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Abstract 16 

1. Most species in ecological communities are rare whereas only a few are common. 17 

This distributional paradox has intrigued ecologists for decades but the interpretation of 18 

species abundance distributions remains elusive.  19 

2. We present Fuzzy Quantification of Common and Rare Species in Ecological 20 

Communities (FuzzyQ) as an R package. FuzzyQ shifts the focus from the prevailing 21 

species-categorization approach to develop a quantitative framework that seeks to place 22 

each species along a rare-commonness gradient. Given a community surveyed over a 23 

number of sites, quadrats, or any other convenient sampling unit, FuzzyQ uses a fuzzy 24 

clustering algorithm that estimates a probability for each species to be common or rare 25 

based on abundance-occupancy information. Such as probability can be interpreted as a 26 

commonness index ranging from 0 to 1. FuzzyQ also provides community-level metrics 27 

about the coherence of the allocation of species into the common and rare clusters that 28 

are informative of the nature of the community under study. 29 

3. The functionality of FuzzyQ is shown with two real datasets. We demonstrate how 30 

FuzzyQ can effectively be used to monitor and model spatio-temporal changes in 31 

species commonness, and assess the impact of species introductions on ecological 32 

communities. We also show that the approach works satisfactorily with a wide range of 33 

communities varying in species richness, dispersion and abundance currencies. 34 

4. FuzzyQ produces ecological indicators easy to measure and interpret that can give 35 

both clear, actionable insights into the nature of ecological communities and provides a 36 

powerful way to monitor environmental change on ecosystems. Comparison among 37 

communities is greatly facilitated by the fact that the method is relatively independent 38 

of the number of sites or sampling units considered. Thus, we consider FuzzyQ as a 39 

potentially valuable analytical tool in community ecology and conservation biology. 40 
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Introduction 43 

Ecological communities are formed by species that differ widely in abundance. Almost 44 

invariably the observation is that most species are rare, whereas a few are common 45 

(Magurran & Henderson, 2011). This pervasive pattern has intrigued ecologists for 46 

decades but, despite the large literature on the topic, the interpretation of species 47 

abundance distributions remains elusive (Werner et al., 2014; Enquist et al., 2019). The 48 

assumption often made is that underlying factors, such as immigration, succession and 49 

competition, eventually determine differences in establishment and persistence of each 50 

species in the community (McGill et al., 2007; McGill, 2011; Alroy, 2015; Calatayud et 51 

al., 2019).  52 

A quantitative framework for species commonness and rarity amenable to 53 

hypothesis testing and statistical modelling would facilitate evaluating the roles played 54 

by demographic variables and species traits, thereby illuminating assembly rules in 55 

ecological communities. Such a framework would also be extremely valuable for 56 

conservation biology in at least three important aspects: (1) Species rarity is an 57 

important predictor of extinction risk because the impact of environmental disturbances 58 

is expected to be higher on small populations (Davies, Margules, & Lawrence, 2000) 59 

and since budgets for biodiversity conservation are limited, quantifying the rarity of 60 

species would facilitate prioritizing some over the others. (2) From a functional 61 

perspective, the role played by common and rare species in providing ecosystem 62 

services is currently under scrutiny. Although intuitively it might be assumed that most 63 

of the ecosystem functionality should reside in the former, the contribution of rare 64 

species is still poorly understood and, in fact, might be substantial (Leitão et al., 2016; 65 
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Violle et al., 2017; Dee et al., 2019). So assessing rarity could also be justified in terms 66 

of identifying species that provide essential ecosystem services (Flather & Sieg, 2007; 67 

Violle et al., 2017; Dee et al., 2019) or stabilize ecological communities (Calatayud et 68 

al., 2019). (3) Monitoring variation of commonness-rarity patterns over time or along 69 

geographical and environmental gradients provides a simple way to obtain crucial 70 

information on ecosystem changes (McGill, 2011). For instance, if common species 71 

become increasingly rare in response to environmental disturbances, it might have a 72 

cascading effect on the rest of the community (Gaston & Fuller, 2008).  73 

Thus, metrics of commonness and rarity at species and community level would 74 

be extremely useful to unveil the architecture of ecological communities, assess the 75 

likelihood of extinction of rare species, correlate commonness or rarity with functional 76 

distinctiveness and monitor environmental change. However, a universal quantitative 77 

framework is currently lacking. A great deal of effort has been put on establishing the 78 

distribution patterns emerging from the categorization of species as common or rare 79 

(Gray, Bjørgesæter, & Ugland, 2005; McGill et al., 2007; Antão, Connolly, Magurran, 80 

Soares, & Dornelas, 2017). However, a major problem of fitting models to species 81 

abundance distributions has been adjusting the data to a suitable theoretical distribution 82 

(Williamson & Gaston, 2005; McGill et al., 2007; Alroy, 2015). To some extent this is 83 

because the border between common and rare species is often blurred (Magurran & 84 

Henderson, 2011), which has led authors to propose additional subcategories of rarity 85 

(Hanski, 1991; Yu & Dobson, 2000; Arnan, Gaucherel, & Andersen, 2011). 86 

Herein we propose shifting the focus from species categorization to a 87 

quantitative approach that seeks to place each species along a rare-commonness 88 

gradient. Fuzzy Quantification of Common and Rare Species in Ecological 89 

Communities (FuzzyQ) is based on the analysis of abundance-occupancy relationships 90 
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(AORs), which assumes a positive relationship between local abundance and occupancy 91 

(Gaston et al., 2000; Gaston & He, 2011). Given a community surveyed over a number 92 

of sites, quadrats, or any other convenient sampling unit, FuzzyQ applies a fuzzy 93 

clustering algorithm (Kaufman & Rousseeuw, 1990) that estimates a probability for 94 

each species to be common or rare based on its AOR.  95 

Although widely used, we acknowledge at the onset that abundance and/or 96 

occupancy are not the only criteria to assess species commonness and rarity (Gaston, 97 

1994, 1997). However, the key point is that regardless of the data used, we can always 98 

use fuzzy clustering to quantify the degree of belonging of each species to the common 99 

or rare categories (or any other pre-established categorization for that matter).  100 

We show herein that FuzzyQ produces ecological indicators easy to measure and 101 

interpret that are amenable to hypothesis testing and statistical modelling. In addition, 102 

FuzzyQ is distribution free, i.e. no a priori assumption about the distribution of species 103 

abundances is required. We illustrate the capabilities of the framework with two real-104 

world examples involving each related and unrelated (i.e. not sharing species) 105 

communities and evaluate the effect of sample size on the estimation of commonness 106 

and rarity. 107 

Overview of FuzzyQ 108 

FuzzyQ is provided as an R package (R Core Team, 2020), available at 109 

https://github.com/Ligophorus/FuzzyQ, which depends on algorithms implemented in 110 

package cluster (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2019). We first 111 

illustrate application of FuzzyQ with a dataset of ant species (ants_Darwin_A in 112 

Calatayud el al., 2019) comprising the abundance of 46 species in 100, 18×18 m plots 113 

sampled in the Northern Territory, Australia (Arnan et al., 2011). 114 

 115 

 116 
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TABLE 1 Overview of the functions implemented in package FuzzyQ  117 

Function Description Output 
fuzzyq  Determines the abundance-

occupancy per species of a site × 
species matrix. Performs fuzzy 
clustering of common and rare 
species based on abundance 
occupancy. 

An object of class list and fuzzyq of three 
objects: 

$A_O 
Fraction of sites occupied and the mean 
abundance across sites per species 

$Diss 

Object of class dist with pairwise dissimilarities 
among species based on their abundance and 
occupancy 

$spp 
Three metrics for each species: 

1. Cluster membership, where 0 and 1 denote 
allocation to the rare or common category, 
respectively 
2. Silhouette width 
3. Commonness index 

$global 
Community-level metrics:  

1. Average silhouette widths per cluster and 
globally 
2. Mean commonness indices per cluster 
3. Normalized Dunn coefficient 

 

fuzzyqBoot  Produces N replicates bootstrapping 
the site × species matrix by site and 
applies fuzzyq to each replicate. 

A matrix of either species commonness indices 
(level = “spp”) or community-level metrics (level 
= “global”) of each bootstrap replicate 

fuzzyqCI  Computes confidence intervals of 
the parameters computed with 
fuzzyqBoot. Three methods are 
available: percentile, bias corrected, 
and bias corrected and accelerated. 

A matrix of lower and upper bound limits at a 
given confidence level (default 95%) 

AOplot  Plots the abundance occupancy 
relationship of a fuzzyq object. 

A scatter plot of fraction of sites occupied by 
each species vs mean abundance per site. 
Common and rare species are distinguished by 
respective convex hulls  

sortClus  Sorts species data of a matrix 
(columns) by the cluster allocation 
of a fuzzyq object. Useful to sort 
the output of fuzzyqBoot or 
fuzzyqCI by the original fuzzyq 
object. 

A matrix sorted by cluster matriz. Species are 
arranged by cluster and by increasing silhouette 
width within cluster  

Table 1 provides an overview of the functions in package FuzzyQ. Function 118 

fuzzyq takes a given site-by-species abundance matrix and performs a fuzzy clustering 119 

algorithm that evaluates all pairwise dissimilarities among species in terms of their 120 
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AORs to allocate each species into two clusters of common and rare species, 121 

respectively. Since occupancy and abundance are in different scales and can come in 122 

different units (for instance, the former can be reported as either number or fraction of 123 

sites occupied), fuzzyq uses by default Gower’s (1971) dissimilarities, which are 124 

appropriate for such mixed data. Clustering is subsequently performed with function 125 

fanny in cluster, which aims to minimize the objective function 126 

 

෍
∑ 𝑢௜௩

௔ 𝑢௝௩
௔ 𝑑ሺ𝑖, 𝑗ሻ௡

௜,௝ୀଵ

2 ∑ 𝑢௝௩
௔௡

௝ୀଵ

௞

௩ୀଵ

, (1) 

where 𝑢௜௩ and  𝑢௝௩ are the membership coefficients of observations (species in our case) 127 

i and j to cluster v, n is the number of observations, k is the number of clusters (herein 2: 128 

common and rare), a is a membership exponent (we set a = 2 as in the original 129 

formulation of Kaufman & Rousseeuw 1990) and d(i,  j) is the dissimilarity between 130 

observations i and j (Maechler et al., 2019). Fig. 1a displays the fuzzyq allocation of 131 

species of the ant dataset to the rare and common clusters. 132 

In fuzzy clustering, each observation can be assigned to several clusters with a 133 

different level of certainty. So uiv in (1) above represents the probability of the ith 134 

observation belonging to cluster v (Kaufman & Rousseeuw, 1990). We re-interpret 135 

these probabilities as indices of commonness (Ci) and rarity (Ri) for species i, so that 136 

each species is classified simultaneously as common and rare with a certain level of 137 

certainty. (Given that Ci = 1 – Ri, we will only report Ci).  fuzzyqBoot generates and 138 

applies fuzzyq to bootstrap replicates by site of the species abundance matrix and 139 

fuzzyqCI computes confidence intervals of Ci based on these replicates (Fig. 1b). 140 
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FIGURE 1 Fuzzy quantification of common and rare species in a community of 46 ant species in 100 

plots (Arnan et al., 2011, Calatayud el al., 2019). (a) Abundance occupancy relationship of species. 

The arrow points to the position of Species 27. (b) Commonness indices of species. Error bars 

represent bias-corrected and accelerated 95% confidence intervals (error bars) (Efron & Tibshirani, 

1994) computed with 1,000 replicates bootstrapping the plots of the abundance matrix. The horizontal 

line marks the 0.5 threshold separating rare and common species. (c) Silhouette plot of the 46 ant 

species. The negative value of Species 27 suggests a poor fit to the cluster of common species. Light 

blue and light red denote common and rare species, respectively. 
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In addition, fuzzyq computes silhouette widths, which are measures of how 141 

similar abundance and occupancy of each species are to its own cluster relatives and to 142 

these of species in the other cluster, as follows:  143 

𝑠௜ ൌ  
𝑐௜ െ  𝑟௜

𝑚𝑎𝑥 ሺ𝑐௜, 𝑟௜ሻ
  , 144 

where ci and ri are the mean dissimilarity between species i and all other species in the 145 

clusters of common and rare species, respectively (Kaufman & Rousseeuw, 1990). Fig. 146 

1c shows the species silhouettes of the ant database. Silhouettes can range between -1 147 

and +1. The high positive values of most rare ant species indicate that they are well 148 

matched to its own cluster. Common ant species showed smaller silhouette widths, 149 

suggesting a weaker cluster. In particular, the negative silhouette of species 27 indicates 150 

a poor fit to the common-species group (Fig. 1c), which conforms to its position in the 151 

AOR plot and its Ci ≈ 0.5 (Fig. 1a, b).   152 

fuzzyq also computes community-level metrics that measure the coherence of 153 

the common- and rare-species clusters, and the strength of overall classification. The 154 

former is assessed by the average silhouettes’ widths of the common and rare species 155 

(S̅C and S̅R, respectively) and, alternatively, by the corresponding average commonness 156 

coefficients (C̅C and C̅R). The latter can be appraised by the average silhouette width of 157 

the whole community (S̅) and the normalized Dunn’s partition coefficient (D’) 158 

(Kaufman & Rousseeuw, 1990). The Dunn’s coefficient is computed as   159 

𝐷 ൌ ෍ ෍ 𝑢௜௩
ଶ

௞

௩ୀଵ

௡

௜ୀଵ

/𝑛 ,  160 

where n is the number of observations (i.e., species). D is subsequently normalized to 161 

vary between 0 (complete fuzziness) and 1 (hard clusters). When k = 2, as in our case, 162 

the normalized Dunn’s coefficient is 𝐷′ ൌ 2𝐷 െ 1 (Kaufman & Rousseeuw, 1990).  163 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.247502doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247502
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

FIGURE 2 Community-level estimates (points) and their variation computed with 1,000 replicates 

bootstrapping the plots of the abundance matrix (boxplots) of 46 ant species in 100 plots (Arnan et al., 

2011, Calatayud el al., 2019). (a) Average silhouette widths of rare, common and all species. (b) 

Average commonness indices of rare and common species. (c) Normalized Dunn’s coefficient. 

Fig. 2 displays the global metrics of the ant species database. S̅ and D’ were 0.79 164 

and 0.69, which suggests a strong clustering structure separating common and rare 165 

species (Kaufman & Rousseeuw, 1990). We assessed the variation of the global 166 

estimates by bootstrapping the sites of the sites × species matrix with fuzzyqBoot. 167 

Compared with common ones, rare species showed a higher average silhouette width, 168 
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and showed lower variation in both silhouettes and commonness indices, indicating that 169 

they form a harder cluster (Fig. 2).  170 

Worked-out examples 171 

We demonstrate the new method and its capabilities, with two real datasets involving 172 

the comparison of related and unrelated communities, respectively. When comparing 173 

several communities, one must consider how to deal with species absences. Absences 174 

may be due to (a) eco-evolutionary constraints (structural absence), (b) sampling 175 

variability (random absence), or (c) methodological errors (false absences) (Blasco‐176 

Moreno, Pérez‐Casany, Puig, Morante, & Castells, 2019). Although fuzzyq cannot 177 

deal with (c), it would produce different metrics in (a) and (b) situations and researchers 178 

should make an informed decision based on the nature of their system. The logical 179 

argument rm.absent in fuzzyq specifies whether species absences are to be treated 180 

as structural or random.  181 

Example 1. Mammal Data from Powdermill Biological Station 1979-1999 182 

To illustrate how to monitor changes in species commonness in a community, we used a 183 

long-term (1979-1999) time series of small mammal abundances from the Powdermill 184 

Biological Station in Pennsylvania, USA (Merrit, 2013). Mammals were captured in a 185 

1-ha live trapping grid consisting of 10 × 10 quadrats of trap stations at 10-m intervals. 186 

Trapping was conducted bimonthly from September 1979 to October 1999. For the sake 187 

of demonstration, the abundance of each mammal species was aggregated per quadrat 188 

and per year in order to capture the annual variation in commonness of each species and 189 

we assumed that the pool of species did not change over the study period (random 190 

absences).  191 
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FIGURE 3 Fuzzy quantification of common and rare species in a community of 14 mammal species 

sampled at the Powdermill Biological Station from 1979 to 1999 (Merrit, 2013). (a) Variation of 

commonness indices in the study period. (b) Generalized Additive Model describing the variation in 

commonness of Glaucomys volans (GV) in the study period and predicted change (2001-2004). Blue 

points: observed values. Thick red line: fitted and predicted model (continuous and stippled lines).  

Thin red line: 95% confidence interval of the model. Stippled orange line: 0.5 threshold between rare 

and common species. Species abbreviations: BB, Blarina brevicauda; CG, Clethrionomys gapperi; 

DV, Didelphis virginiana; GV, Glaucomys volans; MF, Mustela frenata; MM, Marmota monax; NI, 

Napaeozapus insignis; PL, Peromyscus leucopus; PM, Peromyscus maniculatus; SC, Sorex cinereus; 

SD, Sorex dispar; SF, Sorex fumeus; SH, Sorex hoyi; TS, Tamias striatus. 

0.0

0.2

0.4

0.6

0.8

1.0

 
C

o
m

m
o

n
n

es
s 

in
d

e
x

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

Year

Species

BB
CG
DV
GV
MF
MM
NI
PL
PM
SC
SD
SF
SH
TS

0.2

0.4

0.6

0.8

C
o

m
m

o
n

n
es

s 
in

d
e

x

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

Year

a)

b)

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.247502doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247502
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

The Cis indicated that two and seven of the 14 species could be categorized 192 

consistently as common and rare, respectively, throughout the study period. The Cis of 193 

the remaining five varied considerably over the years (Fig. 3a). We modelled the change 194 

in commonness of a species in the latter group, Glaucomys volans (GV), by fitting a 195 

Generalized Additive Model. Bootstrap replicates to fit 95% confidence intervals to the 196 

model were generated with fuzzyqBoot. The fitted model was also used to predict the 197 

change in Ci five years ahead. (Details on model fitting are given in an accompanying R 198 

script. See Data Availability below.) The model suggests a progressive increase in Ci of 199 

G. volans over the years and predicts a similar increase rate in the following years (Fig. 200 

3b).  201 

Example 2. Parasite communities of the so-iuy mullet in native and introduced areas 202 

We compared the patterns of commonness and rarity of helminth communities of the 203 

so-iuy mullet (Planiliza haematocheilus in its native (Sea of Japan) and introduced (Sea 204 

of Azov and Black Sea) areas (Llopis‐Belenguer, Blasco‐Costa, Balbuena, Sarabeev, & 205 

Stouffer, 2020). We used here 12 and 7 surveys in the introduced and native areas, 206 

respectively, in which the number of fish sampled was ≥ 20, totalling 378 and 192 fish, 207 

respectively. Based on biogeographical evidence, species absences within the native and 208 

introduced areas were treated as random zeros (Kostadinova, 2008). 209 
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FIGURE 4 Community-level estimates (points) and bias-corrected and accelerated 95% (Efron & 

Tibshirani, 1994) confidence intervals (error bars) computed with 1,000 replicates bootstrapping the 

plots of the abundance matrix of helminth communities of Planiliza haematocheilus in 7 native (Japan 

Sea) and 12 introduced (Azov and Black Seas) surveys. (a) Average silhouette widths of all species. (b) 

Idem common species. (c) Idem rare species. (d) Normalized Dunn’s coefficient. (e) Average 

commonness indices of common species. (f) Idem rare species. 

We used fuzzyq to compute S̅, S̅C, S̅R, C̅C, C̅R and D’ of each survey and 210 

fuzzyqBS and fuzzyqCI to estimate their 95% confidence intervals (Fig. 4). 211 

Differences in these metrics between surveys in the native and introduced areas were 212 

evaluated by Mann-Whitney tests. In the introduced area, rare species had significantly 213 
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higher S̅R and lower C̅R than in the native one (p = 0.0012 and p = 0.0003, respectively). 214 

Differences in S̅ and D’ were also significant (p = 0.0003 and p = 0.0002, respectively), 215 

indicating a clearer distinction between common and rare species in the introduced area 216 

than in the native one. By contrast, there was no evidence for significant differences 217 

between areas in S̅C and C̅C (p = 0.71 and p = 0.97, respectively). These results conform 218 

to previous work that indicates that the introduction of the mullet so-iuy in the new area 219 

entailed a deep structural change in its helminth communities (Sarabeev, Balbuena, & 220 

Morand, 2017; Llopis‐Belenguer et al., 2020). Most native species were lost and only 221 

two Ligophorus spp. common in the native area were co-introduced and remained 222 

common in the introduced area (Figs. S1, S2 in Supporting Information). So the 223 

majority of species in the introduced area were acquired from local grey mullet species 224 

(Sarabeev et al., 2017). Since newly acquired parasite species are expected to lack 225 

specific adaptations to the new host, this would account for their pronounced rarity 226 

compared to rare species in the native area (Sarabeev, Balbuena, & Morand, 2018). 227 

Effect of number of sites 228 

A key question for users interested in comparing different communities is whether the 229 

community-level estimates depend on the number of sites sampled. We examined this 230 

issue using 20 datasets compiled in Calatayud et al. (2019) and (Jeliazkov et al., 2020) 231 

involving 87+ sites. These included communities varying widely in taxonomic 232 

composition, species richness and spatial scale. In addition, different abundance 233 

currencies were employed. (See Table S1 in Supporting Information for details.) Being 234 

N the total number of sites of a given dataset, global metrics (S̅, S̅C, S̅R, C̅C, C̅R and D’) 235 

were computed in most cases dropping successively 1, 2, 3, …, N-10 sites randomly 236 

drawn (without replacement) from the dataset. (In species-poor communities or 237 

communities with very sparsely distributed species, the series was 1, 2, 3, …, N-20). 238 
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Species absences in each draw were treated as structural, because our goal was to 239 

examine how incomplete species coverage resulting from low sample sizes affected the 240 

estimation of global metrics.  241 

FIGURE 5 Variation of community-level metrics with number of sites in eight, 87+-site, databases 

from Jeliazkov et al. (2020) (a-g) and Calatayud et al. (2019) (h): (a) BrindAmour2011a; (b) 

Pavoine2011; (c) Jeliazkov2014; (d) Barbaro2009a; (e) Chmura2016; (f) Ribera2001; (g) 

Goncalves2014a; (h) ants_data_Xavi_Darwin_A. Abbreviations: S̅R, average silhouette rare species; 

S̅C, idem common species; S̅, idem all species; C̅R, Commonness coefficient rare species; C̅C, idem 
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common species;  D’, Normalized Dunn’s coefficient. Details of these datasets are given in Table S1, 

Supporting Information. 

Fig. 5 shows the variation of the global metrics with the number of sites in eight 242 

of the 20 datasets. (Results for the remaining 12 datasets are given in Fig. S3, 243 

Supporting Information.) No clear trend of variation with the number of sites was 244 

apparent (Fig. 5 and Fig. S3, Supporting Information). Although in some datasets large 245 

fluctuations occurred (S̅C in particular was quite labile in some examples), variation in 246 

global parameters did not seem related to sample size. The results suggest that 30 to 50 247 

sites are sufficient to yield reliable estimates although bootstrapping should be used to 248 

capture their variability. 249 

Final remarks 250 

FuzzyQ provides a new quantitative framework to study the distribution of common and 251 

rare species in ecological communities. The approach supplies simple and intuitive 252 

ecological indicators that can give both clear, actionable insights into the nature of 253 

ecological communities and a powerful way to monitor quantitatively environmental 254 

change on ecosystems. We show that the approach works satisfactorily with a wide 255 

range of communities varying in species richness, dispersion and abundance currencies.  256 

The only obvious limitation in its application is that fuzzy clustering requires that k ≥ 257 

n/2 -1 (Kaufman & Rousseeuw, 1990). As in our case k = 2, FuzzyQ cannot be applied 258 

to communities composed of ≤ 5 species. In addition, the application of fuzzyqBoot 259 

in communities with low number of species can lead to a number of null replicates 260 

because of this limitation.   261 

Comparison among communities is greatly facilitated by the fact that the method 262 

is relatively independent of the number of sites or sampling units considered. However, 263 

the use of FuzzyQ in comparative settings comes with an important caveat. Since 264 

FuzzyQ is based on AORs and occupancy is known to vary with spatial scale (Hui, 265 
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Veldtman, & McGeoch, 2010; Steenweg, Hebblewhite, Whittington, Lukacs, & 266 

McKelvey, 2018), differences in scaling can compromise comparison among 267 

communities. In our second working example, helminth communities of individual fish 268 

were evaluated as sites. Therefore, we consider that the comparison makes biological 269 

sense. However, we cannot completely rule out that potential differences between the 270 

native and introduced areas in fish mobility could introduce a hidden bias (Steenweg et 271 

al., 2018). 272 

Likewise, it has been shown that rarity at coarse scales can be substantially 273 

biased because species of similar occupancies at that level may have very different 274 

occupancies at finer scales (He & Condit, 2007). Thus, assessment and monitoring of 275 

rarity should be performed at the appropriate scale for suitable conservation and 276 

management plans. Nevertheless, for samples taken at nested spatial or temporal scales, 277 

FuzzyQ provides a convenient tool to assess how scale affects patterns of commonness 278 

and rarity. In addition, the approach is versatile as it can be readily adapted to other 279 

categorizations (by considering more clusters) or to other criteria of rarity (by 280 

introducing additional/different traits when computing the dissimilarity matrix). 281 

Therefore, we consider that FuzzyQ is a potentially valuable analytical tool in 282 

community ecology and conservation biology. 283 

Data Availability 284 

Table 2 provides information of the availability of the datasets used herein. R scripts 285 

and R markdown files to run the illustrative examples, and the FuzzyQ R package are 286 

available at https://ligophorus.github.io/FuzzyQ/ (**DOI no. pending**).  287 
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