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ABSTRACT

Forest conservation in human-dominated tropical landscapes ensures provision of major ecosystem services.
However, conservation goals are threatened by growing demands for agricultural products. As the expansion of
agricultural frontiers continues to exert increasing pressure on forest cover, it is crucial to provide indicators on
forest vulnerability to improve our understanding of forest dynamics and prioritize management actions by local
decision-makers. The purpose of this study is to develop a rigorous methodological framework to assess forest
ecological vulnerability. We aim at evaluating the potential of remote sensing to characterize forest landscape
dynamics in spatial and temporal dimensions. We present an innovative method that spatially integrates current
landscape mosaic mapping with 45 years of landscape trajectories using Sentinel-2 and Landsat imagery. We
derive indicators of exposure to cropland expansion, sensitivity linked with forest degradation and fragmenta-
tion, and forest capacity to respond based on forest landscape composition in Di Linh district in the Central
Highlands of Vietnam. We map current forest-agricultural mosaics with high accuracy to assess landscape in-
tensification (kappa index = 0.78). We also map the expansion of the agricultural frontier and highlighted
heterogeneous agricultural encroachment on forested areas (kappa index = 0.72-0.93). Finally, we identify
degradation and fragmentation trajectories that affect forest cover at different rates and intensity. Combined,
these indicators pinpoint hotspots of forest vulnerability. This study provides tailored management responses
and levers for action by local decision makers. The accessibility of multi-dimensional remote sensing data and
the developed landscape approach open promising perspectives for continuously monitoring agricultural fron-
tiers.

1. Introduction

et al., 2011; Phelps et al., 2010; Agrawal et al., 2008).
However, human-modified landscapes are often negatively im-

The conservation of forest cover is a key to ensuring sustainable
provision of multiple ecosystem services in ecological, climate, bio-
geochemical and biodiversity processes (Thompson et al., 2009). In
human-modified landscapes, forest conservation must also be re-
conciled with agricultural productivity, food security actions and must
support the livelihoods of human populations (Chazdon et al., 2009).
Decentralized forest management and policies play a major role in
balancing conservation and production, and in controlling the effective
use and management of the forest, notably through the transfer of
ownership and responsibilities to local forest decision makers (Persha

pacted by the expansion and consolidation of agricultural frontiers,
where forests are threatened by land use competition resulting in
complex degradation and major habitat fragmentation (Foley, 2005;
Lambin et al., 2001). These effects are spatially interconnected and
evolve rapidly over time. While deforestation refers to rapid conversion
from forest to non-forest areas, degradation implies changes in forest
structure following selective logging and fire disturbances, which also
characterize progressive encroachment by agricultural activities (Putz
and Redford, 2010). Furthermore, deforestation and degradation lead
to a feedback loop of fragmentation dynamics that facilitates access to
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forest habitats and hence to further disturbances (Broadbent et al.,
2008). Historical land/ forest-use-associated drivers (i.e. degradation,
fragmentation and agricultural expansion) determine the hetero-
geneous status and configuration of current forest landscapes. Future
forest landscapes will thus be shaped by both ongoing pressures and
management responses (Malhi et al., 2014). A first step to tailor ef-
fective management by local decision makers is to identify the forest
areas that are most vulnerable to agricultural expansion and to char-
acterize the underlying pressures (Klein et al., 2005).

Vulnerability assessments provide guidance on how to target in-
terventions and to support decision making processes (Adger, 2006).
Originally formalized for climate change and the agricultural sector by
the Intergovernmental Panel on Climate Change (IPCC), vulnerability
frameworks make it possible to assess the key determinants of system
responses to external stress and pressures (Marshall et al., 2010; Parker
et al.,, 2019). Adapted from the IPCC definition, vulnerability is the
degree to which a forest ecosystem is susceptible to, or unable to cope
with, adverse effects of human-triggered impacts (McCarthy et al.,
2001). Vulnerability is commonly defined as the combination of three
main components where exposure relates to the magnitude of stress
undergone by a system; sensitivity refers to the degree to which the
stress may affect the system, and the adaptive capacity is the system’s
ability to respond to the stress (McCarthy et al., 2001). This definition is
widely used in the literature to describe human-environment interac-
tions and the resulting pressure and response options in the framework
of socio-ecological systems (Thiault et al., 2018; Metzger et al., 2006;
Morel et al., 2019). However, the applicability and relevance of this
approach for assessing forest ecological vulnerability in human-mod-
ified landscapes remains hypothetical. Hence, the implementation of
vulnerability using available spatial datasets and the constitution of
relevant indicators to model exposure, sensitivity and adaptive capacity
remains challenging (Berrouet et al., 2018; Manuel-Navarrete et al.,
2007).

Until now, agricultural frontier landscapes have never been ana-
lyzed through the vulnerability lens using spatio-temporal landscape
indicators. In this paper, we propose an innovative method to assess the
ecological vulnerability of forest cover at landscape scale. This meth-
odology makes use of free and open source remote sensing images and
combines temporal and spatial dimensions to capture the complexity of
land use mosaics in human-modified landscapes. To characterize these
complex landscape mosaics, we used a landscape approach, defined as
an integrated framework to analyze competing land uses and involving
local stakeholders to solve social and environmental issues (Oszwald
et al., 2011; Reed et al., 2016). This framework is already well refer-
enced and some authors have already highlighted the robustness of the
framework for the analysis of spatial patterns of land use dynamics at
the landscape scale and to provide further information on human-en-
vironment processes (Wu, 2007; Messerli et al., 2009). Landscape
structure metrics based on land use and cover information also enable
the description of landscape patterns and variability. Some authors also
demonstrated the relevance of indicators for the characterization of
agricultural frontiers dominated by fragmentation dynamics (Oszwald
et al., 2011; Wang et al., 2014; Hargis et al., 1998). Furthermore, the
availability of time series of remote sensing images opens a wide range
of perspectives to characterize agricultural frontiers through historical
trajectories of landscape change (Lausch and Herzog, 2002; Ernoult
et al., 2006).

Given the above background, the objective of this work was to
produce spatial indicators at the landscape scale using multi-
dimensional remote sensing to assess forest ecological vulnerability.
The specific steps were to:(1) characterize current landscape mosaics
using land use inventory and mapping; (2) reconstruct historical land
cover from Landsat time series; (3) identify trajectories of landscape
composition and structure dynamics; and (4) develop indicators of ex-
posure, sensitivity and adaptive capacity that quantifies the expansion
of agriculture, degradation and fragmentation dynamics and current
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landscape intensification.
2. Materials and methods
2.1. Study area

The study was carried out in the district of Di Linh (Lam Dong
province) in the Central Highlands region of Vietnam. The area was
chosen for two reasons: 1) The district is located in a consolidated de-
forestation front where remnant forests are exposed to degradation
risks linked to the expansion of coffee based-agriculture (Dien et al.,
2013; Vogelmann et al., 2017); and 2) It is part of a REDD+ (Reducing
Emissions from Deforestation and forest Degradation) pilot project that
aim at facilitating forest monitoring with decisions makers such as land
use planners and local forest rangers (Thuy, 2013).

The town of Di Linh was founded in 1899 along the road connecting
Ho Chi Minh City to Da Lat. The district went through a succession of
colonization waves and economic transformations during the 20"
century, which marked the continuous development of cash crops until
the coffee boom in 1980s (Trzedal and Vedeld, 2017; Meyfroidt et al.,
2013; Déry, 2000; Ha and Shively, 2008). This large-scale coffee pro-
duction has been identified as one of the main drivers of deforestation
and degradation and as responsible for triggering other environmental
problems such as increased drought and soil erosion (Meyfroidt et al.,
2013; Grosjean et al., 2016).

2.2. Conceptual framework for assessing forest vulnerability

We developed a framework to assess the ecological vulnerability of
forest cover to deforestation and degradation at the landscape scale.
Fig. 1 presents the methodology, which is divided into four distinct
steps (Fig. 1): i. Data preparation involving acquisition and pre-
processing of remote sensing images and collection of ground truth
data; ii. Classification and assessment of the accuracy of 2018 Land-Use
Land Cover (LULC) using Sentinel-2 or Landsat-8 and historical LC
(simplified typology) using the Landsat archive; iii. Analysis of current
landscape mosaics and historical trajectories of landscape dynamics in
standard unit grids, and iv. Extraction of metrics to assess adaptive
capacity, sensitivity and exposure components and forest ecological
vulnerability (at the unit grid scale). Each step is described in detail in
the following subsections.

2.2.1. Data preparation and preprocessing

In order to map current mosaics of LULC with high precision, data
collection involved acquiring Sentinel-2 (S2) images and field data
(Drusch et al., 2012) for 2018. For the analysis of LC change and
landscape dynamics throughout the colonization period, we used two
Landsat-8 (2014, 2016) and nine Landsat-5 images acquired in 1973,
1989, 1992, 1995, 1998, 2002, 2006, 2009 and 2011. We also used one
Landsat-8 image acquired in 2018 to assess the difference between
Sentinel-2 based classification and to characterize landscape hetero-
geneity (section 2.2.3). All the images present less than 10% cloud
cover and were taken during the dry season (December to March)
(Appendix 1).

The Sen2Cor application developed by the European Space Agency
(ESA) was used to transform S2 L1C tiles to surface reflectance L2A
level (Main-Knorn et al., 2017). We acquired Landsat (L) surface re-
flectance data already pre-processed by the algorithm developed by the
NASA Goddard Space Flight Center (GSFC). For each sensor, we derived
vegetation indices that are related to vegetation photosynthetic ac-
tivity, burned vegetation, soil brightness and vegetation moisture con-
tent (Appendix 2). The vegetation indices and the spectral bands were
used as input features for the LULC classification.

Our field inventory allowed us to identify landscape elements. A set
of 300 GPS points were recorded during a 2-week field survey con-
ducted in Di Linh in March 2018 (Fig. 2). Each GPS point (Garmin
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Fig. 1. Methodological framework designed to assess forest ecological vulnerability with its four steps (i-iv).

60CSx, Garmin, Olathe, KS, USA) was associated with a qualitative
description of the landscape element identified along with illustrative
photos. Sampling (involving transects from agricultural land to natural
habitats) was designed to cover agricultural, forested and mosaic
landscapes along the main deforestation front (Oszwald et al., 2007). A
detailed typology was constructed for the 2018 LULC classification that
sums up the major landscape elements identified in the field (Appendix
3). For each class, a score was assigned with reference to a landscape
intensification gradient ranging from natural (score close to 0) to an-
thropogenic (score close to 10). Degraded forest composed of logged or
burned evergreen forest, natural or regenerated bamboo forest and
bushes were judged to be more natural than pine forests, which are
mostly planted for timber (Jong et al., 2016; Hiep et al., 2004). We also
identified a simplified 4-class typology, which corresponds to general
LC classes, to facilitate the historical classification.

Based on the field data and the detailed LULC typology, we

(O Processes ...
D Outputs fereeannd! :

Vulnerability components
and final index

manually discriminated polygons sampled around the GPS points and
completed by photo interpretation of Sentinel-2 2018 images. We re-
peated this process using the simplified typology for each historical
Landsat image. We created additional classes for cloud centers, edges
and their projected shadows. We also differentiated shadowed and
unshadowed evergreen forest due to the difference in reflectance that
varied with the slope. For each date of the analysis, the resulting sample
data sets were used as inputs for training and validating the classifi-
cation detailed below.

2.2.2. Classification and accuracy assessment

For each date of the analysis, the classification method uses re-
motely sensed features (spectral band and vegetation indices) and
samples of LULC typology (polygons) as inputs for the Random Forest
(RF) classifier (Breiman, 2001). The method is similar to the one de-
veloped by Mercier et al. (2019). We randomly generated 50 pairs of



C. Bourgoin, et al.

N
T S i
Pt ’i} China
e NN
T \,'

Y s
7 Hanoi:
P
.
“

Lao PDR r.,,?

<, Kl § {

~;///Jehfra!
/ Higff!ands
%/ﬁ,ﬂa Lat

- DiLinh

' ™Ho Chi Minh City

- Water bodies
- Infrastructure
[ ] Cloud

- Shadow

|:| Bare soil

[ Rice

- Coffee

- Cropland
- Pine forest
- Evergreen forest
|:| Degraded forest

Int J Appl Earth Obs Geoinformation 84 (2020) 101958

LULC using Sentinel-2 (2018)

Overall accuracy: 0.81
Kappa index: 0.78

@ Field inventory 2018

Sampling points
for the landscape unit analysis

P

Fig. 2. Location and classification of Di Linh district (Lam Dong province) in the Central Highlands of Vietnam.

training and validation sample subsets from the sample dataset using a
70/30 ratio within which 300 pixels per class were randomly selected.
An RF algorithm composed of 100 trees was applied to each selected
subsample making it possible to rank the features using the mean de-
crease Gini (Calle and Urrea, 2011) as well as to identify the optimal
number of features using the kappa index (Rosenfield, 1986). Then, we
applied RF using the previously defined parameters and one training/
validation sample file to generate the LULC classification. We extracted
the overall accuracy, kappa index, user and producer accuracy of each
class from the confusion matrix (Pontius and Millones, 2011). These
two steps were achieved using the RF package in R software. Finally, we
applied an 8 x 8 pixel majority filter to reduce single pixel mis-
classifications using ArcGIS (Esri, Redlands, CA, USA).

2.2.3. Landscape analysis was conducted using the steps detailed below
o Identifying a landscape unit grid
Based on the classification of Landsat image (simplified typology) in

2018, we calculated the Shannon diversity index (SHDI) in different
regions located along the agricultural frontier visited during the field

survey (Sampling points in Fig. 2). This metric measures both the
richness i.e. number of land cover/use classes (compositional hetero-
geneity) and regularity i.e. distribution of the surface area of the LULC
classes (configurational heterogeneity) in a given area. We calculated
the SHDI in buffer zones spanning from 50 to 8000 m surrounding each
region of interest. We estimated the plateauing of the average curve
based on the resulting profiles of SHDI and recorded the corresponding
distance. This distance reflects the optimal unit size to capture the di-
versity of landscape elements and heterogeneity and was used to define
a regular grid of X units covering the study area.

o (Classifying landscape mosaics following an intensification gradient

Using the Sentinel-2 detailed classification, we extracted the com-
position as a percentage of LULC in each unit of the grid. We discarded
units containing more than 80% of water bodies from the analysis. The
resulting Y number of grid units were systematically compared using
principal component analysis (PCA) and grouped in Z number of clus-
ters using hierarchical clustering (Ward’s criterion) applied on the first
factorial axis of the PCA (Husson et al., 2010). The number Z of clusters
is determined by the Huntsberger index that is a function of the number
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Table 1
Landscape structure metrics (McGarigal 2012).
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Aspect Metric name

Description

Size, proportion, aggregation Edge density (ED)

Equals the sum of the lengths (m) of all edge segments in the landscape in relation to the total

landscape area (m?).

Mean of patch area (MPA)

Mean of all patches in the landscape, describing the patch structure and the overall composition of

the landscape.

Standard deviation of patch area (SPD)

Standard deviation of all patches in the landscape, describing the differences among all patches in

the landscape.

Patch density (PD)

Describes fragmentation (patchiness) but does not necessarily contain information about the

configuration or composition of the landscape.

Aggregation Index (AI)

Equals the number of like adjacencies divided by the theoretical maximum possible number of like

adjacencies for that class summed over each class for the entire landscape (He et al., 1999).

Richness Shannon diversity (SD)

Diversity metric that accounts for both the number of classes and the abundance of each class

(Shannon and Weaver, 1949).

Patch richness density (PRD)

Shape Evergreen/Pine forest Mean perimeter area
ratio (MPARF/MPARP)
Evergreen/Pine forest Mean Shape Index
(MSIF/MSIP)

Measures the diversity of landscape composition.
Describes patch complexity but not standardized to a particular shape.

Describes the ratio between the actual perimeter of the patch and the hypothetical minimum
perimeter of the patch if the patch were maximally compact (Patton, 1975).

of units: Z =1 + 3.332*log1o(Y) (Huntsberger, 1961). The average
composition of LULC describing each resulting cluster or landscape
mosaic class is weighted by its respective ‘expert based’ land use score
(Appendix 3). Each class of landscape mosaic is thus associated with a
landscape intensification score.

e Classifying landscape trajectories

For each of the historical classifications, we extracted the land cover
composition in the same regular grid. We also calculated 11 structure
metrics to quantify size, proportion and aggregation, richness and shape
of the landscape (Table 1), and in this way, characterized specific
spatial structures of the agricultural frontier following the concepts of
heterogeneity, connectivity and fragmentation (Burel and Baudry,
2000). These metrics were computed with the R ‘landscapemetrics’
package (Nowosad and Stepinski, 2018).

The resulting 3D matrix (grid units/12 dates/LC composition and
structure metrics) was analyzed using PCA and ACT-STATIS (Lavit
et al., 1994; Oszwald et al., 2011). First, we defined the ‘compromise’ or
common stationary spatial structures at the different dates using PCA,
which provides a global description on the dynamics of overall spatial
variability within the study area (Robert and Escoufier, 1976). The
second step allows the reproducibility of the compromise to be identi-
fied and the structure variability through each grid-variable table to be
identified (Blanc et al., 1998). It informs on the variability of spatial
dynamics i.e. the trajectory of each unit in the grid. Finally, we grouped
these trajectories into Z number of classes using Hierarchical clustering
(Ward’s criterion) based on the Huntsberger index, which is similar.
Consequently, units of a certain class of landscape trajectory share si-
milar spatial landscape composition and structural dynamics from 1973
to 2018. The statistical analyses were carried out using the ade4
package in R (Thioulouse et al., 1996; Chessel et al., 2004).

2.2.4. Assessment of forest ecological vulnerability at the landscape scale

Ecological vulnerability (V) is constituted by components that include
exposure to external stresses (E), sensitivity to perturbation (S) and
capacity to cope or adapt (AC). V = S+E-AC (Fritzsche et al., 2014).
Based on the adaptation of different conceptual frameworks, we defined
indicators for each component to analyze the vulnerability of socio-
ecological systems (Adger, 2006; Gallopin, 2006).

Sensitivity is defined by Gallopin (2006) as the degree to which the
system is potentially modified or affected by a disturbance over time.
We estimated sensitivity based on the combination of evergreen forest
(EF) and fragmentation dynamics that provide information on the level
of degradation that may affect a forest landscape over time (Shapiro
et al., 2016; Vieilledent et al., 2018). These dynamics were calculated

using the averaged values of the proportion of evergreen forest and
edged density metrics composing each class of the landscape trajectory
from 1998 to 2018 (Oszwald et al., 2011). This period makes it possible
to capture recent trends that may impact the current landscape.

To capture EF dynamics, we extracted the rate of change (equation
1) and rescaled the values (equation 2) in order to compare EF trajec-
tories with no change or increasing gradient (values close to 0) to de-
creasing gradient (values close to 10):

1) Rate of change: EF5;1g —EF199s, Where EF0;¢ is the proportion of EF
in 2018.

2) Xiescaled = 10%(X - Xinin)/ KXmax — Xmin) Where X is the value of rate of
change based on the change in EF for a given class of landscape
trajectory, Xmin and X,y are the minimum and maximum observed
values of rate of change based on the changes in the EF in all
landscape trajectory classes.

Finally, we multiplied the rescaled rate of change values by the
average value of EF from 1998 to 2018 to yield a general score of EF
dynamics that combines information on the rate and intensity of EF
changes.

To calculate fragmentation dynamics based on the edge density
metric, we followed the same procedure as that described above. The
rate of change was rescaled to compare increasing gradient (values
close to 10) to no change or decreasing gradient (values close to 0).

Sensitivity was obtained by combining (summing and rescaling) EF
and fragmentation dynamic scores.

Exposure refers to the length of time the forest has been subjected to
external stress or perturbation (Turner et al., 2003; Adger, 2006). In our
case, the stress is caused by encroaching cropland linked to the agri-
cultural expansion of coffee. We applied the same procedure as that
described above to assess agricultural dynamics through the changes in
the proportion of agricultural land for each class of landscape trajec-
tory. The exposure score is thus influenced by the average proportion
and rate of increase in the crop cover.

Adaptive or coping capacity refers to the ability of the system to re-
spond to a perturbation (Smit and Wandel, 2006). This potential is
linked with the current level of intensification of a forest landscape
(Messerli et al., 2009). We assessed adaptive capacity as the additive
inverse of landscape intensification scores defined in section 2.2.3. Here
we assume that high landscape intensification scores (i.e. fragmented
coffee and degraded forest dominated landscape) correspond to low
adaptive capacity. As the landscape intensification score is based on
‘expert’ scoring, we simulated different land use scores (LUS) for de-
graded and pine forest classes such that:

“LUS EF = 0 < LUS degraded forest < LUS pine forest < LUS
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agricultural elements = 9.”

The 28 possible combinations of LUS for both landscape elements
generated 28 possible landscape intensification scores and thus adap-
tive capacity scores related to the forest landscape mosaics we identi-
fied. Finally we analyzed the influence of scoring on vulnerability as-
sessment by calculating and mapping the agreement, overestimation
and underestimation of simulation and ‘expert’ ecological vulnerability
classifications.

3. Results
3.1. Mapping LULC in 2018

Using Sentinel-2 images, LULC classification in 2018 revealed high
overall accuracy and kappa indexes (e.g. OA =0.81 and
kappa = 0.78). Similar results were found for Landsat-8 classifications
(Appendix 4). Clouds, water, projected shadow, infrastructure, irrigated
rice and pine forest were the classes with the highest user and producer
accuracy in both classifications (> 0.8). Degraded forest class included
omission errors (producer accuracy of 0.49) due to confusion between
coffee and evergreen forest classes. Rainfed rice represents sparse ve-
getation cover in the dry season and can therefore be confused with the
bare soil and infrastructure classes. Evergreen forest was correctly
classified with little confusion between shadowed and unshadowed
forest cover and degraded forest. Cropland was the least well classified
class with 0.27 producer accuracy notably due to confusion with coffee
and bare soil and the limited number of training samples (Appendix 5).
Lowlands are dominated by irrigated rice, coffee and infrastructure. In
the southern part of the district, LULC is driven by topography where
rainfed rice is cultivated in the valley bottoms, coffee on the slopes,
degraded forest at the edges and evergreen forest grows on higher
terrain. Pine forest is often located at the interface between coffee and
evergreen forest (Fig. 2).

3.2. Defining landscape mosaics from LULC classification

The inflexion point of the average curve summarizing 15 Shannon
diversity profiles is reached at 0.85, which corresponds to a distance of
360 m (Appendix 6). This value defines the size of the landscape matrix
grid applied to Di Linh district i.e. 12,259 units of 360 m. Similar in-
flexion points were found using Sentinel-2 based LULC classification
(detailed and simplified typology).

The two first factorial axes of the PCA accounted for 40.2% of the
total variability of the landscape elements composing each unit
(Fig. 3a). The first PCA axis shows an anthropogenic gradient between
forest (evergreen and pine) and agricultural land (cropland, bare soil,
coffee and infrastructure) (Fig. 3b). The second axis of the PCA opposes
degraded forest and the other landscape elements. Degraded forests are
mostly found at the interface between natural and mainly agricultural
landscapes.

Using the first seven axes of the PCA (83.4% of the total PCA var-
iance) as inputs for hierarchical clustering and Huntsberger index, we
obtained 15 classes of landscape mosaics (Fig. 3c). We defined forest
mosaics as those with between 10 and 96% evergreen forest cover and
varying proportions of the other landscape elements. L4 landscape
mosaics were mainly composed of degraded forest (71% on average)
which corresponds to natural shrubland areas and was therefore ex-
cluded from the forest mosaic. Agricultural mosaics were characterized
by a landscape intensification score higher than 6 in which the pro-
portion of forest cover was very low (< 0.07% on average). L9 land-
scape mosaics were dominated by water and consequently excluded
from the analysis. Mapping the landscape intensification score high-
lights the spatial distribution of forest mosaic gradients from core
evergreen forest landscapes (dark green) to complex landscape mosaics
of fragmented elements made up of forest, coffee, degraded forest and
pine (light green) (Fig. 3d).
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3.3. Mapping historical land cover using the Landsat 1973-2018 archive

LC historical classification from 1973 to 2018 highlights the ex-
pansion of cropland, i.e. of infrastructure, coffee, rice and other crops at
the expense of evergreen forest. Kappa and overall accuracy indexes
ranged from 0.95 for 2018 classification to 0.72 in 1973 (Appendix 7).
Over the last 45 years, the evergreen forest cover was reduced from
100 M ha to 60 M ha to the direct benefit of cropland. Pine forests re-
mained stable over the period with a slight decrease starting in 2008
(Fig. 4). In 1973, 62% of the district was covered by evergreen forest
and croplands were located along the main roads crossing the district
from east to west. Some agricultural regions were found in the south
west but remained limited to the valley bottoms, typically rice fields. In
1989, some large patches of forest were deforested, mainly around Di
Linh city. This trend continued until 2002 with deforestation reaching a
peak in 1992. Starting in 2006, the cropland expansion started de-
creasing and became consolidated in the northern part of the district
but continued in two main poles in the south that were previously in-
active. In 2014, the agricultural frontier appears to have stopped ad-
vancing. Pine forest was largely reduced in the northern parts of the
district. Along the current agricultural frontier, pine forest was con-
served and was even still being planted at the interface between crop-
land and evergreen forest starting in 2009. The pine forest that was
originally located in the central region of the district (low elevation,
low slope) was rapidly converted into cropland.

3.4. Deriving classes of landscape trajectories

ACT-STATIS and clustering methods generated 15 classes of land-
scape trajectories within which we analyzed the average composition
(evergreen forest, pine forest and cropland) and structure (the Shannon
diversity index and edge density) metrics over time. Class T1 groups
forest-dominated units were characterized by a slow decrease in EF
cover from 1998 on associated with a gradual increase in cropland and
a steep increase in edge density (Fig. 5). Class T2 groups units in which
evergreen and pine forest decreased starting in 1973, with a shift in
2006 when cropland started to become the dominating class. Since
then, deforestation and fragmentation processes have decreased and
stabilized. With a similar configuration to Class T1 in 1973, class T3
differed by a sharp decrease in EF cover (reduced by half) with an in-
crease in edge density and cropland. This class underwent the biggest
increase in edge density of all the classes. Classes T1, T2 and T3 are
located along the current agricultural frontier. Classes T4 to T8 group
units dominated by forest that have remained constant over the last 45
years with the exception of T4 in which EF is gradually increasing and
T7, which is marked by a fluctuating EF cover and edge density. Classes
T9 and T10 group units that were always dominated by croplands and
remained unchanged throughout the study period. Typically, Di Linh
city and its surrounding region belong to these groups. Classes T11 to
T15 group units showing chronological stages of deforestation:T11
(light grey), which is located close to Di Linh city, shows a deforestation
process that started before 1973, while T15 (dark grey), which is
mainly located in the northern part of the district groups units that were
completely deforestated in 2006.

3.5. Assessment of forest ecological vulnerability

Forest adaptive capacity is the lowest along the agricultural frontier,
which corresponds to fragmented landscapes with mixtures of different
land uses including evergreen forest, degraded forest and coffee plan-
tations (Fig. 6). These regions are mainly located along the main de-
forestation front and in the south of the district where complex forest
mosaics were mapped. Forest adaptive capacity had the highest score in
core forest regions isolated from agricultural frontiers, infrastructure
networks or other forms of human activities; or in mixed evergreen and
pine forest landscapes. Concerning sensitivity, a number of regions
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Fig. 3. Transformation of land use/cover patches into landscape mosaics using a regular 360 m x 360 m grid and Sentinel-2 based classification at 10 m resolution
(2018). a) Histogram of eigenvalues expressed as % of total variance. b) Correlation circle of the first two PCA components. c) Classes of landscape mosaics (L1 to
L15) according to hierarchical clustering based on the first seven PCA components: Average composition of land cover/land use and landscape intensification score
attributed to each landscape mosaic class. d) Landscape mosaics distinguished according to the landscape intensification gradient (see the legend to Fig. 3c).

experienced a rapid decrease in forest cover over the last 20 years and
an increase in fragmentation (high values). Exposure was highest in the
eastern part of the agricultural frontier due to the recent rapid expan-
sion of cropland (Appendix 8 and 9 for more details about the calcu-
lations).

All negative vulnerability scores (highest AC, lowest sensitivity and
exposure) were reclassified as lowest vulnerability. All positive values
were grouped in three classes (labelled low, medium and high) using
Jenks Natural Break classification in ArcGIS. Overall vulnerability re-
vealed heterogeneous distribution of values along agricultural frontiers.
Frontiers A and B (Fig. 6) are among the most vulnerable due to dif-
ferent combinations of sensitivity, exposure and adaptive capacity.
Region A is vulnerable mostly because of low adaptive capacity and
high sensitivity. Region B includes scattered highly vulnerable areas
and overall low adaptive capacity. However, we also identified high
sensitivity hotspots in the western part and a high exposure hotspot in
the eastern part of the region.

4. Discussion

4.1. Potential of vulnerability assessment for land use planning and targeted
conservation actions

There is a growing consensus that integrating production and con-
servation is an efficient strategy to achieve conservation goals in human
dominated landscapes (Griscom and Goodman, 2015). However,

agricultural expansion in forested areas achieved through degradation,
deforestation and indirectly through fragmentation can jeopardize
conservation goals and land use planning (Tilman, 1999).

In this study, we proposed an innovative adaptation of the vulner-
ability framework defined by the Intergovernmental Panel on Climate
Change (IPCC) to forest ecosystems on the only basis of remote sensing
and statistical analysis. We provided indicators of forest vulnerability at
landscape level to improve our understanding of forest and agricultural
dynamics. Combined, these indicators allowed targeting regions that
are most vulnerable to agricultural frontier expansion. We also pro-
vided tailored management responses and levers for action by decision
makers depending on the importance of forest adaptive capacity, sen-
sitivity and exposure. Consequently, our approach pinpointed where
decision makers should prioritize management actions and conserva-
tion to prevent future forest degradation and deforestation. Global
forest cover monitoring systems usually rely on moderate resolution
remote sensing imageries. However, improved resolution and frequency
of image acquisition are needed in key areas such as active deforesta-
tion fronts. Our work allowed targeting these areas and thus orientating
where higher resolution is needed for improving the efficiency of near-
real time monitoring systems (Reymondin et al., 2012). Finally, the
forest ecological vulnerability approach can be coupled with forest
ecosystem modelling such as soil erosion, water availability, biodi-
versity or forest carbon mapping to provide even more comprehensive
and informed data, making it all the more constructive when applied in
decision making (Le Clec’h et al., 2017; Grimaldi et al., 2014).
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Fig. 4. Maps showing 45 years of evergreen forest, pine forest, cropland and water cover using Landsat archives and random forest classification.

The results of this study pinpoint hotspots of vulnerability along the
agricultural frontier. Most areas along the agricultural frontier dis-
played low adaptive capacity corresponding to fragmented forest mo-
saics dominated by coffee plantations, degraded forests and infra-
structure. Improving the connectivity of forest habitat could increase
the adaptive capacity of these landscapes (Ribeiro et al., 2009). One
example in Di Linh district is the association of evergreen forest with
pine forest (central and western part of the district) to stabilize and
protect the agricultural frontier and increase forest surface area (Dien
et al., 2013). Sensitivity and exposure indicators revealed localized
patterns of forest degradation and agricultural expansion, respectively.
The southern part of the district was identified as an active agricultural
front recently marked by encroachment of forest cover amplified by
fragmentation of the forest edge (trajectory T3) due to an increasing
importance of cash crop agriculture (e.g. coffee, maize and banana
plantations). The eastern region is experiencing different dynamics with
notable opening of the forest cover in the forest habitat. Although
driven by different factors, these two regions should both be high on the
list of priorities for intervention. We demonstrate the need to adapt
conservation and management actions, for example, slower rates of
reduction in forest cover were detected (trajectory T1) but they were
still characterized by a closed forest habitat, leading to a lower vul-
nerability index and consequently lower priority for intervention.

It is important to stress that the ecological vulnerability index is not
a measurable phenomenon but rather an aggregation of complex and
interacting indicators (Fritzsche et al.,, 2014). Current landscape

intensification scores and historical degradation trajectories are in-
dicators that are assumed to affect the ecological vulnerability of forest
cover to agricultural expansion, because vulnerability cannot be mea-
sured directly (Adger, 2006). These indicators reflect human decisions
through changes in land use and in land cover and hence indirectly
provide information on social systems. Further research into social
vulnerability and their related indicators at the household level is ne-
cessary to provide a complete picture of overall socio-ecosystem vul-
nerability as defined by Thiault et al. (2018). Our ecological vulner-
ability approach is therefore a first attempt to capture complex realities
of forest cover vulnerability using only indicators based on free and
open source data.

4.2. Methodological robustness and future outlook

The adaptive capacity indicator reflects a gradient of landscape
intensification, which is based on the land use composition of each class
of forest landscape and expert scoring. We evaluated the impact of this
method of scoring on the vulnerability classification by simulating all
possible intensification scores, adaptive capacity indexes and vulner-
ability scores. Fig. 7 shows that most of the forest landscapes were
classified as belonging to the same class of vulnerability when we
compared expert based and simulation results. The areas of low
agreement are mostly related to overestimation (i.e. the simulations
yielded a higher class of vulnerability than the expert result). Vulner-
ability was rarely underestimated and did not concern any of the



C. Bourgoin, et al.

Int J Appl Earth Obs Geoinformation 84 (2020) 101958

Forest, fragmentation and agricultural expansion dynamics

@ []T1(8%) = [ T2(10%) = T3 (5%)
e~ v \/\
o . \/y/ o8 >—~
2 7/\/’ — /\,,//\_/\
= []T5 (20%) ’1I|i|.T.6(.13%5 o
—— - S—— AT~
o — = — S G Uy
: _— : ) n/\f P ~
= 7 (8%) = T8 (4%) = [J719(2%)
f. /\/‘\/\/ T
= []T10 (8%) Dfn (5%)
. —_——
o8 /»”—r' —— o6 ’,”
e\
= T3 (4%) =+ T4 (7%) = TS (5%)

os
os
o4
02

Evergreen forest — — -
Cropland
Pine forest

Shannon diversity
---------- Edge density

Fig. 5. Classes of landscape trajectories (T1 to T15) based on land cover composition and structure dynamics from 1973 to 2018 obtained using ACT-STATIS and

clustering methods. Hatched areas represent water bodies in 2018 (2%).

previously identified and characterized hotspots of vulnerability. This
means that ‘expert’ qualitative inputs had no negative impacts on the
ecological vulnerability assessment of forest cover and that the method
can be used at other sites. The consequences of scoring are generally not
assessed in studies (Lavelle et al., 2016).

Landscape metrics, the trajectory classes obtained using the ACT-
STATIS method and the resulting indicators of vulnerability depend on
the validity and accuracy of LULC classifications. This remote sensing
field of research is improving significantly thanks to the development of
novel classification algortihms and the accessibility of near-real time
and high resolution imagery (Bégué et al., 2018). The 2018 land cover
and land use maps were produced with a high degree of accuracy and
required only a short processing time. Minor misclassification were
detected between the land cover and land use classes along the agri-
cultural frontier as these elements are highly contrasted and clearly
seperated in the landscape. Transition classes, which often cause mis-
classification, proved difficult to map (Mercier et al., 2019; Hett et al.,
2012). In our case, they were grouped in the degraded forest class,
which refers to different land uses with the same vegetation structure.
Further work is necessary to be able to distinguish degraded forest due
to logging and fire from shrubland and fallow. Spectral unmixing in-
dicators assess the proportion of active photosynthetic vegetation, dead
vegetation and bare soil within a pixel and could significantly improve
the identification and classification of forest edges subject to degrada-
tion risks (Asner et al., 2009). Time series optical images could also
provide useful information to help improve the classification of de-
graded forest. In continental Asia, annual dfferences in the normalized
burn ratio revealed highly accurate patterns of canopy disturbances
linked with encroachment and logging (Langner et al., 2018). Cropland
and rice classes showed misclassification errors due to confusion with
bare soil because mapping was based on images acquired in the dry
season. High temporal resolution of optical and radar imagery could

help describe and account for the phenology of vegetation to map
forest-agriculture mosaics (Mercier et al., 2019). Furthermore, small
agricultural systems can be mapped using combined pixel and object-
based approaches and promising results have already been obtained
with the characterization of fine cropland uses (Lebourgeois et al.,
2017).

4.3. Landscape approaches that incorporate both spatial and temporal
information are keys to characterizing complex agricultural frontiers

Major pressures and conflicts opposing human and natural elements
are concentrated along agricultural pioneer fronts (Lambin et al.,
2001). Today, remote sensing offers unique opportunities to map and
characterize these regions using land cover classification and its con-
textual transformation into land use information, which is often used to
describe landscape mosaics (Mercier et al., 2019). The landscape ap-
proach has been shown to be appropriate for studying agricultural
frontiers as its scale encompasses spatial patterns that reveal the un-
derlying social, environmental and ecological processes and hence
human-environmental interactions (Wu, 2007). The landscape ap-
proach is particularly useful when degradation and deforestation are
the main drivers that shape the landscape through complex fragmen-
tation patterns integrating agriculture and forest systems (Shapiro
et al., 2016). Pixel-based approaches would provide limited informa-
tion on the consequences of degradation and on their underlying drivers
linked with agricultural frontier expansion (Oszwald et al., 2012). The
landscape approach has proved to be particularly effective in complex
mosaic landscapes marked by high heterogeneity, fragmentation and
disconnection between the different landscape elements. The transfor-
mation of land use into landscape mosaic has been applied to different
human-dominated landscapes such as Northern Laos where complex
swidden systems have been successfully mapped and characterized
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using human-environment data (Hett et al., 2012; Messerli et al., 2009). metrics at both spatial and temporal dimensions are key indicators for
In the case of Amazonian agricultural frontiers, Oszwald et al. (2011) characterizing landscape and for reflecting human-induced drivers of
demonstrated that the combination of composition and structure landscape change. Indeed, two landscape mosaics sharing similar
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characteristics at a given moment in time may have experienced dif- non-redundant information to help understand landscape complexities.
ferent historical landscape dynamics. Our analysis demonstrates that Highly vulnerable areas (brown areas in Fig. 6) are five types of current
the relationship between the spatial and temporal dimensions of land- forest landscape mosaics with specific past trajectories and any given
scape analysis is effectively verified, especially in regions that are landscape can be the result of multiple types of dynamics.
highly vulnerable to agricultural expansion (Fig. 8). Current mosaics So far, the multiplication of scales in landscape analysis has been
and historical trajectories are complementary, providing dependent and applied to the spatial dimension and has made it possible to capture
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trends at different organizational levels (Ostrom, 2009). In this paper,
we emphasize the importance and added value of including the tem-
poral scale in the landscape approach conceptual framework in order to
reconstruct landscape dynamics and analyze underlying drivers and
pressures that drive agricultural frontiers and other areas where com-
petition between land uses is high (Sayer et al.,, 2013; Reed et al.,
2016). With accessibility, global coverage, temporally rich archives and
frequency of acquisition of optical remote sensing images (Landsat and
Sentinel), this study paves the way for replicating and scaling out the
proposed framework to other agricultural frontiers for more effective
management and conservation actions of forest landscapes.

5. Conclusion

A need exists to identify which forest areas are most vulnerable to
agricultural expansion and thus require prioritized conservation. In
light of this, this paper demonstrates the potential and robustness of the
proposed innovative methodology based on multidimensional remote
sensing and landscape analysis to assess forest ecological vulnerability.
We successfully mapped current land uses using Sentinel-2 and retro-
spectively reconstructed land cover over a 45-year period using Landsat
archive. Landscape structure dynamics revealed heterogeneous trajec-
tories of cropland expansion, degradation and fragmentation while the
composition of forest-agricultural mosaics highlighted different land-
scape intensification levels along the agricultural frontier. Most vul-
nerable forest areas were experiencing rapid and recent forest cover loss
associated with landscape fragmentation, land use competition due to
coffee production and forest degradation. Long-term landscape struc-
ture analysis coupled with detailed description of land uses opens up
prospects for continuously monitoring forests within agricultural fron-
tiers over time and space.
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