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The mechanical and chemical properties of natural plant fibers are determined by many
different factors, both intrinsic and extrinsic to the plant, during growth but also after
harvest. A better understanding of how all these factors exert their effect and how they
interact is necessary to be able to optimize fiber quality for use in different industries. One
important factor is the post-harvest process known as retting, representing the first step
in the extraction of bast fibers from the stem of species such as flax and hemp. During
this process microorganisms colonize the stem and produce hydrolytic enzymes that
target cell wall polymers thereby facilitating the progressive destruction of the stem and
fiber bundles. Recent advances in sequencing technology have allowed researchers
to implement targeted metagenomics leading to a much better characterization of
the microbial communities involved in retting, as well as an improved understanding
of microbial dynamics. In this paper we review how our current knowledge of the
microbiology of retting has been improved by targeted metagenomics and discuss how
related ‘-omics’ approaches might be used to fully characterize the functional capability
of the retting microbiome.

Keywords: cell wall, flax, soil, meta-omics, microbiota, holobiont, natural fibers, retting

INTRODUCTION

Natural fibers from different plant species have long been used by man to make textiles and are now
being increasingly exploited as a viable replacement for synthetic fibers in composite materials.
From a biological point of view the fibers used in textiles and composites are single cells, much
longer than they are wide and characterized by the presence of a thick secondary cell wall. Such
structures can be found in the xylem (wood fibers) and/or associated with the phloem in the outer
tissues of the stem of non-woody plants (e.g., the bast fibers of flax, hemp, ramie), as well as in the
walls of the fruits or the leaves of some species (e.g., cotton, kapok, sisal). In bast fiber species, the
individual fiber cells (elementary fibers) are grouped together to form so-called fiber bundles.

The ‘quality’ of the fabricated textiles and natural fiber composites (NFCs) is determined by
both the mechanical and chemical properties of the isolated fibers/fiber bundles and the subsequent
industrial transformation process (Müssig, 2010; Summerscales et al., 2010; Bourmaud et al., 2018),

Frontiers in Genetics | www.frontiersin.org 1 October 2020 | Volume 11 | Article 581664

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.581664
http://creativecommons.org/licenses/by/4.0/
mailto:sebastien.grec@univ-lille.fr
https://doi.org/10.3389/fgene.2020.581664
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.581664&domain=pdf&date_stamp=2020-10-27
https://www.frontiersin.org/articles/10.3389/fgene.2020.581664/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-581664 October 21, 2020 Time: 23:37 # 2

Djemiel et al. Targeted Metagenomics of Flax Retting

and researchers have therefore explored the different factors
influencing the quality of the finished products.

It is generally accepted that the mechanical and chemical
properties of plant fibers result from fiber morphology (e.g.,
length, diameter), cell wall composition (i.e., what polymers are
present and in what quantities) and organization (i.e., where in
the cell wall the polymers are located and how they are organized
and interact with one another). At the biological level, these
aspects are determined by the combined and coordinated spatio-
temporal expression of several hundreds of genes, and a major
challenge is therefore to identify which ones are involved in this
process and to understand their role(s). As a result, genomic
and genetic studies aimed at improving fiber plants have so far
mainly focused on genome sequencing and the identification
of genes/traits associated with various agronomic traits (e.g.,
plant height, fiber yield, fiber diameter) or cell wall construction
(e.g., cellulose/pectin/lignin biosynthesis). Flax was the second
fiber plant to have its genome sequenced (Wang et al., 2012)
after hemp (van Bakel et al., 2011) and can be accessed on the
phytozome public database1. The sequences of other fiber plants
followed a few years later, most likely as a result of the size
and/or complexity of the genome with cotton, jute and ramie
being sequenced, respectively in 2015 (Li et al., 2015), 2016 (Yuan
et al., 2016), 2017 (Sarkar et al., 2017), and 2018 (Luan et al.,
2018). In parallel, a number of whole genome transcriptomics
studies by microarrays and more recently RNAseq, together
with targeted qRT-PCR and in situ hybridization, have enabled
the identification of genes likely to be involved in cell wall
polymer biosynthesis in flax (Roach and Deyholos, 2007; Fenart
et al., 2010; Huis et al., 2012; Chantreau et al., 2015; Zhang
and Deyholos, 2016; Gorshkov et al., 2017; le Roy et al., 2017).
Despite the identification of numerous candidates, examples
of functional validation of cell wall genes in flax, as in other
fiber species – are relatively limited despite the fact that this
species can be genetically transformed and mutant populations
are available (Wróbel-Kwiatkowska et al., 2007; Day et al., 2009;
Chantreau et al., 2013, 2014).

Linking fiber phenotype (morphology, composition and
organization) to gene expression profiles in field-grown flax is
an extremely challenging task as these profiles are continually
modified during plant growth according to developmental and
environmental cues (Figure 1). Both microarrays and RNAseq
have been used to investigate modifications in gene expression
in response to drought stress (Dash et al., 2014), saline and
alkaline stress (Yu et al., 2014), and infection by the fungus
Fusarium oxysporum (Galindo-González and Deyholos, 2016). In
both cases, comparison of the transcriptomes from control plants
and stressed plants revealed significant changes in the expression
of a number of genes likely to have a direct/indirect impact on
fiber phenotype.

The situation is further complicated by the fact that flax fibers
are extracted from the stem by mechanical defibering that may
alter their mechanical and chemical properties especially at the
level of so-called ‘technical fibers’, corresponding to whole or
fragmented fiber bundles. Furthermore, mechanical extraction

1https://phytozome-next.jgi.doe.gov

itself is generally preceded by a retting step that can also modify
fiber properties if not managed properly (Md.Tahir et al., 2011;
Liu et al., 2017).

In field-/dew-retting, plants are pulled (uprooted) and left on
the ground for several weeks during which they are colonized
by microorganisms (e.g., fungi and bacteria) that produce cell
wall degrading enzymes contributing to the progressive de-
solidification of fiber bundles from the other stem tissues and
partial dissociation of the fiber bundles (Figure 2A). Fibers can
also be de-solidified by water-retting, a process in which flax
plants are placed into water tanks and colonized mainly by
anaerobic bacteria (Tamburini et al., 2003; Zhao et al., 2016).
In both cases these natural biological processes affect fiber
homogeneity and mechanical performance.

Until recently, our knowledge of the different microorganisms
present during retting, the dynamics of colonization, and the
complexity of the cell wall degrading enzyme arsenal has been
severely limited by our incapacity to cultivate and study the
great majority of these species. Furthermore, we know hardly
anything about how assembly, activities (i.e., cell-wall degrading
capacity) of the retting microbial community and interactions
among members are affected by environmental conditions or
by plant genotype (Figure 1). The fact that such considerations
are important is demonstrated by the results of several studies
that have shown that both abiotic factors (e.g., climate, soil
properties) and biotic factors (microorganisms) continue to affect
the phenotype of plant fibers after harvest during the process of
retting (Martin et al., 2013; Liu et al., 2015; Mazian et al., 2018;
Bleuze et al., 2020; Chabbert et al., 2020). As a result, retting of
fiber species is largely based upon the farmer’s experience and
remains a biological black box preventing the development of
more objective approaches.

Currently, rapid advances in high-throughput sequencing
(HTS) technologies are allowing us to exploit the rapidly
expanding field of metagenomics to improve our understanding
of retting in flax and other fiber plants (Djemiel et al.,
2017; Chabbert et al., 2020). In this paper we review how
the application of this approach promises to make a major
contribution to the understanding of this complex process and
we discuss the perspectives of how related strategies such as
metatranscriptomics and metaproteomics could also lead to
further advances.

THE RETTING OF FLAX, A KEY STEP
FOR THE OBTENTION OF QUALITY
FIBERS

Retting – Definition and Types
One of the first definitions of retting is as follows: ‘Retting
refers to the operation that textile plants are subjected to in
order to free the fibers of the liber from the gum-resinous
substance which binds them and keeps them attached to the
woody stem of the plant’ (Renouard, 1890). The ‘art’ of retting
is all about compromise: under-retting will give coarse technical
fibers, consisting of several associated individual fibers and
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FIGURE 1 | Holistic overview of intrinsic and extrinsic factors contributing to flax fiber phenotype and different scales of (meta-)omic investigation. Numbers 1–4
represent different stages in the development of the flax plant and number 5 represents the retting stage. Number 6 represents the soil microbial community that will
interact with plant roots during plant growth (number 7) and with the plant stem during retting (number 8). Biotic effects (left side) represent how plant organic
material (e.g., leaves) affect soil microbiota. Biotic effects (right side) represent how microbiota affect the flax plant during retting (progressive degradation of cell
walls). Abiotic effects (soil) represent how soil parameters (e.g., soil type, pH, mineral disponibility, water content) affect the plant during growth. Abiotic effects
(climate) represent how meteorological conditions affect plant growth, soil parameters, and microbiome during plant growth (numbers 1–4) and retting (number 5).
Omic approaches indicate different scales of investigation that can be used to investigate intrinsic (plant) biology during growth (numbers 1–4). Meta-omic
approaches indicate different scales of investigation that can be used to characterize the microbial community during plant growth and retting (numbers 1–5). This
diagram underlines the importance of considering the plant-microbiome-environment as a ‘holobiont’ for a complete understanding of how numerous different
factors contribute to shaping fiber phenotype.

contaminated by wood debris and external tissues (cortical
parenchyma and cutinized epidermis; Goodman et al., 2002),
while over-retting will reduce the resistance of the fibers by
affecting their integral structure (Rosemberg and de França, 1967;
Akin et al., 1998).

Generally, two main types of retting are used: “water
retting” and “field-/dew-retting.” For water retting, flax stems
are harvested, grouped in bundles and submerged in water.
Historically, this was done in natural basins (e.g., lakes, rivers
or dams) for 5–7 days, followed by a period where stems
were dried directly on the ground for one to 2 weeks (Akin,
2010). More recently, artificial pits or tanks have been used
to wash the stems with clean water to remove residues. This
technique makes it possible to control parameters influencing
bacterial development including aeration and temperature, and
also allows the inoculation of selected bacterial strains. Water-
retting depends mainly on the action of anaerobic bacteria that
colonize the stem and is related to fermentation (Donaghy et al.,
1990). This method generates high quality flax fibers but is also

a source of environmental pollution (Md.Tahir et al., 2011).
In field-/dew-retting, flax plants are mechanically up-rooted
(pulled) by specialized harvesters and the stems placed directly
on the field in piles to form swathes (Figure 1; Meijer et al.,
1995). Subsequently, the humidity brought by the morning dew
and the alternation of rain and heat, favors the development of
microorganisms (mainly bacteria and fungi) initially present on
the stems and the colonization by the microflora from the soil on
which the swathes are placed (Sharma and Faughey, 1999; Akin,
2010; Djemiel et al., 2017). During retting, the intervention of the
farmer involves turning the swathes halfway through the process
in order to ensure uniform retting over the entire swathe height,
and surveying the progression of the process (Franck, 2005;
Akin, 2013).

More recently, various alternative methods using commercial
enzyme cocktails mainly containing pectinases and xylanases
have been investigated in an attempt to provide better control
of the process and therefore improve fiber yield and quality
(Henriksson et al., 1997; Zhang et al., 2000; Akin et al., 2001).
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FIGURE 2 | Multiscale presentation of retting process in flax. (A) Microphotographs illustrating progressive changes in flax stem morphology during retting.
Appearance of a stem cross-section from a freshly up-rooted plant at the beginning of retting (left), at the optimal retting (middle), and over-retted (right). At
optimal retting cortical parenchyma cells are no longer visible and fiber bundle dissociation has started. Bast fibers (f) and xylem (x). (B) Schematic representation of
the different layers of a plant cell wall: middle lamella (ML), primary cell wall (PW), secondary cell wall (SW), S1 and S2 layers of the secondary cell wall (S1, S2). All
cell wall layers are intact at the start of retting (left), at optimal retting stage (middle) the middle lamella and primary cell walls of cortical parenchyma cells are
degraded (green/orange) and the middle lamella between neighboring fiber cells is starting to become degraded (green/orange). At over-retting, the secondary cell
wall of fibers starts to become degraded (right). (C) Examples of different cell wall polymers: Rhamnogalactan I (RGI) pectin (left), xyloglucan hemicellulose
(middle), and cellulose (right). Keys indicate sugar monomers making up polymers (top frame) and cell wall degrading enzyme activities (bottom frame). This part
was adapted from Polizeli et al. (2016).

Frontiers in Genetics | www.frontiersin.org 4 October 2020 | Volume 11 | Article 581664

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-581664 October 21, 2020 Time: 23:37 # 5

Djemiel et al. Targeted Metagenomics of Flax Retting

However, their use remains limited mainly because of the high
cost of producing these enzymes in bioreactors.

Retting and Fiber Cell Walls
Individual flax fiber cells (elementary fibers) are grouped together
to form fiber bundles that are found in the stem outer tissues
surrounding the xylem and pith that constitute the inner tissues
(Figure 2A). The bundles are located beneath the epidermis
and between the cortical parenchyma and the phloem. During
retting, a number of morphological changes occur, mainly in
the outer tissues of the stem (Figure 2A). Parenchyma cells
around and between fiber bundles that can be easily observed
during the early stages of retting almost disappear at later stages
(Chabbert et al., 2020). Fiber bundles themselves also become
progressively destructured mainly due to the dissociation of
individual fiber cells (Akin, 2003; Figure 2A). Individual fiber
cells are integrated into stem tissues via their compound middle
lamella that not only links them to other fibers, but also links
the peripheral bundle cells to the cortical cells in the external
stem tissues (Meijer et al., 1995; Akin, 2013; Figure 2B). Retting
therefore involves the progressive enzymatic degradation of both
cortical parenchyma cell walls and the fiber compound middle
lamella. Chemically these structures are composed of different
polymers. Cellulose, hemicellulose (mainly xyloglucan), pectic
polysaccharides (homogalacturonan, HG), rhamnogalacturonan
I (RG-I), and rhamnogalacturonan II (RG-II), as well as some
structural proteins are found in the primary cell wall. In contrast,
the middle lamella is mainly composed of pectins forming what is
commonly called the cellular cement. Fibers cells, in addition to a
middle lamella and primary cell wall, have thick secondary walls
that are rich in cellulose (up to 80%) and contain non-cellulosic
polysaccharides such as galactans and glucomannans (Morvan
et al., 2003; Rihouey et al., 2017). Low levels of lignin (2–5%)
can also be sometimes found in the middle lamella, primary cell
wall, and S1 layer of the secondary cell wall (Day et al., 2005).
The technical properties of fibers are due to a high content of
crystalline cellulose, with microfibrils almost parallel to the main
axis of the cells (Müller et al., 1998). The Figure 2B shows the
general organization of the plant cell wall.

Retting Enzymes
The degradation of cell wall polymers necessitates the
intervention of enzymes belonging to a wide range of different
enzyme families (Figure 2C). In recent studies on hemp and
flax retting, exopolygalacturonase and α-L-arabinosidase,
β-D-xylosidase and β-D-galactosidase, β-D-glucosidase and
cellobiohydrolase activities were followed during the retting
process (Bleuze et al., 2018; Chabbert et al., 2020). Pectin-
degrading enzymes are distributed across nine families of
carbohydrate-active enzymes (CAZymes), CE8, PL1, PL2, PL3,
PL9, PL10, GH28, GH78, and GH88. GH28 polygalacturonases
(PGAs) play an important role in the breakdown of pectins
in pathogenic ‘fungi.’ Pectin esterases (family CE8) catalyze
the de-esterification of pectins into pectate and methanol
(Zhao et al., 2013, 2014). Several strains of filamentous ‘fungi,’
isolated from flax stems retted in the field, such as Rhizomucor
pusillus (Mucoromycota formerly Zygomycota) and Fusarium

lateritium (Ascomycota) have shown a capacity for decohesion
of fibers, in particular thanks to a high level of pectinolytic
activity (Henriksson et al., 1997). Pectinolytic activities (e.g.,
polygalacturonases or pectin lyases) have also been observed
in various microorganisms during water-retting (Zhao et al.,
2016). For example, Clostridium felsineum shows a strong
pectinolytic activity and a good capacity for retting. Studies using
enzymatic retting have shown that the use of polygalacturonases
alone is sufficient for the decohesion of fibers (Evans et al.,
2002; Akin et al., 2004). Some microorganisms used during
retting such as Bacillus subtilis and Erwinia carotovora (syn.
Pectobacterium carotovorum) are known to produce pectin
lyases (Sharma, 1986). Saprophytic or parasitic microorganisms
have CAZymes showing activities of hemicellulolytic types
(vanden Wymelenberg et al., 2010). These activities, in particular
those of xylanases, have been observed during water-retting
(Donaghy et al., 1990), or in bacterial cultures resulting from
the cultivation of dew retted flax stems (Sharma, 1986). Very
recently, a study on retting with water in a fermenter, showed a
cyclic evolution of mannanases, another hemicellulolytic enzyme
(Zhao et al., 2016).

During retting the enzymatic degradation of cell wall polymers
can be followed by monitoring the sugars released. For example,
the release of fibers was correlated with a decrease in the
concentration of galacturonic acid resulting from the breakdown
of pectic material in the middle lamella at the end of retting
(Rosemberg and de França, 1967). A recent study of retting
dynamics by both scanning electron microscope (SEM) imaging
and the analysis of certain wall polymers also confirmed the link
between the degradation of primary cell walls and fiber middle
lamella and the dissociation of fiber bundles (Chabbert et al.,
2020). In contrast glucose and mannose/galactose levels remain
stable suggesting that secondary cell wall polysaccharides are not
degraded (Chabbert et al., 2020). The release of other cell wall
polymers such as cutin, wax, and aromatic compounds (sinapyl
alcohol and ferulic acid) has also been investigated by chemical
analyzes and mass spectrometry in a comparative study of water-
and field-retting (Morrison et al., 2000).

Factors Affecting Retting
At the plant level, the amount of pectins varies depending on the
cultivar and will influence the duration of retting (Brown et al.,
1986; Haag et al., 2017). Increasing maturity of the stems will
also favor lignin deposition in the fiber middle lamella associated
with difficulties in retting (Meijer et al., 1995; Pallesen, 1996).
However, the influence of exogenous factors, either abiotic or
biotic, also has an important impact on retting. In the first
category, can be classified all the pedoclimatic factors such as
the soil structure or the mineral elements (for example nitrogen,
phosphorus and potassium), the physico-chemistry of the soil,
the rotation of the cultures, the thickness of the swathe, as
well as climatic conditions and seasonal variations (Sharma and
Faughey, 1999). In the second category, the most influential
factor will undoubtedly be the microbiota present in the soil and
in/on the stem at the beginning of retting (Djemiel et al., 2017;
Chabbert et al., 2020). Intriguingly, a recent study has revealed
the existence of a very close link between the microbiome and

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 581664

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-581664 October 21, 2020 Time: 23:37 # 6

Djemiel et al. Targeted Metagenomics of Flax Retting

the spatial and temporal development of the plant (composition,
physiology), or even cultural conditions (Comeau et al., 2020). In
the light of such observations it seems likely that plant growth and
fiber development in flax will also be affected by the microbiome
present. Furthermore, the microbiome itself will be influenced by
plant growth and retting conditions. A more integrated approach
is clearly necessary if we are to fully understand all of the factors
affecting fiber quality (Figure 1).

MICROBIOLOGY OF RETTING, WHAT
HAVE WE LEARNED FROM CLASSICAL
APPROACHES?

Since it is the microorganisms that produce the hydrolytic
enzymes responsible for retting, an important step in our
understanding of this process is to identify the organisms
responsible. Historically, various bacteria and fungi were
identified in a number of different studies using isolation
and culture-based approaches. However, such strategies are
not powerful enough to obtain a complete inventory of the
microorganisms present as only a small percentage of taxa can
be successfully cultured under laboratory conditions. Moreover,
these approaches are generally inappropriate for dynamic studies
looking at how microbial communities evolve during retting.
More recently, microbial retting studies have greatly benefited
from the use of HTS technologies that have produced exhaustive
inventories of bacteria and fungi linked with this process. A list
of microorganisms identified by classical methods is given in
Tables 1, 2 and those identified by metabarcoding approaches in
Table 3.

Bacteria Identified
The first reported study focusing on the retting of flax with water
was carried out by the French biologist and botanist Philippe
Édouard Léon Van Tieghem (1839–1914), who concluded that
the bacteria Bacillus amylobacter was probably responsible
for the decomposition of pectins (Figure 3A; van Tieghem,
1879). The second genus to be associated with water-retting
was the genus Clostridium and more particularly Clostridium
felsineum (Figure 3A; Lanigan, 1950). A few years later,
Rosemberg (1965) isolated 22 individuals including species of the
Clostridium and Pseudomonas genera. Pseudomonas aeruginosa
was recognized as the fastest species in fiber decohesion
(Rosemberg, 1965). This study also identified, for the first time,
Achromobacter parvulus which appears to be involved in the
latter stages of retting.

Later, Sharma (1986) isolated and identified six bacterial
species from the Actinobacteria, Firmicutes, and Proteobacteria
phyla as well as five fungal species belonging to the Ascomycota
phylum (Figure 3B).

In 1990, a study at the University of Ulster (Northern Ireland)
followed the evolution of anaerobic bacteria during water-retting,
both at an industrial and laboratory scale. Bacillus licheniformis
and Bacillus subtilis were the most dominant during the first
and second phase, corresponding to the growth phase and the
rapid pectinolytic phase (between 10–40 h) of water-retting.

Clostridium acetobutylicurn and Clostridium felsineum appear
during the last phase known as the slow pectinolytic phase
(Figure 3A; Donaghy et al., 1990). All the bacteria considered
belong to the Firmicutes phylum.

In 2003, another study provided further information about
pectinolytic bacteria involved in water-retting. Although this
study still involved a culture step to isolate bacteria, it was
the first one to use a molecular marker approach, in this case
by amplifying a partial region of the 16S rRNA gene, using
the (amplified ribosomal DNA restriction analysis) ARDRA
technique. All of the anaerobic strains were assigned to the
Clostridium genus and the aerobic strains to the Bacillus
or Paenibacillus genera. Anaerobic colonies with significant
polygalacturonase activity belonged to two phylogenetic clusters
assigned to the Clostridium acetobutylicum/Clostridium felsineum
and Clostridium saccharobutylicum species. For aerobic bacteria,
colonies with significant polygalacturonase activity belonged to
two phylogenetic clusters assigned to the Bacillus subtilis species
(Figure 3A; Tamburini et al., 2003). All these strains also belong
to the Firmicutes phylum.

Fungi Identified
One of the first studies on the microbiology of dew-retting
identified several genera and species from the Fungi kingdom
belonging to the Ascomycota and Mucoromycota (formerly
Zygomycota) phyla (Figure 3B; Brown, 1984). In the late 1990s,
an American study looked at fungi involved in flax dew-retting
in the United States, Netherlands, and France (Figure 3B;
Henriksson et al., 1999). Seven strains of filamentous fungi
(including six still not described in the literature to this day)
and a yeast, could be identified following isolation, cultivation
on synthetic media, and purification in order to compare their
activities and their efficiency in fiber release. Another study
involving in vitro retting tests was carried out by Fila and
coworkers but no new fungal genus was identified (Figure 3B;
Fila et al., 2001).

Some fungi have been characterized as over-retting actors, for
example Fusarium lateritium and more particularly Epicoccum
nigrum, recognized as being a primary saprophyte in retting
(Brown, 1984; Henriksson et al., 1997; Akin et al., 1998). Another
species, Rhizomucor pusillus has been observed to degrade part
of the surface of the cuticle, thus probably allowing the entry of
microorganisms (Henriksson et al., 1997).

The overall conclusion that can be drawn from these classical,
culture-based studies of retting is that the type of microorganism
identified depends heavily upon the retting type. Field retting
is an aerobic environment and although both bacteria and
fungi are identified it is generally the latter that predominate
with species belonging mostly to the Ascomycota phylum
and to a lesser extent the Mucoromycota phylum (formerly
Zygomycota; Table 2). In contrast, water-retting mainly involves
anaerobic microorganisms (bacteria). Nevertheless, several fungi
have also been identified in various anaerobic environments and
classified within two very close phyla, Neocallimastigomycota
and Chytridiomycota (Griffith et al., 2010; Gruninger et al., 2014).
Interestingly, some of these anaerobic fungi, are also found in the
rumen, and have been shown to possess a number of GH genes
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TABLE 1 | List of different bacterial species involved in flax retting and identified by classical approaches.

Retting Mode Phylum Current Name (Name in
Publication)

Localization Method References

Water Dew

X Firmicutes Bacillus amylobacter Not mentioned probably
France

Not mentioned van Tieghem (1879)

X Proteobacteria Enterobacter aerogenes
(Bacterium aerogenes)

Not mentioned Screening on agar media or liquid culture Allen (1946b)

X Proteobacteria Escherichia coli (Bacterium coli) Not mentioned

X Proteobacteria Streptococcus (Streptococci) Not mentioned

X Firmicutes Lactobacillus (Lactobacilli) Not mentioned

X Firmicutes Clostridium tertium Not mentioned Screening on agar media or liquid culture Allen (1946a)

X Firmicutes Clostridium Australia (Melbourne) Not mentioned Lanigan (1950)

X Firmicutes Clostridium felsineum Australia (Melbourne)

X Proteobacteria Achromobacter parvulus Brazil (Santa Catarina) Screening on agar media culture Rosemberg (1965)

X Proteobacteria Aerobacter cloacae Brazil (Santa Catarina)

X Proteobacteria Aerobacter aerogenes Brazil (Santa Catarina)

X Firmicutes Bacillus brevis Brazil (Santa Catarina)

X Firmicutes Bacillus cereus Brazil (Santa Catarina)

X Firmicutes Bacillus megaterium Brazil (Santa Catarina)

X Firmicutes Bacillus sphaericus Brazil (Santa Catarina)

X Firmicutes Bacillus subtilis Brazil (Santa Catarina)

X Firmicutes Clostridium butylicum Brazil (Santa Catarina)

X Firmicutes Clostridium beijerinckii Brazil (Santa Catarina)

X Firmicutes Clostridium saprogenes Brazil (Santa Catarina)

X Firmicutes Clostridium sartagoformum Brazil (Santa Catarina)

X Firmicutes Clostridium
saccharoacetoperbutylicum

Brazil (Santa Catarina)

X Firmicutes Clostridium perenne Brazil (Santa Catarina)

X Proteobacteria Escherichia coli Brazil (Santa Catarina)

X Actinobacteria Gaffkya tetragena (probably
contamination)

Brazil (Santa Catarina)

X Proteobacteria Pseudomonas aeruginosa Brazil (Santa Catarina)

X Proteobacteria Pseudomonas pseudomallei Brazil (Santa Catarina)

X Proteobacteria Paracolobactrum aerogenoides Brazil (Santa Catarina)

X Proteobacteria Serratia plymuthica Brazil (Santa Catarina)

X Firmicutes Staphylococcus epidermis
(probably contamination)

Brazil (Santa Catarina)

X Firmicutes Bacillus mycoides Northern Ireland (Lambeg) Screening on agar media culture Sharma (1986)

X Firmicutes Bacillus subtilis Northern Ireland (Lambeg)

X Proteobacteria Erwinia carotovora Northern Ireland (Lambeg)

X Proteobacteria Pseudomonas fluorescens Northern Ireland (Lambeg)

X Proteobacteria Pseudomonas putida Northern Ireland (Lambeg)

X Actinobacteria Micrococcus sp. Northern Ireland (Lambeg)

X Firmicutes Bacillus subtilis Northern Ireland (Lambeg) Screening on agar media culture Donaghy et al. (1990)

X Actinobacteria Cellulomonas spp. Northern Ireland (Lambeg)

X Firmicutes Clostridium felsineum Northern Ireland (Lambeg)

X Firmicutes Bacillus cereus Northern Ireland (Lambeg)

X Firmicutes Clostridium felsineum Italy Screening on agar media or liquid
culture and identification with 16S rDNA

Tamburini et al. (2003)

X Firmicutes Anaerobacter polyendosporus Italy

X Firmicutes Clostridium saccharobutylicum Italy

X Firmicutes Clostridium aurantibutyricum Italy

X Firmicutes Clostridium acetobutylicum Italy

X Firmicutes Bacillus subtilis Italy

X Firmicutes Bacillus pumilus Italy

X Firmicutes Paenibacillus amylolyticus Italy
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TABLE 2 | List of different fungal species involved in flax retting and identified by classical approaches.

Retting Mode Phylum Current Name (Name in
Publication)

Localization Method References

Water Dew Standing*

X Ascomycota Epicoccum nigrum Ireland (Lambeg,
Hillsborough)

Screening on agar
media culture

Brown (1984)

X Mucoromycota (Zygomycota) Rhizopus sp.

X Mucoromycota (Zygomycota) Mucor sp.

X Ascomycota Cladosporium herbarum

X Ascomycota Botrytis cinerea

X Ascomycota Penicillium sp.

X Ascomycota Fusarium culmorum

X Ascomycota Phoma sp.

X Ascomycota Alternaria spp.

X Ascomycota Yeasts

X Ascomycota Cladosporium herbarum Northern Ireland
(Lambeg)

Screening on agar
media culture

Sharma (1986)

X Ascomycota Fusarium culmorum

X Ascomycota Botrytis cinerea

X Ascomycota Epicoccum nigrum

X Ascomycota Yeast

X Ascomycota Alternaria spp.

X Ascomycota Aspergillus flavus Italy (Budrio) Not mentioned Fila et al. (2001)

X Ascomycota Aspergillus niger

X Ascomycota Epicoccum nigrum

X Ascomycota Fusarium oxysporum

X Mucoromycota (Zygomycota) Mucor hiemalis

X Ascomycota Penicillium simplicissimum

X Mucoromycota (Zygomycota) Rhizopus stolonifer

X Ascomycota Fusarium equiseti United States (South
Carolina)

Screening on agar
media culture

Henriksson et al. (1997)

X Ascomycota Yeast

X Mucoromycota (Zygomycota) Rhizomucor pusillus

X Ascomycota Trichoderma virens

X Ascomycota Alternaria alternata

X Ascomycota Fusarium lateritium United States
(Connecticut)

X Ascomycota Cladosporium herbarum

X Ascomycota Fusarium oxysporum France

X Ascomycota Epicoccum nigrum Holland

*Flax plants are retted in upright ‘wigwam’ like piles.

probably resulting from horizontal transfers of bacterial genes
(Garcia-Vallvé et al., 2000; Steenbakkers et al., 2001).

METABARCODING AND THE
BREAKTHROUGH IN KNOWLEDGE ON
RETTING MICROBIAL DIVERSITY

Metabarcoding, also known as targeted metagenomics, is
an approach that has revolutionized the study of microbial
communities. In recent years the decrease in sequencing costs has
allowed it to become more democratic, leading to the use of this
approach in a larger number of laboratories and studies. The large

and growing number of publications that use metabarcoding
reflects this evolution regardless of the habitat explored, including
studies on the microbiota of plants (Figure 4). Metabarcoding
consists in sequencing an amplicon (most often corresponding
to one or more regions of a phylogenetic marker) on a
high−throughput platform to characterize microbial diversity
from complex/environmental samples, thereby enabling studies
of alpha-diversity, community structure or taxonomy (Deiner
et al., 2017; Piper et al., 2019; Tedersoo et al., 2019).

There are currently very few studies on the holistic
interactions between microorganisms and the flax plant during
its growth and their implication on the quality of fibers. The
only interactions studied for the moment are those taking place
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TABLE 3 | Non-exhaustive list of studies on the microbiology of retting performed using a metabarcoding approach.

Plant Fiber Retting
Types

Microbes
Studied

Molecular
Marker Used

Sequencer Years OTU Richness
(mean)

Subsampling Major Phyla References

Kenaf (Hibiscus
cannabinus)

Water Bacteria 16S rRNA Ion torrent PGM 2013 1,500 28,000 Firmicutes,
Proteobacteria,
Bacteroidetes

Visi et al. (2013)

Flax (Linum
usitatissimum)

Water Bacteria 16S rRNA Illumina MiSeq 2016 70 NM Bacteroidetes,
Firmicutes,
Proteobacteria

Zhao et al. (2016)

Flax (Linum
usitatissimum)

Dew Bacteria;
Fungi

16S rRNA; ITS2 Illumina MiSeq 2017 300; 220 20,548; 42,436 Proteobacteria,
Bacteroidetes,
Actinobacteria,
Firmicutes;
Ascomycota,
Basidiomycota

Djemiel et al. (2017)

Flax (Linum
usitatissimum)

Dew Bacteria;
Fungi

16S rRNA; ITS2 Illumina MiSeq 2020 200; 260 5,919; 86,050 Proteobacteria,
Actinobacteria,
Bacteroidetes;
Ascomycota,
Basidiomycota

Chabbert et al.
(2020)

Hemp (Cannabis
sativa)

Greenhouse Bacteria 16S rRNA Illumina MiSeq 2020 100 2,234 Proteobacteria,
Bacteroidetes

Law et al. (2020)

Kenaf (Hibiscus
cannabinus)

Water Bacteria;
Fungi

16S rRNA; 18S
rRNA

Illumina MiSeq 2020 430* NM Bacteroidetes,
Proteobacteria;
Basidiomycota,
Ascomycota

Duan et al. (2020)

*chao1 metric; NM: not mentioned.

during retting, and that concern the capacity of microorganisms
to degrade the plant cell wall and therefore in fine to affect fiber
quality for their future use (Table 3). The first investigation using
the metabarcoding approach investigated bacterial communities
during kenaf water-retting under different controlled conditions
(Visi et al., 2013). The authors used the 16S rRNA gene
as the molecular marker and performed sequencing with an
Ion Torrent Personal Genome Machine (PGM) system. The
operational taxonomic unit (OTU) richness values from Visi et al.
(2013) seem to be extremely high compared to other water-
retting studies (Table 3). More recently, the evolution of both
bacterial and fungal communities during water-retting of kenaf
was studied using 18S rRNA gene (Duan et al., 2020). However,
the results obtained concerning the Fungi kingdom must be
taken with care because precisions concerning the bioinformatics
analysis are not available (e.g., sub-sampling size/rarefaction) and
certain inaccuracies on the taxonomic affiliation occured (e.g.,
confusion between the different taxonomic levels; Opisthokonta
has been classified as a subkingdom and a phylum). To date, only
one study has been conducted on hemp retting by metabarcoding
(Law et al., 2020). This study indicated an average OTU richness
mean of one hundred. In comparison, the study by Ribeiro
et al. (2015) identified 66 different bacterial phylotypes. Despite
the fact that these two studies involved different environmental
conditions –Law et al. (2020) conducted hemp retting in a
greenhouse under controlled conditions, while Ribeiro et al.
(2015) collected samples in the field – the OTU or phylotype
distributions were similar for the Proteobacteria (85 vs. 77%),
Bacteroidetes (8 vs. 11%) and Firmicute (1% or less) but differed
for Actinobacteria (2.3 vs. 11%).

Until now, it is flax retting that has been the most
studied by metabarcoding, with two studies conducted on
field retting (Djemiel et al., 2017) and one on water-retting
in tanks (Zhao et al., 2016; Figure 3A). Zhao et al. (2016)
focused on the evolution of anaerobic bacteria using a partial
16S rRNA gene sequence region following the addition of a
strain of Bacillus cereus HDYM-02, previously characterized in
their laboratory as being very effective in the decohesion of
fibers. Interestingly, this species had been identified previously
as an efficient retting agent that did adversely affect fiber
mechanical properties (Donaghy et al., 1990). The study
by Zhao et al. (2016) demonstrated the power of HTS
since they were able to identify five phyla (Actinobacteria,
Cyanobacteria, Bacteroidetes, Firmicutes, and Proteobacteria)
and eight classes (Flavobacteriia, Sphingobacteriia, Bacilli,
Clostridia, Negativicutes, α-proteobacteria, β-proteobacteria,
and γ-proteobacteria), some of which were not previously
known to be involved in water-retting (e.g., Cyanobacteria and
Bacteroidetes for phyla, and Flavobacteriia, Sphingobacteriia,
Negativicutes, α-proteobacteria, and β-proteobacteria for classes;
Zhao et al., 2016).

The interest of the metabarcoding approach for flax field-
retting was also demonstrated by two recent studies (Djemiel
et al., 2017; Chabbert et al., 2020). The first study explored
the diversity and dynamics of bacterial and fungal communities
involved in this process by using an HTS DNA metabarcoding
approach (16S rRNA/Internal Transcribed Spacer (ITS) region,
Illumina Miseq) on plant and soil samples collected over
a period of 7 weeks in July and August 2014 (Djemiel
et al., 2017). Twenty-three bacterial and six fungal phyla
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FIGURE 3 | Timelines showing the increasing number of bacterial and fungal species identified over time in flax water-retting (A) and dew-retting (B). Figure shows
authors and year of published studies (top line), microbial organization level (individual, community, ecosystem) and name (middle line), culture method and type of
analysis (bottom line). The color of phyla (HTS approach) and species names indicates the identification method type (classical vs. HTS). When phyla names are in
black it means that they have been identified for the first time by metabarcoding approaches.
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FIGURE 4 | Graph indicating the number of publications containing the keywords ‘metabarcoding’ (pink) or ‘metabarcoding AND plant’ (green) published each year
since 2011.

were identified in soil samples and 11 bacterial and four
fungal phyla in plant samples. Dominant phyla identified were
Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes
(bacteria) and Ascomycota, Basidiomycota, and Zygomycota
(fungi) all of which have been previously associated with
flax dew-retting except for Bacteroidetes and Basidiomycota
that were identified for the first time. The use of this
powerful method also allowed the identification of rare phyla
never previously associated with retting: Acidobacteria, CKC4,
Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae, and
TM6 (bacteria), and Chytridiomycota (fungi). These results
perfectly illustrate the efficiency of metabarcoding for detecting
phyla of low abundance. In addition, this study also revealed
that the agricultural practice of swathe turning affected bacterial
and fungal community structure, and most likely contributed
to a more uniform retting. The use of the prediction tool
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) (Langille et al., 2013; Douglas et al.,
2020); was also used on OTU tables to decipher the functional

potential of bacterial communities. This analysis predicted a large
collection of potential bacterial enzymes capable of hydrolyzing
the backbones and side-chains of cell wall polysaccharides. These
results demonstrate the interest of a combined metabarcoding
and PICRUSt analysis to predict functional composition of
bacterial communities. A similar approach reported by Chabbert
et al. (2020) allowed a comparison of the evolution of bacterial
and fungal retting communities under different environmental
conditions. Eight out of the ten most abundant bacterial OTUs
identified in this study were also among the top ten OTUs
identified in the 2014 study by Djemiel et al. (2017) in the same
geographical area, but in a different field and under different
climatic conditions. In contrast, only half of the top ten fungal
OTUs were retrieved. In this last study, enzyme activities were
measured in addition to targeted metagenomics showing the
presence of a high microbial diversity with potential enzymatic
functions during retting. The comparison of these two studies
could suggest that a year-to-year variability exists, perhaps more
so in fungal communities compared to bacteria. Nevertheless,
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the identification of comparable enzymatic functions in the
two studies would suggest a functional redundancy within the
communities. In conclusion, the contribution of metabarcoding
to the knowledge about the microbiology of retting is undeniable.
In addition, the technique can also be adapted to ask questions
about the living world in the widest possible way. For example,
by refining the choice of primers metabarcoding can also be
used to inventory often neglected organisms such as Archaea or
microeukaryotes (Bahram et al., 2019).

INTEGRATIVE META-OMIC
APPROACHES TO DECIPHER THE
METAPHENOME AND GLOBAL
ECOLOGY OF DEW-RETTING

Our understanding of the microbiology of retting has clearly
benefited from the use of targeted metagenomics/metabarcoding.
In particular, this strategy has made it possible to make a
breakthrough in our knowledge about microbial community
diversity and structure during this process. However, while
metabarcoding allows identification of microorganisms, the
functional gene content of the community can only be predicted
based on the available knowledge of the whole genome sequences
of individual organisms (or phylogenetically related organisms)
making up the community. Furthermore, metabarcoding
cannot determine which functional genes are expressed.
Nevertheless, recent advances in sequencing technologies and
computational capabilities offer a unique way for different meta-
omic approaches (e.g., metagenomics, metatranscriptomics, and
metaproteomics) to fill the gap from taxonomic information
to functions by generating information on the functional gene
composition of the retting microbial community.

To our knowledge, while there are currently no publications
reporting the use of these meta-omics approaches to study
retting, recent studies have been performed on biologically
similar (but not identical) processes such as litter degradation.
This latter phenomenon is indeed commonly described as
a breakdown of dead plant material, which is composed of
cellulose, hemicellulose, lignin, pectin but also proteins and can
therefore be compared to the retting process. In the following
sections we present some examples of how different meta-omic
approaches have been used to look at plant biomass breakdown
and discuss how these approaches could be exploited to provide
functional information on retting.

Metagenomics
Shotgun metagenomics is a high-throughput, culture-
independent genomic analysis of all microbes present in a
sample. It starts with extraction of total DNA from a sample
followed by library preparation and sequencing. Shotgun
metagenomics is thus an untargeted global sequencing
approach compared to the 16S/ITS/18S rRNA sequencing
used for metabarcoding (targeted metagenomics) and which
is sometimes erroneously referred to as metagenomics. In
the former approach, the aim is to sequence all the genomes

present, whereas, in the metabarcoding strategy only the rRNA
amplicons are sequenced. Coupled with functional profiling,
shotgun metagenomics enables the description of the total
genetic content of the microbial community. The functional
annotation of the obtained sequences requires the use of several
databases, including well-known broad databases such as NCBI
nt, ortholog databases such as Clusters of Orthologous Groups
(COG) and Evolutionary genealogy of genes: Non-supervised
Orthologous Groups (EggNOG) for inference of functional
categories, pathway databases such as Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al., 2014) for
metabolic pathway reconstruction and specific databases such as
CAZy (Lombard et al., 2014) for CAZymes prediction. In a plant
biomass context, shotgun metagenomics is principally applied to
the mining for novel genes encoding potentially new/interesting
CAZymes (Montella et al., 2017) driven by the need to find
new biocatalysts for biofuel production. Shotgun metagenomics
is also used for whole-genome reconstruction of individual
species, the so-called metagenome-assembled genomes (MAGs).
This approach allows researchers to simultaneously uncover a
microorganism’s functional potential and its identity, with a
more resolutive, unbiased phylogenetic information than with
metabarcoding. However, the sequencing depth obtained in a
sample is critical for successful microbial genome reconstruction
and the complexity of the microbial community usually hinders
such an approach (Alteio et al., 2020).

With regard to retting, no shotgun metagenomic studies have
been conducted to date, and insights into genes involved in
fiber degradation are still only obtained via culture-dependent
genomic studies (Datta et al., 2020). Nevertheless, other
environments associated with cell wall breakdown such as crop
soils, and forest soils and litters have been studied (Table 4).
Albeit the environmental conditions, cell wall structure and
microbial community composition differ from those encountered
during fiber retting, such studies show how the genetic potential
of cell-wall decomposing microorganisms and their associated
functions can be identified using shotgun metagenomics and
illustrate how such approaches could be used in future to provide
more in-depth information about retting.

In a study of Amazonian rainforest and rainforest-to-pasture
converted soils, Kroeger et al. (2018) showed (using a classical
shotgun metagenomic strategy) that the microbial community
undergoes drastic taxonomic and functional shifts with land-use
type. Dominant phyla were common for both soils while less
abundant phyla were strongly affected by the land-use type. In
the pasture soil, gene functions were predominantly associated
with carbohydrate metabolism, dormancy and sporulation, and
regulation and cell signaling whereas in the rainforest soil,
they were mostly associated with transcription and vitamin
production. Although these findings do not constitute a
breakthrough on the effect of different land-type use on
microbial community composition, the metagenomics analysis
was undoubtedly improved by the reconstruction of 28
MAGs from both dominant and rare phyla. Interestingly, a
Melainabacteria MAG from a rare lineage was only detected in
the pasture soil and shown to contain 72 protein encoding genes
not found in other Melainabacteria genomes available. Among
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TABLE 4 | Selected metagenomic studies indicating number of reads using different sequencing technologies for a variety of materials from biological situations that
present similarities to retting.

Matrix Methods (Sequencing
Technology/Main Bioinformatic tools)

Number of Reads (Annotation Information) Taxonomic
Groups

References

Soil 454 Pyrosequencing/MG-RAST 1.35 million Bacteria Fierer et al. (2012)

Crop soil 454 Pyrosequencing/MG-RAST ∼1,000,000 (53.9% with taxonomic annotation) Bacteria, Archaea,
Fungi

Souza et al. (2013)

Litter Illumina/MG-RAST 1,265,787 (53% with taxonomic annotation) Bacteria, Fungi Berlemont et al. (2014)

Crop soil 454 Pyrosequencing/MG-RAST ∼4 million (54.2% with functional annotation) Only functional Souza et al. (2015)

Crop soil 454 Pyrosequencing/Diamond, blastn,
hmmscan, MEGAN

∼900,000 (61% with taxonomic annotation,
35.21% with functional annotation)

Bacteria de Vries et al. (2015)

Litter Illumina/MG-RAST, blastn 717,933,077 (24-33% with functional annotation) Bacteria, Fungi Freedman et al. (2016)

Rainforest and pasture soils Illumina/MG-RAST, MEGAHIT assembly 6,366,557,730 Bacteria, Archaea Kroeger et al. (2018)

Crop soil Illumina/MGX, MEGAHIT, dbCAN2,
BlastKOALA, GhostKOALA

505 million Bacteria, Archaea,
Fungi

Nelkner et al. (2019)

Bamboo fiber soaking
pit/bamboo pulp pit

Illumina/LBPSDB, BlastP, dbCAN 43 million (∼55% with functional annotation) Bacteria Cui et al. (2019)

Rainforest-to-crop soil
(mesocosm)

Illumina/MG-RAST 10.7 million Bacteria Goss-Souza et al.
(2019)

Litter Illumina/SOAPdenovo, Blastp ∼4 billions Bacteria, Fungi Wang et al. (2019)

Forest soil Illumina/SPAdes, IMG, dbCAN 1,391,343,556 Bacteria, Archaea Alteio et al. (2020)

the Melainabacteria MAG genes annotated some were potentially
involved in carbohydrate utilization. By gaining insights into the
Melainabacteria MAG this study provides an example of how
shotgun metagenomics can be used to explore the functional
diversity of rare biospheres.

A MAG approach can also be applied to explore the functional
diversity among members of the same phylum (Alteio et al.,
2020). In this study, the authors reconstructed 67 putatively
novel Bacteroidetes MAGs from warmed experimental forest
soils and showed clade-specific diversity and abundance of
CAZymes, suggestive of an extensive potential for polysaccharide
degradation among members of the clade. In contrast, 17
unclassified Bacteroidetes MAGs lack major CAZymes required
to efficiently deconstruct polysaccharides, suggestive of a rather
limited role in polysaccharide degradation.

The study of the effect of agricultural management practices
on crop soil microbial communities is also a growing field for
the use of shotgun metagenomics and aims to correlate these
practices to microbial community taxonomic diversity and the
pool of functions (Souza et al., 2018; Nelkner et al., 2019).
In their study, Souza et al. (2018) analyzed soil samples that
were subjected to four different soil and crop management
practices (conventional tillage and no tillage, each with crop
succession or crop rotation). Although their results revealed a
limited impact of management practice on the abundance of each
functional category from the SEED database, the use of KEGG
pathways identified some practice-related differences in key
enzymes involved in the metabolism of fructose and mannose.

Another interesting example of the use of shotgun
metagenomics to understand microbial degradation of plant
cell wall polymers concerns the recent work by Kundu et al.
(2019). The authors firstly obtained sequences from public
shotgun metagenomics datasets of DNA extracted from different
gut compartments of the termite Nasutitermes corniger. They

then combined these data with metabolic data collected in the
literature, resulting in a set of 2,988 metabolic reactions, that
they used to construct a species-wide lignocellulose network.
They identified 15 key bacterial species, all exclusively found
in one gut compartment, producing a variety of enzymes
that can breakdown lignocellulose including endoglucanases,
exoglucanases, endo-1,4-β-xylanase, β-glucosidase, β-xylosidase,
and cellobiohydrolase. In turn, the degradation products fed two
other key bacterial species involved in fermentation.

Metatranscriptomics
Shotgun metagenomics offers a unique view of the functional
potential (i.e., the genes present) of the microbial community
and how it is affected (or not) by its environment. It does
not, however, provide any information about the functions that
are actually realized (i.e., the genes expressed and translated
into functional proteins) by each member of the community.
A first step in obtaining this information can be gained
from gene expression studies through RNA sequencing. When
applied to complex microbial communities this is called
metatranscriptomics. Metatranscriptomics provides a snapshot
of gene expression and constitutes a first step in going
from ‘what the microbial community can do’ to ‘what the
microbial community does.’ By analyzing gene expression
at the community level, metatranscriptomics allows scientists
to determine which metabolic pathways are active as well
as their relative importance, thereby enabling predictions to
be made about the functional role of the community. In
addition, by accumulating metatranscriptomic data over the
time course of a biological process it becomes possible to
obtain a more accurate picture of the functional dynamics.
The principle of metatranscriptomics is similar to the one
described above for shotgun metagenomics except that total
RNA (and not DNA) from a sample is extracted. The RNA
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then has to be processed for mRNA enrichment and/or rRNA
depletion since rRNA are highly abundant and will compete
for sequencing, resulting in poor representation of mRNA.
As in all expression studies, particular precautions have to
be taken to avoid RNA degradation during sample transport
and preparation which can be challenging for field studies.
A functional annotation of quality also relies on the use of
several databases (including annotated metagenomes) to produce
the most comprehensive transcript function prediction possible
(Shakya et al., 2019).

As for shotgun metagenomics, metatranscriptomics has not
yet been used in the context of retting. Nevertheless, some
studies on biologically related environments have been done
(Table 5). In their study, Hesse et al. (2015) looked at how
CAZymes expression profiles were affected by long-term N
deposition from leaf litter in forest soils from two geographically
distant sites. They showed that the expression of CAZymes
from bacterial or fungal origin responds to N amendment,
with both common- and site-specific responses. Nitrogen input
tended to favor CAZymes from bacterial origin. The authors
also focused on the dynamic balance between Ascomycota
and Basidiomycota fungi and showed a decrease of CAZymes
from Basidiomycota in N-amended soils compared to ambient
soils, that could be possibly linked to an overall decrease in
litter decomposition under such conditions. Another valuable
information that can be gained from metatranscriptomics
concerns the role of other – generally ignored or at best, paid
scant attention - members of the microbial community such as
protists and viruses. Both of these groups of organisms have the
ability to shape the microbial community by interacting with
other members, and can thus indirectly modify lignocellulose
decomposition activity. Current studies in soils have so far
only focused on the taxonomic diversity of protists and
viruses, revealing their extreme yet still unexplored diversity
(Geisen et al., 2015; Starr et al., 2019). Further studies will be
needed to investigate their role and interplay with the whole
microbial community.

Thanks to advances in sequencing technologies and analysis
tools in the last decade, more and more shotgun metagenomics
and metatranscriptomics data can be obtained and analyzed

thereby enabling in depth descriptions of microbial community
structure and functions. The complexity of some environments
such as soil that was previously a major drawback for analysis can
now be alleviated by using other techniques to experimentally
reduce the complexity of the community (Alteio et al., 2020).
Despite current challenges, these approaches can be viewed, more
than ever, as essential strategies on the path to decipher the
role of microbial communities, and constitute a basis for other
non-genomic-based omics approaches.

Metaproteomics
Like metabarcoding and metagenomics, metaproteomics can
be used to provide information about microbial community
structure and the different factors that can modify it. For
example, it was recently shown that the long-term application of
fertilization led to significant changes in microbial community
structure and function associated with increased microbial
biomass (Wu et al., 2015). In another example, the use
of a stable isotope-probing metaproteomics approach using
15N-labeled plant-derived organic matter in a soil microbial
community provided novel information on community structure
and microorganism feeding strategies (Starke et al., 2016).
This study revealed that Proteobacteria was the most abundant
phylum followed by Actinobacteria and Ascomycota. It also
demonstrated copiotrophic behavior for Rhizobiales belonging to
Proteobacteria, Actinomycetales belonging to Actinobacteria and
Chroococcales belonging to Cyanobacteria as these phylotypes
immediately incorporated 15N from the added plant tissue.
Conversely, the fungal Saccharomycetales and the bacterial
Enterobacteriales, Pseudomonadales, Sphingomonadales, and
Xanthomonadales displayed slower 15N-assimilation. Such a
strategy could also be expected to generate information about the
retting process in flax and other fiber species.

While metatranscriptomics provides information about the
genes expressed in a community only a metaproteomics approach
will provide precise information about the different proteins
responsible for the observed function (in this case cell wall
degrading enzymatic activity) in a given habitat (Herbst et al.,
2016). Recent biochemical studies (Bleuze et al., 2018; Chabbert
et al., 2020) have highlighted the role of different enzyme families

TABLE 5 | Selected metatranscriptomic studies indicating number of reads using different sequencing technologies for a variety of materials from biological situations
that present similarities to retting.

Matrix Methods (Sequencing
Technology/Main Bioinformatic Tools)

Number of Reads (Annotation
Information)

Taxonomic
Groups

References

Forest soil TA Cloning and sequencing/Blast 119 Eukaryotes Bailly et al. (2007)

Forest soil Cloning, Sanger/Blast, Blast2GO, MEGAN 20,000 Eukaryotes Damon et al. (2012)

Soil and maize leafs
(mesocosms)

454 Pyrosequencing/Blast, HMMSearch,
MEGAN

171,184 (∼30% annotated) Fungi Kuramae et al. (2013)

Mineral, litter and peat soils 454 Pyrosequencing/Blast, MEGAN 32,808 (only taxonomic analysis) Protists Geisen et al. (2015)

Forest soil Illumina/Blastx, MEGAN ∼200 million Bacteria, fungi Hesse et al. (2015)

Higher termite gut Illumina/CLC genomics workbench,
dbCAN, IMG-MER

112 million Prokaryotes Marynowska et al.
(2017)

Termite gut Illumina/Trinity, Blast 14.3 million (44.5% of 71,117 unigenes) Eukaryotes Geng et al. (2018)

Soil amended with ground wild
oat (microcosm)

Illumina/HMMER, MAFFT, USEARCH (3,884 viral sequences) Viruses Starr et al. (2019)
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TABLE 6 | Selected studies performed on biologically-similar to retting systems reporting detection or identification of proteins using different proteo- and
metaproteomic methods.

Matrix Proteome Analysis Methods Number of Proteins References

Greenhouse soils 1DEaN-terminal sequencingGeLC-MS/MS 5 Murase et al. (2003)

Compost soil GeLC-MS/MS 4 Benndorf et al. (2007)

River gravel or lava granules 2DE 240 Benndorf et al. (2009)

Agricultural soil 2DE ∼250 Chen et al. (2009)

± Toluene-amended soil microbial± inoculated cultures 1DMALDI-TOF/TOF MS 47 Williams et al. (2010)

Grassland soil 2D-LC-MS/MS 333 Chourey et al. (2010)

Beech leaf litter GeLC-MS/MS Up to 1,724 Schneider et al. (2010, 2012)

Soil microcosms spiked with Cupriavidus metallidurans proteins 2DE 320 Giagnoni et al. (2011)

Rice rhizosphere soil 2DEMALDI-TOF/TOF-MS 122 Wang et al. (2011)

Rehmannia glutinosa rhizosphere Soil 2DEMALDI-TOF/TOF-MS 103 Wu et al. (2011)

Agricultural abandoned soils GeLC-MS/MS 11–71 Bastida et al. (2012)

Forest soil (FS) and potting soil (PS) 2D-LC-MS/MS (FS) 226–494(PS) 80–237 Keiblinger et al. (2012)

Batch fermentation media by Ruminiclostridium cellulolyticum LC-MS/MS 1,194 Badalato et al. (2017)

Paddy soil 2DE MALDI-TOF MS ∼300 Wu et al. (2015)

Soil mesocosm 1DUPLC-LTQ Orbitrap Velos MS/MS Diversity information Starke et al. (2016)

Soils under semi-arid climate Orbitrap MS Diversity information Bastida et al. (2018)

Silty-loam soil 2D LC-MS/MS Up to ∼4,000 Callister et al. (2018)

Decayed pine LC-MS/MS 1,964 Hori et al. (2018)

Kenaf bast iTRAQ labeling 2D-LC-MS/MS 197 Duan et al. (2020)

Decayed beech dead wood LC-MS/MS Up to ∼1600 Kipping et al. (2020)

during hemp and flax retting, but they did not identify the
proteins responsible for these activities. The astounding advances
of the past decade that have led to fast and affordable protein
sequencing technologies associated with the increase in database
information have led to a rapid increase in the number of
protein identifications (Table 6). Protein data will not only give
more direct information about microbial activities compared
to metagenomics and metatranscriptomics, but can also fill
taxonomical gaps of nucleotide-based methods (Wilmes and
Bond, 2004, 2006).

As is the case for metagenomics and metatranscriptomics,
there are actually very few descriptions of a metaproteomics
approach being applied to flax retting. Nevertheless, some
general conclusions and useful information can be obtained
from the studies on biologically similar systems. In a recent
metaproteomics study of lodgepole pine decay, a diverse array
of carbohydrate-active enzymes (CAZymes) were identified,
representing a total of 132 families or subfamilies among which
672 glycoside hydrolases (GHs) including highly expressed
cellulases or hemicellulases (Hori et al., 2018). The authors
suggested that the observed enzymatic diversity and the
coexistence of brown and white rot fungi indicated the existence
of complex interactions between fungal species and degradation
strategies. Another very recent metaproteomics study on the
degumming of kenaf bast (outer-stem tissue containing fibers)
probably represents the biological situation most closely related
to retting (Duan et al., 2020). Here the authors analyzed kenaf
bast fragments immersed into microbial fermentation liquid
collected from different sites. Microbial secretomics analysis
identified 197 proteins, including 67 differentially expressed
proteins (DEPs) including Rds1, pyruvate kinase I and aconitate

hydratase peptides. However, no DEPs associated with the
degradation of cell wall polymers were observed underlying the
difficulty of identifying non-core metabolism proteins.

Another important biological interest of using
metaproteomics to study retting concerns the identification
of protein termini for maturation or proteolytic processing
(Westermann et al., 2017). After translation, proteins undergo
a maturation step to obtain their final, active conformation.
Apart from chemical modification of amino acid side chains, this
maturation often involves cleavage of the polypeptide resulting
in new N- or C-termini. The best-known example of this is
the removal of the signal peptide from the N-terminus of the
majority of secreted proteins, including most proteins involved in
lignocellulose degradation. Of interest is the fact that non-signal
peptide proteolytic processing has been described for plant cell
wall interacting enzymes from the fungal genera Cladosporium
and Cryptococcus (Ritch et al., 1991; Amoresano et al., 2000),
identified as dominant during hemp retting (Ribeiro et al., 2015).
Studies on proteins from Trichoderma reesei (Ståhlberg et al.,
1988) the best studied cellulolytic fungi, indicate that proteolytic
events are important in the control of the activity of cell wall
lytic proteins (Coller et al., 1998). Similar observations have
been made for bacterial enzymes with potential involvement in
the partial degradation of plant cell walls, for instance, Erwinia
pectate lyases are activated by N-terminal processing (Shevchik
et al., 1998), as are Pseudomonas endoglucanases (Huang et al.,
1989). For the study of proteolytic processing, different targeted
approaches have been developed, the flagship being COFRADIC:
Combined Fractional Diagonal Chromatography (Marino et al.,
2015; Tanco et al., 2015) although more accessible alternatives
have also been developed (Schilling et al., 2010).
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Meta-Omics – Limitations and Best
Practices
Before undertaking any experimental steps of any meta-omics
approaches, it is firstly necessary to clearly define the biological
question and research objectives (Matallana-Surget et al., 2018) in
order to determine which meta-omics approach is best adapted.

While metabarcoding is an extremely interesting tool for
identifying bacterial, fungal or other communities within a
given sample, one of the main limitations of this approach
is that it only delivers relative population data and is not
quantitative (Lamb et al., 2019) regardless of the methodology,
the primers, or the sequencing platform used. Inclusion of mock
communities during metabarcoding is one way of getting around
this problem. Metabarcoding is based on PCR amplification
that can generate chimeras or other bias linked to this
method and denoising data is therefore an important step
in analysis that should be done with care. Recent pipelines
(Qiime2 AND DADA2; Hall and Beiko, 2018) based on
the notion of ASV (Amplicon Sequence Variant) are less
likely to induce false discovery and seem more appropriate
to identify diversity, replacing the notion of OTUs built by
clustering. Generally, the errors and uncertainties associated
with metabarcoding can often be tempered by careful study
design, appropriate primer choice and robust sampling and
replication (Murray et al., 2015). For example, the mix of plant
and microorganism material collected during retting requires a
careful choice of primer design to prevent the amplification of
chloroplast/mitochondrial DNA (Djemiel et al., 2017). Another
limitation of metabarcoding is its inability to describe the
functional gene content of the community despite advanced
functional inference tools such as PICRUSt2 (Douglas et al.,
2020). Such information can only be predicted from whole
genome sequence data of individual phylogenetically related
organisms. However, when considering the cost/quantity of
information ratio, metabarcoding is undoubtedly the most
affordable way to approach the microbiology of retting.

In contrast to metabarcoding, shotgun metagenomics
provides information about the functional potential (i.e., the
genes present) in the microbial community. This approach is of
course much more informative than metabarcoding but requires
a much greater sequencing depth and therefore a much higher
cost. Likewise, the need to assemble large-scale sequencing
data requires skills and adequate computer resources. Extensive
reviews of best-practices can be found in the literature and
provide useful guidelines, from study design to data analysis,
and address common pitfalls of such an approach (Knight et al.,
2018; Bharti and Grimm, 2019).

If shotgun metagenomics can answer the questions “who
is there” and “what enzymatic potential” is present, it cannot,
however, provide any information about the functions that
are really present (i.e., the genes expressed and translated
into functional proteins). Such information can be obtained
by metatranscriptomics. Despite the fact that the concept of
metatranscriptomics has been around for several years (Gorni,
2013), there is currently no established protocol for this
technique. Nevertheless, a number of recommendations can be
made of which the most important is probably the necessity for

ribodepletion in order to remove rRNAs from samples subjected
to sequencing. This step remains critical and must be carefully
controlled as the approaches used are not always successful
(Barua, 2017). As with shotgun metagenomics, computer
processing - in particular the assembly of the metatranscriptome,
as well as the cost associated with sequencing remains an obstacle
to the deployment of this approach on a large scale. Best practices
for metatranscriptomics, especially regarding data analysis, are
now starting to be published (Shakya et al., 2019), as the evolution
of analysis tools grows.

If metatranscriptomics provides data on gene expression
in microbial communities only metaproteomics can provide
information about the different proteins responsible for the
observed biological activity of the community (Herbst et al.,
2016). Whatever the origin of the microbiome (human, plant,
soil. . .), successful shotgun metaproteomics still faces a number
of conceptual and technological hurdles that need to be overcome
(Blackburn and Martens, 2016; Heyer et al., 2017; Knight
et al., 2018; Matallana-Surget et al., 2018; Abiraami et al.,
2020). Currently, a major limitation for metaproteomics in
such systems is the lack of effective and reproducible protein
extraction protocols and standardized data analyses resulting
from i) the tremendous heterogeneity of samples (i.e., plant,
soil and litter), ii) the low protein yield that can be obtained
from soil and litter matrices and iii) the wide range of protein
abundance levels, Becher et al. (2013), Keiblinger et al. (2016),
Keiblinger and Riedel (2018).

Another issue concerns the size and the complexity of multi-
organism protein sequence databases that are likely to contain
many highly similar orthologs (Blackburn and Martens, 2016).
There is therefore a global need for the improvement of database
quality, including grouping of redundant proteins as well as
taxonomic and functional annotation. A possible solution might
be the generation of non-redundant fusion metagenomes for
each type of microbial community (May et al., 2016). The use
itself of protein databases could also be standardized, since
some researchers use comprehensive protein databases and
others use diverse metagenomes, which differ in the processing
state and origin (Heyer et al., 2017). Currently, state-of-the-
art metaproteomics studies only achieve identification of 5–
30% spectra (Heyer et al., 2017) and it can be expected that
a closer cooperation between bioinformaticians and biologists
will improve bioinformatic strategies and increase the number
of identified spectra. In the future, metaproteome studies will
not only enable researchers to precisely characterize members of
microbial and fungal communities but will also allow them to
identify the retting hydrolytic enzymatic potential under given
conditions. Approaches linking phylogenetics and functionality,
could also be expected to help gain deeper insights into terrestrial
microbial ecology.

In conclusion, by using integrative meta-omic
approaches such as meta-genomics, metatranscriptomics
and metaproteomics, a much better characterization and
understanding of the dynamics of the retting microbial
community and its molecular interactions can be obtained.
However, for all methods, the same ‘bottlenecks’ remain:
standardization of appropriate experimental designs to deal
with the tremendous heterogeneity of samples, the use of

Frontiers in Genetics | www.frontiersin.org 16 October 2020 | Volume 11 | Article 581664

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-581664 October 21, 2020 Time: 23:37 # 17

Djemiel et al. Targeted Metagenomics of Flax Retting

state-of-the-art methodologies coupled with optimal genomic
sequence information, pertinent database selection, and
appropriate bioinformatic tools to analyze, integrate and visualize
comprehensive global data sets (Becher et al., 2013; Tanca
et al., 2013; Allen White et al., 2017). As indicated above, each
technique focuses on a subset of the biological interaction
network, therefore combining such contemporary molecular
tools with eco-physiological studies in a trait-based framework
(Krause et al., 2014) will allow scientists to more precisely
decipher the global ecology of dew-retting. In a similar approach
to that used for soil or rhizosphere microbial communities
(El Amrani et al., 2015; Rochfort et al., 2015) the further
inclusion of meta-metabolomic techniques would ultimately
allow access to the signaling network thereby leading to an even
deeper characterization and associated prediction of the retting
metaphenome. Nevertheless, the interpretation of such large sets
of data is notoriously difficult, mainly because of the difficulty
of successfully integrating huge amounts of data. This difficulty
underlines the absolute necessity to develop new methods for
investigating dynamic aspects of large-scale models (Zivy et al.,
2015; do Amaral and Souza, 2017; Wang et al., 2018) in a more
integrative way (Lê Cao et al., 2008; Rohart et al., 2017).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

A multitude of intrinsic and extrinsic factors, both during plant
growth and after harvest, all contribute to establishing the final
phenotype of plant fibers reaching the factory (Figure 1). Since
these factors affect fiber morphology, cell wall composition
and organization they will also impact on the behavior of
the separated fibers during subsequent industrial processing.
In this paper we have focused on the different meta-omic
technologies that have been, or could be, exploited to improve
our understanding of one of these many factors - the field
retting step of flax. This step involves a complex interaction
between the harvested plant material and microorganisms, both
in the soil and on the plant at the time of harvest. However,
the complexity of this interaction does not stop there since
the nature of the plant material itself (e.g., fiber morphology
and cell wall composition), as well as the composition and
functional capacity of the microbiome are also impacted by
genetics and environmental conditions. In the light of such
observations it is becoming clear that not only do we need to
implement a multi-omics systems biology approach, but that we
also need to take into account all of the actors that contribute
to producing the final phenotype. This idea is embodied in the
concept of the ‘holobiont’ which states that we should no longer
consider the plant as an isolated ‘stand-alone’ organism, but
rather as an individual with its associated microbial communities
and in which their overall interactions are modulated by

the pedo-climatic environment (Simon et al., 2019). Their
association plays a decisive role in terms of the biodiversity
and functionality of this ecosystem in which all the partners
influence each other. Moreover, plant/microorganism (symbiotic,
pathogenic, saprophytic) and microorganism/microorganism
interactions will be affected by different biotic factors (e.g.,
species, cultivar, age, health, and stages of plant development) and
abiotic factors (e.g., soil physicochemical composition, climatic
conditions (Comeau et al., 2020; Fitzpatrick et al., 2020). As
demonstrated in this review the combination of related ‘-omics’
such as metatranscriptomics and metaproteomics, together with
biochemical studies, offers the unique opportunity to investigate
the particular holobiont constituted by the overall fiber plant
growing cycle. There is no doubt that the comprehension of
this complex ecological machinery promises to make a major
contribution to the control of plant natural fiber quality. For
this purpose, it will be necessary to integrate together large
multiscale data sets consisting of fiber parameters, biological and
environmental information with the development of predictive
models to be processed by AI analyses. The collection of massive
data would rely on the development of connected microsensors
reporting different parameters in real time directly from the field.
Flax farmers will then have at their disposal a ‘retting toolbox’
making use of molecular markers, metabolite, protein and gene
expression, biochemistry and phenotyping (morphological and
agronomic) data for targeting selected traits. The cultivation of
flax will then enter the era of smart connected agriculture.
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