journal
Frontiers in Applied Mathematics and

Statistics

Received: 03 September 2020
Accepted: 02 December 2020

Published: 30 March 2021

Citation:
Choufany M, Martinetti D, Senoussi R,
Morris CE and Soubeyrand S (2021)
Spatiotemporal Large-Scale Networks

Shaped by Air Mass Movements.
Front. Appl. Math. Stat. 6:602621.
doi: 10.3389/fams.2020.602621

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 6 | Article 6026211

ORIGINAL RESEARCH
published: 30 March 2021

doi: 10.3389/fams.2020.602621

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2020.602621&domain=pdf&date_stamp=2021-03-30
https://www.frontiersin.org/articles/10.3389/fams.2020.602621/full
https://www.frontiersin.org/articles/10.3389/fams.2020.602621/full
https://www.frontiersin.org/articles/10.3389/fams.2020.602621/full
http://creativecommons.org/licenses/by/4.0/
mailto:maria.choufany@iplesp.upmc.fr
https://doi.org/10.3389/fams.2020.602621
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2020.602621


The rise in the number of publications on these subjects
suggests a growing interest of the scientific community on the
effects of air-mass movements on the biosphere, that has surely
been boosted by recent available developments, such as the
Hybrid Single-Particle Lagrangian Integrated Trajectory model
(HYSPLIT [20]), allowing reconstruction of actual air-mass
movements at rather fine geographical and temporal scales
and with a global cover.

The vast majority of studies focused on isolated events, such
as dust storms or peaks of air pollutants, that are rather
concentrated in time (from few hours to few weeks) and/or
space (just a few locations such as cities). Nonetheless, the
movement of air masses is expected to have impacts on a
broader spatiotemporal scale, as reviewed in recent studies
[8, 21]. The purpose of the present paper is then to propose
a mathematical framework for studying air-mass movements on
large spatiotemporal scales, under the hypothesis that these
movements can create stable and recurrent connections between
distant portions of a territory. The very nature of these
connections will be further specified throughout the
manuscript, but as a general rule we will consider that any
pair of points (or areas) in space can have a certain degree of
connection, regardless of their geographic distance, provided
that there are recurrent air-mass trajectories that connect the
two points (or areas). The direction and strength of these
connections will be estimated by looking at the trajectories
linking every pair of points/areas and weighting them
according to appropriate measures. In this perspective, it
seems natural to resort to graph and network theory, since
the formalism of nodes and edges provides an adequate
environment for describing complex connections and can
further be used to deepen into the topology of the
constructed networks in order to infer interesting properties
of the graphs, such as the presence of hubs.

From a generic statistical point of view, we aim to (i) estimate
the weighted and directed edges of a graph using a sample of
trajectories of individuals traveling through the space formed by
the nodes of the graph, and (ii) characterize the estimated graph
based on relevant statistics.

In the following sections, we first introduce the definitions
and properties that will allow us to describe and then estimate
connections between points/areas in space via spatiotemporal
trajectories. Then, we propose several types of measures to
model diverse types of connections. The expected output
consists of a spatiotemporal graph describing the network
of links induced by trajectories. It’s worth noting that our
approach is meant to infer connectivity induced by air-mass
movements and it is readily applicable to HYSPLIT-type data,
but we have maintained a sufficient level of generality to be
applied to other phenomena, provided that trajectory data are
available (e.g., animal trajectories). Finally, we apply our
method to two case studies concerning the coastline of the
Mediterranean sea and the French region of Provence-Alpes-
Côte d’Azur. The two case studies have different
spatiotemporal granularities and they will be used to
provide examples of application of the proposed
methodology.

2 FRAMEWORK FOR THE DEFINITION OF
TRAJECTORY–BASED NETWORKS

In this section we show how a set of trajectories evolving within
space during a finite time interval can be used to construct
pertinent spatiotemporal networks. We first recall some basic
definitions related to networks (Section 2.1) and then propose a
statistical methodology to infer the network structure from a data
set of trajectories (Section 2.2).

2.1 Network Theory
Network theory (a.k.a. graph theory) is a mathematical formalism
introduced by Leonhard Euler to describe the famous Königsberg
bridge problem [22–24]. The two basic components of a network
are a set of nodes linked by a set of edges. Nodes can represent a
variety of things, such as persons, regions, computers, neurons,
etc., while edges are used to describe the connections between
those nodes. Formally, a network G � (V , E) is defined as a set of
nodes (or vertices) V � {v1, v2, . . . , vN } connected by a set of edges
E � {eij}i,j ∈ {1,...,N}. A natural way of representing a network is
given by means of a N × N square matrixM, usually referred to as
an adjacency matrix, whose term (i, j), Mij, is non-zero an edge
exists between i and j. By convention, adjacency matrices are
defined to have an empty diagonal (i.e. Mii � 0, i ∈ {1, . . . ,N}),
meaning that nodes cannot be self connected. IfM is symmetrical
(i.e. Mij � Mji, i, j ∈ {1, . . . ,N}), then the network is said to be
undirected, and directed otherwise. If Mij ∈ {0, 1}, the network is
said to be binary, meaning that an edge between two nodes i and j
either exists or does not. Otherwise, ifMij ∈ R, the network is said
to beweighted, meaning that the value of the edge between nodes i
and j accounts for the magnitude of their interaction. For
example, in real social networks, it can measure the number of
interactions between individuals, in transportation networks, the
number of passengers between hubs (stations, airports, etc.) or in
scientific networks, the number of collaborations between co-
authors [25].

In this paper, a network is said to be spatial [26] when nodes
correspond to geographic locations, while we use the term
temporal [27] to refer to networks where edge values can
change over time. Finally, we will use the term spatiotemporal
network to refer to network that are simultaneously spatial and
temporal, under the constraint that nodes cannot change
position, neither appear nor disappear over time. The
networks considered in this paper also fall into the rather
generic definition of spatiotemporal networks. If the spatial
qualifier means that the nodes of the networks represent fixed
geographical locations, the temporal qualifier is more complex.
Indeed, temporal networks are generally divided in the literature
into two main classes, namely contact graphs or interval graphs
[27]. The former type refers to networks where edges represents
instantaneous contacts between nodes (Figure 1A), while in the
second type edges are active over time intervals instead of instants
of time (Figure 1B). In this paper we propose a new definition of
spatiotemporal networks where nodes correspond to disjoint
regions of the space and edges are computed as a function of
the flow of trajectories linking these nodes (Figure 1C), as it will
be explained in the rest of the current section.
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2.2 Flows and Trajectory Segments
We consider a function Φ : R ×R × Ω→Ω, usually called flow
on the spatial domainΩ ofRd , satisfying the following properties:

⎧⎪⎨⎪⎩ Φ(t, s, x) � Φ(t, t′,Φ(t′, s, x))
Φ−1(t, s, .) � Φ(s, t, .),

(1)

where s, t, t′ ∈ R and x ∈ Ω. For fixed t and s, the flowΦ(t, s, ·) is a
spatial transformation. For fixed x and varying s or t, the function
gives a forward or backward trajectory of a particle over Ω
between times t∧s � inf(t, s) and t∨s � sup(t, s). If s≤ t, y �
Φ(t, s, x) gives the future location at time t of the particle
presently located at x at time s. Contrarily, if s≥ t, y �
Φ(t, s, x) gives the location at past time t that was occupied by
the particle located at x at present time s.Φ(t, s, .) is assumed to be
a bijective mapping meaning that particles following distinct
trajectories cannot be at the same location at the same time.

In general, a flow is defined with respect to a possibly time-
dependent vector field F overR ×Ω, as the solution u : R→Ω of
an ordinary differential equation (see e.g., Hamilton’s equations
in classical mechanics) with specified initial condition at a
specified time s:

⎧⎪⎨⎪⎩
du
dt

(t) � F(t, u(t))
u(s) � x,

(2)

where F is continuous and Lipschitzian overR ×Ω. In the setting
introduced above, Φ(t, s, x) � u(t) with Φ(s, s, x) � u(s) � x. The
solution u represents the trajectory of the particle located at x at

time s. Varying the initial condition in System (2), i.e. varying s
and x, leads to consider pieces of trajectories of all particles which
dynamics are governed by the vector field F. In this article, the
vector field F will not be made explicit, but we will consider
samples of trajectory segments (defined below) for constructing
trajectory-based networks.

Definition 2.1. The trajectory segment associated to the flow Φ
over the time interval Δts � [t∧s, t∨s], s, t ∈ R, for a particle
located at x ∈ Ω at time s is defined as follows:

Γ(t, s, x) � {(t′,Φ(t′, s, x)) : t′ ∈ Δts}. (3)

If s< t (resp. s> t), Γ(t, s, x) is a forward (resp. backward)
trajectory segment. In this article, we are mainly interested in
backward trajectories, but the framework presented here
encompasses forward trajectories as well.

Example 2.1. The notions of flow and trajectory segment can
be adapted to cope with air mass trajectories over the Earth
surface. In this case, the spatial domain Ω representing the Earth
surface is the sphere S2 in R3. If in addition, air masses are
characterized by altitude and temperature evolving in space and
time, thenΩ � S2 ×R+ × R, whereR+ (resp. R) is the domain of
the altitude (resp. temperature) coordinate.

Example 2.2. Animal movements and behaviour activities can
also be represented with the notions of flows and trajectory
segments, providing, for instance, the animal locations and the
covariate value indicating whether animals are feeding or not. In
this case, Ω � R2 × {0, 1}, where 1 stands for ‘the animal is
feeding’ and 0 otherwise. The use of a binary variable for
describing the feeding activity may require the use of

FIGURE 1 | Types of temporal networks: The time of activation is indicated within the grey bar next to the edges (ranging between 0 and 8). For contact networks
(A), edges activate only for one instant at the time and are marked with black vertical lines inside the grey bars. For example, in panel (A), the edge between nodes A and
B is only active at instants 2, 4, 6, and 7. For interval networks (B), edges can be activated during an interval of time. For example, the edge between A and B in panel (B) is
active during the time intervals (0, 3) and (6, 8). For contact networks (C), the edges are quantitatively more or less active across time, and the quantity of activity of
any edge is described by a temporal function.
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stochastic processes or generalized functions undergoing
dynamic analog to the System (2) for constructing the flow if
it is defined with respect to a vector field F.

2.3 Pointwise and Integrated Connectivities
Trajectory-based networks are grounded on the notion of
connectivity used as a quantitative, directed measurement of
edges between graph nodes. In this aim, we first define the
pointwise connectivity as a measure (or submeasure), in the
mathematical sense, of the connectivity between a subset A
and a point x of Ω induced by the trajectory segments
Γ(t, s, x) of a particle located at x at time s. Then, we use the
pointwise connectivity to define the integrated connectivity
between two subsets A and B of Ω over a temporal domain Δ
of R (Δ can be the union of disjoint intervals).

Definition 2.2. Let x ∈ Ω and A ∈ B(Ω), where B(Ω) is a
σ-algebra of subsets of Ω. The pointwise connectivity associated
to the flow Φ is defined as a real valued function Ψ on
B(Ω) ×R ×R ×Ω, conveniently denoted by Ψ(A|t, s, x),
where A1Ψ(A|t, s, x) is a measure or a submeasure on Ω for
each t, s, x

Diverse types of the pointwise connectivity can be constructed,
either using trajectory segments generated by Φ, or directly using
Φ. Specific pointwise connectivities can include environmental
covariates and even covariates associated to very the movements of
particles. Below, we give several examples of such specifications.
Some of these examples are graphically represented in Figure 2.
Most examples are particularly relevant when Ω is a simple
geographic domain and when Φ defines movements of
individuals (e.g., air masses, animals or particles) within Ω.

Example 2.3. The contact-based pointwise connectivity is
defined by:

ΨC(A|t, s, x) � 1{Ats∩ΓΓ(t,s,x)≠∅}, (4)

where Ats � Δts × A and 1 denotes the indicator function.
ΨC(A|t, s, x) indicates whether or not the particle whose
movement in Ω is governed by Φ(·, s, x) hit A during the time
interval Δts. Note that A1ΨC(A|t, s, x) is only a submeasure on
Ω since ΨC(A∪  A′|t, s, x)≤ΨC(A|t, s, x) + ΨC(A′|t, s, x) for
disjoint sets A and A′ of B(Ω).

Remark 1. This example based on the simple contact between
sets can be considered as too strict from a statistical and
measure-theory perspective since the length or the duration
of a contact may be null. Instead, a positive constraint on
contact length for example can be used to define another
version of the contact-based pointwise connectivity: Eq. 4
could then be replaced by

Ψ~C(A|t, s, x) � 1{L(Ats∩ Γ(t,s,x))> 0},

where L(Ats∩  Γ(t, s, x)) denotes the length of the curve Γ within
A. The length operator L will be made explicit in Example 2.5.

Example 2.4. The duration-based pointwise connectivity is
defined by:

ΨD(A|t, s, x) � ∫
Δts

1{Φ(v,s,x) ∈ A}dv, (5)

to measure the duration spent by the particle in A during Δts.
Example 2.5. The length-based pointwise connectivity is

defined by:

FIGURE 2 | Illustration of contact-based, duration-based and length-based pointwise connectivities:ΨC,ΨD andΨL are between the elliptic spatial domain A ⊂ R2

and different spatial points x at time s � 1, for Δts � [0, 1]. The left curve on panel (A) never enters the domain A. The middle curve on panel (A) enters A (red part of the
curve) over a relatively long duration [as shown by Panel (B)] but a short distance [as shown by Panel (B)]. The right curve on panel (A) enters A over a shorter duration but
a longer distance. Thus, ΨC(A|t, s, x),ΨD(A|t, s, x) and ΨL(A|t, s, x) are zero for the left curve;ΨC(A|t, s, x) � 1 for the two other curves;ΨD(A|t, s, x) is larger for the
middle curve than for the right one, whereas ΨL(A|t, s, x) is larger for the right curve than for the middle one.
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ΨL(A|t, s, x) � ∫
Δts

1{Φ(v,s,x) ∈ A}‖DvΦ(v, s, x)‖dv, (6)

where DvΦ(v, s, x) stands for the derivative with respect to the
time variable v of the flowΦ (which is a vector function), and || · ||
denotes the Euclidean norm. ΨL(A|t, s, x) measures the distance
travelled within A by the particle during Δts.

Example 2.6. The pointwise connectivity based on local
volume is defined by:

ΨV(A|t, s, x) � ∫
Δts

1(Φ(v,s,x) ∈ A)
∣∣∣∣det(JxΦ(v, s))∣∣∣∣dv (7)

where det(JxΦ(v, s)) is the determinant of the Jacobian matrix
(with respect to x) of the spatial transformation Φ(v, s, ·). The
absolute value

∣∣∣∣det(JxΦ(v, s))∣∣∣∣ of the Jacobian determinant at x
gives the ratio by which the function Φ(v, s, ·) expands/shrinks
infinitesimal volumes around location x into infinitesimal
volumes around location Φ(v, s, x). In other words,
ΨV(A|t, s, x) assesses how particle density increases or
decreases from x to A along the time interval Δts. Intuitively, if
n particles are initially inA and if the infinitesimal volume around
any of these particles tends to shrink fromA to x, then one expects
a high concentration of particles in a fixed volume around x and,
therefore, a high connectivity from A to x. Conversely, if the
infinitesimal volume around a particle tends to expand from A to
x, then one expects a lower concentration of particles in the same
fixed volume around x and, therefore, a lower connectivity from
A to x.

More sophisticated specifications of the pointwise connectivity
can be proposed by incorporating spatio-temporal covariates in
its formulation, like in the following examples.

Example 2.7. Let G denote a time-varying vector field defined
over R × Ω. The pointwise connectivity based on the external
vector field G is defined by:

ΨG(A|t, s, x) � ∫
Δts

1(Φ(v,s,x) ∈ A)|<DvΦ(v, s, x),G(v,Φ(v, s, x))> |dv

where <DvΦ(v, s, x),G(v,Φ(v, s, x))> is the scalar product
between the derivative with respect to the time variable v of
the flow Φ (which is a vector function) and the vector field G.
Larger the average collinearity in A between the instantaneous
movement of the particle and the simultaneous direction of the
vector field G, higher the connectivity between A and x. For
instance, if Φ gives the movement of air masses and G provides
the intensity and the direction of a continuous release of specific
particles, then the connectivity will be high (resp. low) if the
movement of the air in A and the movement of particles released
in A are approximately collinear (resp. orthogonal).

Example 2.8. Let Z and ~Z be positive real valued spatio-
temporal functions defined over R ×Ω. The pointwise
connectivity based on Z and ~Z is defined by:

ΨZ,~Z(A|t, s, x) � Z(s, x)∫
Δts

1(Φ(v,s,x) ∈ A)~Z(v,Φ(v, s, x))dv. (8)

This form of pointwise connectivity may represent, for example,
(i) the negative effect of the altitude of the air mass when it is
above A on the recruitment of specific particles from the ground,
and (ii) the positive effect of rainfall at (s, x) on the deposition of
particles from the air mass to the ground (see Figure 3). Thus,
lower the average altitude of the air mass above A and more
intense the rainfall at (s, x), larger the contribution to the
connectivity between A and x. This is expressed in Eq. 8 as
follows: (i) ~Z is defined as the binary function indicating whether
or not the altitude of the air mass (located at x at time s) is lower
than a threshold hwhen it is located atΦ(v, s, x) at time v; (ii) Z is
a function of the local rainfall intensity at (s, x).

Remark 2. If in Example 2.8, the altitude of the air mass is
incorporated as the third coordinate of Φ and A is a 3D-domain
vertically limited by the threshold value h, then, Eq. 8 is simplify
reduced to Eq. 5.

Remark 3. Example 2.8 could be generalized by considering a
measure, say μ, over R, to handle the potential contribution of
discrete-time events to the pointwise connectivity:

ΨZ,μ(A|t, s, x) � Z(s, x)∫
Δts

1(Φ(v,s,x) ∈ A)~Z(v,Φ(v, s, x))dμ(v). (9)

Remark 4. In the same vein, Example 2.8 can also be modified by
adding within the integral the term ‖DvΦ(v, s, x)‖ arising in Eq. 6
to account for a supplementary effect of the distance travelled
within A on the pointwise connectivity.

Each pointwise connectivity defined above can be used for
defining the integrated connectivity, which measures the
quantitative directional link between two subsets A and B of
B(Ω) generated by trajectories of particles located in B at times
belonging to the temporal domain T.

Definition 2.3. Let A and B be two sets of B(Ω) and T a subset
of the temporal domain R. The δ-lag integrated connectivity
linking B to A over T is defined by:

Ψ(2)
],δ (B × A|T) � ∫

T×B
Ψ(A|s + δ, s, x)](ds, dx), (10)

where δ ∈ R and ν is a measure on R ×Ω.
Definition 2.3. encompasses connectivities generated by

either forward or backward trajectories, depending on the
sign of δ. The use of a unique duration |δ| could be relaxed
to account for space-time heterogeneities in the duration of
trajectories. It could even be infinite by introducing a measure
over time like in Eq. 9.

The measure ν in Definition 2.3 can be continuous, discrete or
hybrid over R ×Ω∞. Indeed, if particles of interest are air
masses, then B can be considered as continuously filled in
space and time. Conversely, if particles of interest are animals
of a specific species, then animals occupy only punctual locations
in B at each time and the measure x1](ds, dx), given s, is
discrete in Ω, whereas the temporal component of ν is
continuous. Another examples occurs when the time s
corresponds to death times of animals, then ν is both discrete
in space and time with a mass only at a countable collection of
space-time points.
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2.4 Trajectory–Based Network
Definition 2.4. A trajectory-based network generated by Ψ(2)

],δ
(given by Eq. 10) over the temporal domain T ⊂ R, is a graph
whose nodes Ai, i � {1, . . . , I}, are disjoint sets of Ω in B(Ω) and
whose directed edges are weighted by integrated connectivities
Mij � Ψ(2)

],δ (Ai × Aj
∣∣∣∣T), 1≤ i, j≤ I and i≠ j.

Definition 2.4. corresponds to a spatial trajectory-based
network evaluated over the fixed temporal domain T. It can be
extended in different ways to obtain spatiotemporal analogs. For
example, if T1, . . . ,TK denote K disjoint but successive time
intervals with equal lengths, then the sequence of trajectory-
based networks generated by Ψ(2)

],δ (· × ·|Tk), k � 1, . . . ,K , forms a
spatiotemporal trajectory-based network that can be analyzed to
assess how connectivities across space are changing with time.
This is one of the issues considered in Section 4.2.

3 ESTIMATION OF INTEGRATED
CONNECTIVITIES

In practice, the integral defining the integrated connectivities
between subsets of Ω (Definition 2.3) cannot be analytically
computed in general, but can be estimated from a sample of
trajectories. For instance, the integrated connectivity
Ψ(2)

],δ (B × A|T) can be estimated by its empirical counterpart
obtained by importance sampling, say Ψ̂(2)

],δ (B × A|T):

Ψ̂(2)
],δ (B × A|T) � |T|

N
|B|
N ′

∑N
k�1

∑N ′

l�1
Ψ(A|sk + δ, sk, bl), (11)

where s1, . . . , sN ∈ T and b1, . . . , bN′
∈ B are times and locations,

respectively, randomly drawn under the measure ν restricted to
T × B, |T| and |B| are the length and area of T and B, respectively,
and Ψ(A|sk + δ, sk, bl) is the pointwise connectivity associated to
the trajectory of the particle located at bl at time sk and observed
over Δsk+δ,sk � [sk∧sk + δ, sk∨sk + δ].

If ν is constant, other classical numerical approaches can be
applied to approximate the integral, such as an hybrid approach
in which the mid-point rule is applied in time and a regular point
process is used in space. In such a case, the integrated connectivity
estimator is also given by Eq. 11.

Example 3.1. Using Eq. 11, the contact-based integrated
connectivity corresponding to Example 2.3 is estimated by:

Ψ̂(2)
C,δ(B × A|T) � |T|

N
|B|
N ′

∑N
k�1

∑N ′

l�1
1{Ask+δ,sk∩ Γ(sk+δ,sk ,bl)≠∅}, (12)

where Ask+δ,sk � Δsk+δ,sk × A. Thus, Ψ̂(2)
C,δ(B × A|T) is simply the

proportion of sampled trajectories intersecting A, multiplied by
|T||B|.

Example 3.2. Using Eq. 11, the duration-based integrated
connectivity corresponding to Example 2.4 is estimated by the
average duration of the intersections between the sampled
trajectories and A, multiplied by |T||B|.

Example 3.3 Using Eq. 11, the length-based integrated
connectivity corresponding to Example 2.5 is estimated by the
average length of the intersections between the sampled
trajectories and A, multiplied by |T||B|.

FIGURE 3 | Illustration of pointwise connectivity based on a covariate measured along the trajectory: (see Example 2.8). In this illustration, the passage of the
particle in the elliptic spatial domain A contributes to the pointwise connectivity [red part of the curve in Panel (A)] only when the particle is at an altitude lower than a
threshold value [grey part of the curve in Panel (B)].
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4 APPLICATIONS

In this section, we applied our general framework to the flow of
air mass movements. Indeed, these movements compiled over
years were used to characterize climatic patterns [28] and to
describe the transport of pollutants [29]. We show now how to
deploy our approach for constructing air-mass movement
networks in two real geographical contexts, namely the
coastline of the Mediterranean Sea and the French region of
Provence-Alpes-Côte d’Azur. These two examples have been
chosen in order to prove the flexibility of our approach to
different situations and geographical scales.

4.1 Case Study Regions and Network
Construction
The first study region corresponds to the coast of the
Mediterranean Sea, ranging approximately 1,600 km from
north to south and 3,860 km from east to west. The temperate
climate of the chosen region is strongly influenced by the
presence of the Mediterranean Sea, with mild winters, hot
summers and relatively scarce precipitations events. The
landscape is characterized by coastal vegetation, typically
shrubs and pines, and densely populated areas with intensive
crop production of wheat, barley, vegetables and fruits, especially
olive, grapes and citrus. In this paper, we characterize recurrent
movements of air masses through the Mediterranean region by
defining a grid withmesh size 74 km covering the coastline from 5
up to 250 km inland from the coast, including the four largest
islands (namely Sicily, Sardinia, Cyprus and Corsica). Thus, we
divide the region into 604 cells, where the centroids of the cells
will be used as arrival locations of air-mass trajectories and will
correspond to the nodes of the constructed network.

The second study region corresponds to the French region of
Provence-Alpes-Côte d’Azur (PACA, hereafter), located in the
south-eastern part of France and characterized by a rather
complex landscape formed by a densely-populated coastline,
agricultural lands (high-value-crops with fruit and olive
orchards, vineyards, vegetable cultivation and horticulture),
and natural mostly-alpines areas. The choice of this
particular region is justified in the context of a research
project aimed at assessing the potential long-distance
dissemination of phytopathogenic bacterial populations that
are known to be transported by air currents. The bacteria of
interest (e.g., Pseudomonas syringae) can be lifted in to the air
from a source location and then be passively transported by air
masses until they are deposited back to land onto a different, far
away sink location. Since the life cycles of the considered species
of bacteria are strongly linked to the water cycle [30], we
naturally partitioned the study area in a way that fit this
assumption. Hence, we considered the 294 watersheds of the
PACA region to define the sites that will later constitute the
nodes of the constructed network. Since watersheds have
irregular shapes and varying sizes, we selected a certain
number of arrival locations per watershed (between 1 and 10
and proportionally to the watershed area) in order to cover the
watersheds consistently according to the relative importance of

their size and estimate the integrated connectivities. In total, a
set of 833 arrival locations for air-mass trajectories was
generated.

Once the arrival points for the two study regions have been
established, we turned to the computation of air-mass trajectories
arriving at the prescribed locations using the Hybrid Single-
Particle Lagrangian Integrated Trajectory model (HYSPLIT
[20]). The HYSPLIT model can be fed with meteorological
data from the Global Data Assimilation System files with a
0.5-degree spatial resolution (GDAS) and was tuned by us to
return 48 h backward air-mass trajectories arriving at the
prescribed locations at an altitude of 500 m above mean sea
level. A single trajectory consists of a vector containing the hourly
positions (longitude, latitude and altitude) visited by the air mass
before arriving at the specified location and time. Air-mass
trajectories have been computed for every arrival location (604
for the Mediterranean region and 833 for the PACA region) and
for every day between January 1, 2011 and December 31, 2017
(arrival hour is 12:00 GMT). The total number of computed
trajectories is 1,543,220 for the Mediterranean region and
2,128,315 for the PACA region.

The final step for the construction of the networks is the
estimation of the adjacency matrices of the networks, based on
the methodology presented in the previous sections. To do that,
for each pair of subsets of the spatial domain, we used the daily
48 h backward trajectories arriving at the locations sampled
within the receptor subset, and computed the contact-based
estimator (see Example 3.1). The subsets of the spatial domain
are the watersheds for PACA and circular buffers of radius 20 km
for the Mediterranean region, as in [8].

In this work we will consider networks corresponding to three
temporal contexts: (i) the spatial networks obtained when T is the
entire period 2011–2017, (ii) the yearly spatiotemporal networks
formed by the seven spatial networks obtained when T1
encompasses the year 2011, T2 encompasses 2012 and so on,
and (iii) monthly spatiotemporal networks formed by the twelve
spatial networks obtained when T1 represents every January from
2011 to 2017, T2 every February from 2011 to 2017, and so on. In
all these cases, we consider that the length of the time interval was
one to easily compare the inferred networks (i.e., |T| � 1 in Eqs.
11, 12).

4.2 Network Analysis
The networks we constructed are directed and weighted by
contact-based connectivities generated by air mass trajectories
and estimated with Eq. 12. They are inherently complex by
the sheer amount of spatial and temporal information that
they encompass. Hence, there is no easy way of representing
the results either graphically or numerically, without
compromising the original complexity of the networks. While
a comprehensive study of the spatiotemporal properties of these
networks goes beyond the scope of the paper, we explore some
generic properties by means of well-known global topological
indices:

• Density (Dens), is computed as the ratio between the sum of
all edge weights and the number of all possible edges [31]
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and it measures how dense is a network with respect to a
fully-connected network having the same number of nodes.

• Transitivity (Trans) or clustering, is computed by averaging
the weighted clustering coefficient proposed by [25] across
all nodes. This index measures the local cohesiveness of a
node i with all the triples of its connected neighbors by
considering their relative weights with respect to the node
strength (defined as the sum of the weights of all the edges
pointing to or from a node).

• Strength correlation (SC) is measured as the correlation
between the incoming and outgoing strengths, computed as
the sum of the weights of the edges pointing to or from a
given node, respectively. Networks with positive (resp.
negative) strength correlation are known to foster (resp.
hamper) epidemic spread [32].

Other measures that are usually adopted to characterize
network topology are meant to measure the length or cost
associated to the movement between nodes following the
edges of the network. We notice that, under the current
framework, the weight computed between two nodes is
proportional to the number of air-mass trajectories that
connect them. Hence, higher values of the edge weight are
associated to a higher connectivity between nodes. This is
nonetheless incompatible with existing network search
algorithms used to identify the shortest path between nodes
since they usually consider the weight of an edge as a kind of
distance or cost, hence the higher the weight, the less likely the
connection between the nodes (e.g., the Dijkstra’s algorithm for
weighted directed networks; ). On the other hand, it suffices to
transform our weights into effective distances dij � 1 − log(wij) in
order to obtain a representation of edge weights that is coherent
with the distance interpretation of the search algorithms (), after
having row standardized the adjacency matrices in order to

ensure that wij ∈ [0, 1],∀i, j. After this transformation, we then
computed four more indices:

• the average shortest path between every pair of nodes,
computed as the average shortest effective distance (ED);

• the average number of nodes in the shortest paths (ASP);
• the network diameter (Diam), computed as the maximum

effective distance of a network, and the number of nodes
that have to be crossed in this longest path;

• the small worldness (SW) property, computed as the ratio
between the clustering and the average shortest path
distance [33,34], that accounts for the facts that certain
networks are highly clustered and have relatively short
shortest paths, a condition that is known to favor rapid
disease spread on the network.

4.3 Results
The two spatial trajectory-based networks representing the
strength of tropospheric connections in the Mediterranean
region and PACA during the entire period 2012 to 2017 are
represented in Figure 4. It can be observed that the strongest
connections tend to link nodes that are geographically close, but
nonetheless moderate connections also exist between rather
distant nodes (see also Supplementary Figure S1). The
connectivity in PACA is mostly oriented from North-East to
South-West, which corresponds to the direction of the prevailing
wind in this region. For the Mediterranean basin, the orientation
of the edges depends on the region and does not have a fixed
direction (see Supplementary Figure S2). An interesting
additional difference between the two networks is that the one
for PACA has negative strength correlation (−0.85), meaning that
nodes having a high incoming strength tend to have low outgoing
degree, and vice versa. On the other hand, for the Mediterranean
network, the value of the strength correlation is moderately

FIGURE 4 | Networks weighted by contact-based connectivities generated by air mass trajectories: The connectivities are generated by air mass trajectories
between (A) the 604 sampled circular areas within the Mediterranean basin and (B) the 294 watersheds of PACA. Edges with weights lower than 0.3 for (A) and 2 × 103

for (B) are not drawn. The cuts of the intervals in the two legends are chosen in such a way that each interval contains 20% of the observed data. The differences in the
values taken by the connectivities in (A) and (B) are due to different measures of the area |B| in Eqs. 11, 12: |B| � 1 for each node in (A), whereasB is the actual area
(expressed in km2) of each whatershed in (B).
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positive (0.31), meaning that nodes having high incoming
strength tend to have also high outgoing strength.

Interestingly, we can observe that the indices provided in
Tables 1,2 are overall more variable for the monthly
spatiotemporal trajectory-based networks than for the yearly
ones, indicating that the average air-mass connectivity is more
variable within any given year than between different years. In
order to confirm this observation, we performed a Ward-linkage
hierarchical clustering method [35] based on the Euclidean
distances of the standardized values of the 7 indices of Tables
1,2 for the monthly networks of the Mediterranean and PACA.

Figure 5A leads to the identification of three distinct seasons:
summer (June, July, August, September), spring and winter
(January, February, March, April, May and December) and fall
(October, November). The spatial networks derived from the
clustering are shown in Figures 5B–D, which display clear
differences in the connectivity patterns: during spring and
winter seasons, consistent and long-distance connections are
observable along the Italian peninsula, moving from North to
South, with sporadic connections on both sides towards Croatia
and the western islands of Sardinia and Corsica. In the rest of the
basin, connections tend to be local and with low or moderate
intensity. During the summer season, the longest and most intense
connections are observed in the western part of the basin (from
Southern France and the Spanish southern coast to the north-
western coast Africa). The network during the fall season
correspond to intermediate situation between the above-
mentionned networks. In terms of network indices (Figure 6A),
it is clear that the winter air-mass connectivity network is more
efficient than the summer one: it has higher density, transitivity and
strength correlation, meaning that nodes are more frequently and

strongly connected, while the longest path between every two nodes
is shorter (lower diameter) and the average shortest path between
nodes is lower, indicating that it is easier to move between any two
given nodes of the network. These observations are particularly
interesting if we consider the dissemination of airborne pathogens,
that will be facilitated by winter connectivity regimes (irrespective
of pathogens preference in terms of seasons).

For the PACA region, the dendogram in Figure 7A allows us
to identify three distinct clusters: winter (December, January,
February, March), summer (May, June, July, August and
September), and a set of transition months (April, October
and November) separating the two above-mentionned seasons.
Amongst the three clusters, the transition months stand out both
in terms of network indices values (Figure 6B) and in terms of
obtained spatial network (Figures 7B–D). In fact, it is
characterized by the lowest diameter, average shortest path,
small-worldness index and a strongly negative strength
correlation, while it has the highest transitivity index and a
rather high density. Compared to the two other clusters of
networks, we observe that the networks of the transition
months are more efficient in facilitating the flow between
nodes and this can have interesting consequences when
considering the possibility of airborne pathogen dispersion.

5 DISCUSSION

We presented a framework for estimating and characterizing
spatial and spatio-temporal networks generated by trajectory
data. The development of this framework was motivated by

TABLE 1 | Network indices [Diameter (Diam), density (Dens), transitivity (Trans),
average shortest path (ASP), effective distance (ED), small worldness (SW),
strength correlation (SC)] calculated from the networks covering the
Mediterranean region and estimated in three temporal contexts: the entire period
2012–2017, yearly time periods from 2012 to 2017 and monthly time periods.

Mediterranean region

Diam Dens (×10−3) Trans ASP ED SW SC

2012–2017 7 0.30 0.74 3.11 14.13 2.34 0.05

2012 8 11.0 0.78 3.66 14.06 2.35 −0.04
2013 8 11.4 0.77 3.50 13.91 2.35 0.04
2014 16 11.6 0.78 4.18 17.90 2.25 0.06
2015 13 11.1 0.78 3.80 15.57 2.34 0.08
2016 9 14.0 0.77 3.61 14.65 2.28 0.08
2017 9 11.0 0.77 3.51 13.99 2.37 0.02

January 11 0.31 0.74 3.74 12.44 5.05 −0.11
February 22 0.30 0.74 4.16 21.67 5.65 −0.12
March 12 0.30 0.74 4.14 15.34 5.60 −0.03
April 13 0.31 0.75 4.16 16.11 5.53 −0.01
May 11 0.32 0.75 4.13 14.71 5.50 −0.18
June 14 0.32 0.73 4.69 18.10 6.46 −0.10
July 15 0.31 0.71 4.54 16.80 6.36 −0.20
August 12 0.29 0.72 4.50 16.87 6.23 −0.18
September 11 0.29 0.73 4.50 16.72 6.18 −0.06
October 19 0.28 0.74 5.14 22.42 6.94 −0.15
November 18 0.27 0.74 4.98 21.58 6.78 −0.05
December 12 0.30 0.72 3.62 10.08 4.99 −0.13

TABLE 2 | Network indices [diameter (Diam), density (Dens), transitivity (Trans),
average shortest path (ASP), effective distance (ED), small worldness (SW),
strength correlation (SC)] calculated from the networks covering PACA and
estimated in three temporal contexts: the entire period 2012–2017, yearly time
periods from 2012 to 2017 and monthly time periods.

PACA

Diam Dens (×10−3) Trans ASP ED SW SC

2012–2017 5 2.51 0.99 2.47 4.78 0.11 0.22

2012 5 0.99 0.91 2.6 4.73 2.85 0.13
2013 5 1.01 0.92 2.6 4.57 2.83 −0.07
2014 8 1.00 0.92 2.86 4.58 3.12 0.004
2015 7 1.02 0.92 2.67 4.60 2.90 −0.01
2016 8 1.01 0.91 2.81 4.58 3.09 0.02
2017 5 1.01 0.92 2.54 4.66 2.76 0.11

January 19 2.35 0.77 4.09 5.90 5.30 −0.54
February 19 2.16 0.81 4.60 6.29 5.71 −0.50
March 27 2.30 0.78 6.05 5.13 7.75 −0.52
April 15 2.40 0.97 3.54 4.08 3.64 −0.59
May 22 2.67 0.87 5.66 4.62 6.49 −0.64
June 17 2.55 0.79 4.93 6.48 6.22 −0.61
July 18 2.63 0.80 4.82 6.53 6.06 −0.62
August 21 2.63 0.80 4.91 6.32 6.15 −0.62
September 18 2.64 0.74 4.54 5.05 6.10 −0.64
October 6 2.69 0.99 2.37 4.07 2.40 −0.64
November 8 2.33 0.92 2.79 4.58 2.94 −0.49
December 18 2.34 0.80 5.90 5.74 7.36 −0.56
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the study of networks resulting from the movement of air masses
sampled over long time periods and large spatial scales. Thus, in the
application, we investigated the tropospheric connectivities across
the Mediterranean basin and the French region PACA, and their
variations through years and months. Our approach could be
applied to diverse phenomena, from which trajectories can be
observed. For instance, one could estimate networks generated
by themovement of animals on the landscape scale based on animal
trajectories observed with GPS devices [36]. This would allow the

characterization of connectivity between different landscape
components. Trajectories of human movement, transportation of
specific goods (such as plant material) or trajectories of knowledge
in social communities (that cannot be exhaustively observed) could
also be used to estimate networks in other applied settings.

In Section 2.3, we proposed diverse measures of connectivity
with different underlying (physical or biological) interpretations.
Thus, the analyst can adapt the connectivity measure to
the mechanistic processes he investigates, while we only

FIGURE 5 | Clustering according to the indices calculated over the Mediterranean spatio-temporal network: (A): Dendrogram of the months obtained from a
hierarchical cluster analysis of the Mediterranean spatio-temporal network based on the monthly dissimilarities of the indices presented in Table 1. (B), (C), and (D):
Networks corresponding to the three identified clusters.
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FIGURE 6 | Boxplot for the computed indices over the Mediterranean and PACA regions: Boxplot for the different indices (Diameter, density, transitivity, average
shortest path, small worldness, effective distance, strength correlation) obtained from (A) the two clusters identified for the Mediterranean region (see Figure 5) and (B)
the three clusters for PACA (see Figure 7).
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considered the contact-based connectivity in our applications.
Comparisons of contact-based, length-based and duration-based
connectivities, not shown in this manuscript, led to little variations

for the two case studies considered in this article. However, the use
of covariates such as local rainfall and air-mass altitude for defining
connectivities, as proposed in Section 2.3, is expected to impact the

FIGURE 7 | Clustering according to the indices calculated over the PACA spatio-temporal network: (A): Dendrogram of the months obtained from a hierarchical
cluster analysis of the PACA spatio-temporal network based on themonthly dissimilarities of the indices presented in Table 2. (B), (C), and (D): Networks corresponding
to the three identified clusters.
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inferred networks and deserves to be explored. This perspective
would be particularly relevant in the context of aerobiology: e.g.,
the airborne transport of organic particles, such as bacteria and
fungal spores, that can be influenced by rainfall favoring the
deposition of these particles [37].

In statistics, we are not only interested in point estimation, but
also in the assessment of estimation uncertainties. In this paper, we
however, focused on connectivity estimation, even if quantifying the
estimation variance could have been useful for more rigorously
investigating temporal variation in connectivities. Formally, the
connectivity measures that we defined are integrals. Hence,
results on integral numerical approximations (e.g., midpoint,
trapezoidal or Monte Carlo integration) can be exploited to
assess errors or variances of the connectivity estimates [38–40].
However, for this assessment, one should ideally consider
dependencies between connectivity estimates for different pairs of
nodes, which is not trivial. Further in-depth methodological
developments are required to tackle this issue.

To more finely estimate connectivity, and its uncertainty, one
could also take into account, if relevant, the uncertainty about the
trajectories themselves. For example, when observed trajectories
are smoothed versions of actual trajectories (as it is likely the case
for air-mass trajectories calculated with HYSPLIT) or when the
trajectories are partially observed and rather erratic, (i) a
probabilistic model grounded on, for instance, a stochastic
differential equation, could be used to reconstruct probable
trajectories and (ii) the connectivity would be estimated from
these reconstructed trajectories. Obviously, step (ii) should
incorporate the uncertainty about the trajectory reconstruction
impacted by an eventual preliminary step consisting in estimating
the parameters of the above-mentioned probabilistic model.

Concerning the application treated in this article, we observed
distinct seasonal (intra-annual) patterns in the temporal variation of
the networks covering the Mediterranean coastline and PACA,
whereas no evidence of inter-annual variation has been observed.
In the case of theMediterranean coastline, the networks corresponding
to the three clusters shown in Figures 5B–D exhibit clearly distinct
spatial patterns and, by looking at the variability of network indices in
Figure 6A, we can observe that during winter the flow of air is more
efficient in connecting distant parts of the region. In the case of PACA,
we identified a third cluster that corresponds to transition months
separating the spring-winter and summer seasons. Interestingly, these
transition months show the highest connectivity. In the context of
aerobiology, and more specifically regarding the diffusion of airborne
plant pathogens, it is particularly important to identify the seasons
where the spread of pathogen is more probable and to be able to
represent the spatial connectivity during these periods.

In the long-term context of our applied research projects
connected to aerobiology, the construction and exploration of
networks generated by air-mass movements are a way to unravel
epidemiological dynamics (and the resulting genetic patterns) of
microbial pathogens disseminated at long distance via air
movements in the troposphere (see [8]; for a proof of
concept). Indeed, even if the pathogen is not explicitly taken
into account by the framework proposed in this article, the
description of connectivities that it offers provides us a proxy

of airborne pathogen movements over long temporal terms and
large spatial scales. This proxy is a mean to understand pathogen
transportation and to anticipate its long distance dissemination.
Specifically, network indices such as those calculated in this
article can be associated with particular epidemiological
properties such as the probability of long-distance transport of
pathogens [41–43]. For instance, for plant pathogens, recent
studies [44–46] showed that airborne populations of bacteria
and fungi are rather constant across the years, while higher
diversity can be observed in different seasons. This statement
resonates with our analyses where we observed clear seasonal
signals in the estimated monthly spatiotemporal networks in
Section 4.3 whereas the yearly signals were less obvious.

Finally, the networks estimated using our approach could be a
basis for developing epidemiological models (explicitly handling
the pathogen) incorporating long-distance dissemination
conditional on recurrent air-mass movements. Such models
could be exploited to set up surveillance strategies for early
warning and epidemic anticipation in order to help reduce the
impacts of airborne pathogens on human health, agricultural
production and ecosystem functioning [11].
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