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In the context of dairy farming, ruminant females often face challenges inducing perturbations that affect their
performance andwelfare. A key issue is how to assess the effect of perturbations and provide metrics to quantify
how animals cope with their environment. Milk production dynamics are good candidates to address this issue:
i) they are easily accessible, ii) overall dynamics throughout lactation process are well described and iii) pertur-
bations are visible through milk losses. In this study, a perturbed lactation model (PLM) with explicit represen-
tation of perturbations was developed. The model combines two components: i) the unperturbed lactation
model that describes a theoretical lactation curve, assumed to reflect female production potential and ii) the per-
turbation model that describes all the deviations from the unperturbed lactation model with four parameters:
starting date, intensity and shape (collapse and recovery). To illustrate the use of the PLM as a phenotyping
tool, it was fitted on a data set of 319 complete lactations from 181 individual dairy goats. A total of 2 354 pertur-
bationswere detected, with an average of 7.40 perturbations per lactation. Loss of milk production for thewhole
lactation due to perturbations varied between 2 and 19% of the milk production predicted by the unperturbed
lactation model. The number of perturbations was not the major factor explaining the loss of milk production,
suggesting that there are different types of animal response to challenges. By incorporating explicit representa-
tion of perturbations in a lactationmodel, it was possible to determine for each female the potential milk produc-
tion, characteristics of each perturbation and milk losses induced by perturbations. Further, it was possible to
compare animals and analyze individual variability. The indicators produced by the PLM are likely to be useful
to move from raw data to decision support tools in dairy production.
© 2020 Published by Elsevier Inc. on behalf of The Animal Consortium. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Disturbances
Individual variability
Milk yield
Precision phenotyping
Resilience
Implication

In the context of precision livestock farming, automatic data collec-
tions at commercial farms are now more and more available. In dairy
systems,milk productionmeasurements open interesting opportunities
to estimate how females cope with their local environment and breed-
ing purposes. Such estimates can be useful for on-farmmanagement. To
move from raw time series data sets to useful information, simple inter-
pretive tools are required. Based on milk measurements, the present
model allows to estimate the individual milk production potential (as
if there was no perturbation), the characteristics of each perturbation
occurring during lactation and the overall consequence of perturbations
on milk losses.
n Abdelkrim).

n behalf of The Animal Con
Introduction

In dairy systems, it is well known that milk yield can be affected by
events such as udder health problems (Rajala-Schultz et al., 1999),
lameness (Huxley, 2013), meteorological changes (West, 2003) or
feed quality (Friggens et al., 2016). Such problems induce perturbations
in the course of the lactation process and result in a serrated shape pat-
tern of the lactation curve. These perturbations can be seen as devia-
tions of the lactation curve from its typical profile. Modelling the
lactation curve is a long standing issue (Delage et al., 1953), and numer-
ous authors have proposed mathematical models allowing the charac-
terization of milk yield dynamics. The overall objective of lactation
models is to reduce the variability in data by creating a profile, thereby
being able to characterize an average animal milk production, or to
compare the production of different animals. An important limitation
of these modelling approaches is that short-term perturbations are ig-
nored during the fitting procedure in order to extract an unperturbed
phenotype, corresponding to a typical lactation curve (Adriaens et al.,
2018). However, characterizing perturbations can be highly relevant
sortium. This is an open access article under the CC BY-NC-ND license
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for better understanding the response to challenges of dairy females
regarding their milk production and therefore for making management
decisions (Windig et al., 2005; Elgersma et al., 2018). Furthermore, eval-
uating the effect of perturbations on animal performance could provide
metrics to quantify how animals cope with their environment and de-
velop management strategies to find a good balance between animal
welfare and performance (Berghof et al., 2019; Adriaens et al., 2020;
Poppe et al., 2020).

The need for incorporatingperturbations into lactation curvemodels
is also driven by the development of precision livestock farming. High
throughput data have led to the development and use of statistical
methods, such as smoothing methods, to capture and understand per-
turbations. Codrea et al. (2011) studied the effect of nutritional chal-
lenges on the lactation curve in dairy cows using differential
smoothing procedures for quantifying biological perturbations in an an-
imal performance. Results of this study highlighted the decline in milk
yield during the challenge period for each cowand showed thepresence
of other deviations with unknown causes or unrelated to the feed re-
striction during the experiment. There are few other approaches to de-
scribe the shape of the lactation curves from animals faced with health
problems. Lescourret and Coulon (1994) have shown the huge variabil-
ity of milk production in response to mastitis in both the shape of the
lactation curve and intensity of milk production. Adriaens et al. (2018)
developed a novel methodology to predict quarter milk yield during
clinical mastitis. The primary objective of the approaches cited above
is not an explicit representation of perturbations. However, explicitly
modelling perturbations could allow us to characterize them and use
this information for phenotyping and benchmarking.

In this study, we developed a perturbed lactation model (PLM) that
incorporates an explicit representation of perturbations and that con-
verts individual raw time series data into biological meaningful param-
eters. The fitting procedure of PLM allows the detection and the
characterization of perturbations in milk time series. The objective of
the present paper is (1) to introduce the PLM model and the explicit
representation of perturbations, (2) to describe the use of PLM to detect
and characterize perturbations in milk yield time series with an exam-
ple in dairy goats and (3) to illustrate the role of PLM as a phenotyping
tool by analyzing the variability in perturbed lactation curves on the
basis of the fitting results obtained on the dairy goat dataset.

Material and methods

The PLM is composed of a lactation model, denoted Y ∗, describing
the theoretical unperturbed dynamics of milk yield along the lactation,
and a perturbation model, denoted π, describing deviations from the
lactation model. The list of model parameters is provided in Table S1.

The dynamics of daily milk yield (Y(t), in kg) during the lactation is
thus given by:

Y tð Þ ¼ Y∗ tð Þ∙π tð Þ

where t is the time after parturition in days.

Unperturbed lactation model

Among the numerousmathematical models developed to study lac-
tation curves, the incomplete Gamma function proposed by Wood
(1967) has been widely used in different mammals (e.g., rabbit
(Casado et al., 2006), sheep (Ruiz et al., 2000) and cattle (Beever et al.,
1991)). This model gives a general expression for the dynamics of
milk yield along the lactation. In this article, we have selected this
model as an example to define the unperturbed lactation curve. Because
the structure of PLM is generic, any other lactation model can be used
(e.g., Cobby and Le Du (1978), Dhanoa (1981) or Wilmink (1987)
models, see Fig. S1).
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The Wood model is given by:

Y∗ tð Þ ¼ a∙tb∙e−c∙t

where Y ∗(t) is the unperturbed daily milk yield in kg, t is the time in
days after parturition and a, b, c are positive parameters that determine
the shape of the lactation curve. Values of these parameters can be used
to calculate some essential features of the lactation curve such as the
time of peak yield (b/c, in days), the lactation persistency, i.e., the extent
towhich peak yield is maintained (−(b+1) ∙ ln(c) in kg/d), or the peak
yield (a ∙(b/c)b ∙e−b in kg) (France and Thornley, 1984).

Perturbation model

The perturbationmodel is based on the idea that each single pertur-
bation i affecting lactation dynamics can be described as a transient pro-
portional decrease in milk yield, through a sequence of collapse and
recovery. Each perturbation can thus be modelled by way of a 3-
compartment model (Fig. 1, panel a) representing the dynamics of the
proportion of milk withdrawn from the theoretical, unperturbed yield.

The three compartments of the model are: Ai, the maximal propor-
tion of milk potentially affected by the ith perturbation, Pi, the propor-
tion of milk effectively affected by the ith perturbation and Ui, the
proportion of milk unaffected by the ith perturbation. Given the struc-
ture of the compartmental model, forming a path from Ai to Ui through
Pi, and given that the model is defined such that Ai+Pi+Ui=1, the dy-
namics of Pi represents the proportional deviation in milk yield, i.e., the
dynamics of Pi (see Fig. 1 panel b) describes the shape of an individual
perturbation.

The perturbation model for a single perturbation i is defined by the
following simple differential system:

if ti≥tP :

dAi

dt
¼ −k1,i∙Ai

dPi

dt
¼ þk1,i∙Ai−k2,i∙Pi

dUi

dt
¼ þk2,i∙Pi

8>>>>>><
>>>>>>:

otherwise :

dAi

dt
¼ 0

dPi

dt
¼ 0

dUi

dt
¼ 0

8>>>>>><
>>>>>>:

with the following initial conditions at parturition time (t=0):

Ai 0ð Þ ¼ k0,i
Pi 0ð Þ ¼ 0

Ui 0ð Þ ¼ 1−k0,i

8><
>:

and where tPi is the time of start of the ith perturbation, k0, i is the pa-
rameter of intensity of the ith perturbation (k0, i∈ ]0; 1]), k1, i is the pa-
rameter of collapse speed of the ith perturbation and k2, i is the
parameter of recovery speed of the ith perturbation.

Assuming that k1, i≠k2, i, the algebraic solution of this differential sys-
tem is given by:

Ai tð Þ ¼ k0,i∙e−k1,i ∙Δi tð Þ

Pi tð Þ ¼ k0,i∙k1,i
k1,i−k2,i

∙ e−k2,i ∙Δi tð Þ−e−k1,i ∙Δi tð Þ
� �

Ui tð Þ ¼ 1−
k0,i

k1,i−k2,i
∙ k1,i∙e−k2,i ∙Δi tð Þ−k2,i∙e−k1,i ∙Δi tð Þ
� �

8>>>>><
>>>>>:

where Δi(t) is the elapsed time since the beginning of the ith perturba-
tion and is given by:

Δi tð Þ ¼ 0 if t<tP i
t−tP i if t≥tP i

�

Finally, the perturbationmodel, including n individual perturbations
affecting the lactation curve, is given by:



Fig. 1. Conceptual model of a single perturbation. A: proportion potentially affected by the perturbation, P: proportion effectively affected by the perturbation,U: proportion unaffected by
the perturbation. (a) Model diagram and (b) solution dynamics.
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π tð Þ ¼ ∏n
i¼1 1−Pi tð Þð Þ

Perturbed lactation model

The detailed algebraic formula of PLM with n individual perturba-
tions is given by:

Y tð Þ ¼ a∙tb∙e−c∙t ∙∏n
i¼1 1−

k0,i∙k1,i
k1,i−k2,i

∙ e−k2,i ∙Δi tð Þ−e−k1,i ∙Δi tð Þ
� �� �

The model includes the three parameters of the Wood model (a, b,
and c) to define the unperturbed lactation curve, one parameter to de-
fine the number of perturbations affecting the lactation curve (n) and
four parameters per individual perturbation i (tPi, k0, i, k1, i and k2, i) so
that the total number of parameters to define PLM is equal to 4+4 ∙n.
For a given perturbation, the parameter k0, i (perturbation intensity pa-
rameter) is the initial size of the compartment A and corresponds to the
maximal proportion ofmilk loss at nadir of the perturbation. Parameters
k1, i and k2, i (respectively, collapse and recovery speed parameters) are
fractional rates of change of compartments A, P and U in the differential
system. They correspond to daily changes of the proportion of milk af-
fected by the perturbation.

A simulation of PLM with five perturbations over 300 days of lacta-
tion is shown in Fig. 2 as an illustration of the model behaviour.

Perturbations were considered individually so that a perturbation
can occur within another one (for instance, P3 in Fig. 2 at tP3=100).
Given that individual perturbations are proportional deviations multi-
plied between them, when a perturbation is added at a time point in
the iteration, it affects the perturbed curve (i.e., unperturbed Wood
and all previous perturbations at that time). Moreover, perturbations
can be used to simulate the effect of pregnancy (see P5 in Fig. 2 at
tP5=225) with the recovery parameter k2, i set to zero.

In practice, the number of perturbations and the model parameters
being unknown, we adopted a fitting strategy in two steps: first,
performing numerous repeated fittings to estimate the most frequent
number of detected perturbations. Then,we fixed the number of pertur-
bations to the value determined in the first step and performed the
fitting procedure to estimate the remaining parameters of the model.
Details of the fitting procedure are given in the Supplementary material
and Fig. S2. The RMSE was calculated to indicate the goodness-of-fit of
PLMN (the perturbed curve with N perturbations). Additionally, the
3

percentage of loss ′L′ was calculated using the formula L=1−SN
∗/SN

where SN
∗ and SN are, respectively, the total milk yield calculated with

PLMN
∗ (the unperturbed curve corrected that N perturbations) and

PLMN. To provide complementary information on lactation time series
and refine the PLM outputs analysis, the model of Grossman et al.
(1999) was also fit to the lactation data as described in Martin and
Sauvant (2002). This fitting cuts the lactation period into three stages
corresponding to early, middle and late stages (respectively, intervals
[t0; t1]: increasing phase, [t1;t2]: plateau-like phase, and [t2; t3]: decreas-
ing phase, where t0 is the first day of lactation and t3 the last day of lac-
tation). This triphasic model, based on a smoothing logistic transition
between intersecting straight lines, specifies the cut points of the
three stages (instead of an a priori determined number of days in
milk). These stages were used to classify detected perturbations along
the lactation as either early-, middle- or late-stage perturbations,
i.e., occurring, respectively, during the increasing, peak/plateau or de-
creasing phases of the lactation.

Dairy goat data set

In this study, we used data from 181 goats (94 Alpine and 87 Saa-
nen) born between 2009 and 2017. Data concerned 319 lactations
(126 primiparous and 193 multiparous; parity ranging from 1 to 7) in-
cluding 80773 milk records from the dairy goat herd of the INRAE-
AgroParisTech Systemic Modelling Applied to Ruminants research unit
(Paris, France) between 2015 and 2018. Records are shown in Fig. S3
by breed and parity. All lactations considered had at least one record
in the first 5 days of lactation and a last record between 150 and 358
days of lactation (no extended lactation included).

Statistical analysis

Breed and parity are two well-known factors affecting lactation
curve in dairy goats (Gipson and Grossman, 1990; Arnal et al., 2018).
In order to evaluate PLMability to characterize lactation time series, sta-
tistical analysis was performed on fitting results.

Fixed effects of breed (Saanen vs Alpine) and parity (1 vs 2 and
more) were tested on parameters of Wood, with and without the
changes made from PLM model. It was also tested on estimated peak
milk yield, peak time, total milk yield over [t0;t3], the number of pertur-
bation and the ratemilk loss using amixed ANOVAmodelwith goat as a
random factor. Fixed effect of lactation stage (early vs middle vs late)



Fig. 2. Example of a simulation of the perturbed lactation model (PLM) including five perturbations. (a) Individual perturbations dynamics expressed as the proportion of unperturbed
lactation curve (Pi) and (b) unperturbed and perturbed milk yield dynamics.
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was tested on RMSE and on PLM parameters tP, k0, k1, k2with a mixed
ANOVA model with parity as a fixed factor. Pearson linear correlations
were calculated for PLM parameters: intra-class of breed and parity
for a, b, c, N and L and intra-class of stage of lactation for tP, k0, k1 and
k2. All statistical analyses were performed using R (R Development
Core Team, 2018).

Results

Lactation duration ranged from t0=1.2 ± 0.6 to t3=270.3 ± 40.8
days in milk. Early, middle and late lactation stages determined with
Grossman's model were 1.2 to 34.4, 34.4 to 171.0 and 171.0 to 270.3
days, respectively.

Fitting procedure

The fitting procedure converged for the 319 lactations and detected
a total of 2 354 perturbations with an average of 7.4 perturbations per
animal per lactation. Fig. 3 shows the fitting of PLM on data for one sin-
gle lactation: panel (a) distribution of starting time of perturbations
within 10 days classes; panel (b) shows the unperturbed and perturbed
fitted lactation models plotted against data. The fitting results on indi-
vidual lactations corresponding to the minimum and maximum values
for the RMSE (0.1 and 0.4 kg, respectively) are provided in Fig. S4. The
number of perturbations varied between 4 and 11, the percentage of
milk loss between 2 and 19%, the total unperturbed milk yield was be-
tween 393 and 1 557 kg. During the first fitting steps, the Wood's pa-
rameters were stabilized on average after the detection of the first
four perturbations (Fig. S5). This indicates the robustness of the unper-
turbed curve.

Table 1 compares the results of the Wood parameters estimation
without considering perturbations (i.e., fitting procedure with PLM0)
with the results of theWood parameters estimation with perturbations
4

(i.e., fitting procedure with PLMN). Regarding the goodness of fit, PLMN

had lower RMSE (0.2 ± 0.1 kg) than the PLM0 (0.4 ± 0.1 kg), showing
(0.2 ± 0.1 kg) an improvement of fitting quality.
Unperturbed lactation curve

Descriptive statistics of the parameters a, b and c for the unperturbed
lactation curves (for both models: PLMN

∗ and Wood model) are pre-
sented in Table 2 for the overall data set, breed and parity. The parame-
ter a, which drives the general scaling of the curve, was not significantly
different for the two breeds (Alpine: 2.49± 0.71; Saanen: 2.58± 0.73).
Consequently, no significant breed effect was found for the peakmilk or
for the total unperturbed milk production. The same statistical effects
were found with the Wood adjustment without perturbation. The pa-
rameter a was significantly affected by the parity, with first lactations
having a lower value for parameter a than the two and more parities
(Table 2). Consequently, there was a significant parity effect on the
peak milk yield and on the total milk production. The parameter b,
which drives the curvature of the lactation curve, was significantly af-
fected by breed. Alpine goats exhibited higher values of b compared to
Saanen goats (Alpine: 0.19 ± 0.08; Saanen: 0.16 ± 0.07). Parity also
had a significant effect on the parameter b, with first lactations having
a lower value for parameter b than lactations from animals with parity
two and higher. Regarding the parameter c, which drives the rate of de-
crease of milk production after the peak, both parity and breed effects
were highly significant. Alpine goats exhibited the same value for the
parameter c as the Saanen goats (Alpine: 0.003 ± 0.001; Saanen:
0.003 ± 0.001). For this parameter, first lactations had a lower value
than two and more lactations (Primiparous: 0.002 ± 0.001; Multipa-
rous: 0.003± 0.001). The peak time of the unperturbed curve, resulting
from both b and c parameters, was significantly affected by breed, with
Saanen goats exhibiting a peak 14 days later in lactation than the Alpine
goats.



Fig. 3. Example of fitting result of the perturbed lactation on one goat lactation data set. (a) Frequency of detection of a single perturbation within ±10 days among 100 repeated fits
(i.e., distribution of estimated perturbation starting times); (b) final unperturbed and perturbed lactation models plotted against data.
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Individual unperturbed lactation curves obtained with PLMN
∗ for in-

creasing parities are shown in Fig. 4. Some of these individual adjusted
curves were considered as atypical, in the sense they departed from
the general shape of the Wood model (18 out of the 319 analyzed
curves). Generally, these atypical curves come from the same goat in
different parities or from primiparous that did not start the second lac-
tation. Peaks ofmilk of the unperturbed lactation curvewere on average
Table 1
Results of the fitting procedure applied on lactation curves of dairy goats.

Wood model1 1 (1268) 2 + (1938) Total (3198)

Mean (SD) Mean (SD) Mean (SD)

a 1.88 (0.63) 2.39 (0.79) 2.14 (0.71)
b 0.22 (0.11) 0.24 (0.11) 0.23 (0.11)
c 0.004 (0.002) 0.004 (0.002) 0.004 (0.002)
RMSE3 (kg/d) 0.31 (0.08) 0.44 (0.14) 0.38 (0.11)
Peak milk4 (kg) 3.54 (0.55) 4.72 (0.72) 4.13 (0.64)
Peak time5 (d) 63.85 (32.18) 56.81 (22.01) 60.33 (27.10)
Total milk (kg) 719.60 (149.14) 972.84 (204.34) 846.24 (176.69)
Perturbed lactation model (PLM)2

a 2.16 (0.60) 2.77 (0.69) 2.53 (0.72)
b 0.17 (0.08) 0.19 (0.08) 0.18 (0.08)
c 0.003 (0.001) 0.003 (0.002) 0.003 (0.001)
RMSE3 (kg/d) 0.18 (0.04) 0.25 (0.05) 0.22 (0.05)
Peak milk4 (kg) 3.57 (0.47) 4.81 (0.71) 4.19 (0.59)
Peak time5 (d) 63.51 (25.65) 69.46 (37.33) 66.49 (31.49)
SN

6 (kg) 712.25 (147.60) 962.42 (201.67) 837.29 (174.58)
SN
∗7 (kg) 766.28 (164.17) 1053.91 (232.29) 910.06 (198.19)

N 7.59 (1.30) 7.38 (1.47) 7.49 (1.39)
L (%) 6.02 (2.38) 7.43 (3.50) 6.73 (2.94)

N: mean of total number of perturbations, L: milk yield loss.
1 Wood (1967): a, b and c: estimated Wood parameters.
2 PLM based onWood.
3 RMSE of model fit.
4 peak milk ¼ a⋅ b

c

� �b
⋅e−b .

5 peak time ¼ a
b.

6 Total milk based on the PLM perturbed lactation curve: SN=∑t0
t1y(t).

7 Total milk based on the PLM unperturbed lactation curve: SN∗=∑t0
t1y(t)

∗ .
8 Number of lactation curves.
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increased by 27.47% between the first parity and the second parity, by
9.46% between the second parity and the third parity and decreased
by 0.29% between the third parity and the fourth parity (Fig. 4). The
total milk production for the unperturbed curve was increased by
32.55% between the first parity and the second parity, 5.20% between
the second parity and the third parity and by 1.01% between the third
parity and the fourth parity.

The Pearson linear correlation matrix by breed and parity between
parameters of PLMN

∗ is shown in Fig. 5 (panels a and b). A strong nega-
tive correlation was found between a and b (−0.65), indicating that
high values of a (scaling of the lactation curve) were associated with
lowvalues of b (shaping the curve). A positive correlationwas found be-
tween the parameters c and b (0.64) indicating a positive association
between the shape of the curve and the rate of decrease of lactation,
which is a well-known feature of Wood's model. Finally, a low negative
correlation between c and a (−0.11) was found. These results are con-
sistent with the well-known features of lactation curves: higher milk at
peak yield being associatedwith higher speed of decline after peak. Sev-
eral factors (e.g., breed, parity, seasonality and season of kidding) can af-
fect characteristics of the lactation curve.

Number of perturbations and milk loss

The effects of parity and breed on the total number of perturbations
were not significant. Total number of perturbations was 7.59 (SD =
1.30) for the primiparous, 7.38 (SD = 1.47) for the multiparous, 7.45
(SD=1.41) for the Alpine and 7.47 (SD= 1.41) for the Saanen. By con-
trast, the rate of milk yield loss after perturbation was significantly af-
fected by the parity. A Pearson linear correlation matrix by breed and
parity between PLMN

∗ estimates for the number of perturbations (N),
percentage loss of milk yield (L) and goodness of fit (RMSE) was also
carried out (Fig. 5, panels c and d). A positive correlation was found be-
tween RMSE and milk loss (0.38) suggesting that in highly perturbed
curves (i.e., strongly deviating from the classical form), the concept of
viewing a lactation curve as an unperturbed curve heckled by individual
perturbations reaches its limit. However, weaknegative correlations be-
tween the number of detected perturbations and RMSE (−0.16), and



Table 2
Comparison between breeds (SAA: Saanen and ALP: Alpine) and parity numbers of dairy goats across the models and variables.

Wood model1 SAA (143) ALP (176) P-value

1 (598) 2 + (848) total (1438) 1 (678) 2 + (1098) total (1768)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean(SD) Breed Parity

a 1.84 (0.55) 2.44 (0.84) 2.20 (0.83) 1.92 (0.69) 2.34 (0.76) 2.17 (0.72) NS ***
b 0.22 (0.11) 0.23 (0.11) 0.23 (0.11) 0.22 (0.11) 0.25 (0.12) 0.24 (0.12) NS NS
c 0.003 (0.002) 0.004 (0.002) 0.004 (0.002) 0.003 (0.001) 0.005 (0.002) 0.004 (0.02) *** ***
RMSE3 (kg/d) 0.32 (0.87) 0.46 (0.15) 0.40 (0.15) 0.30 (0.08) 0.43 (0.12) 0.38 (0.13) a,b ***
Peak milk4 (kg) 3.56 (0.59) 4.69 (0.70) 4.25 (0.88) 3.53 (0.52) 4.75 (0.73) 4.26 (0.87) NS ***
Peak time5 (d) 74.28 (39.88) 60.23 (24.76) 67.26 (32.32) 54.66 (19.50) 54.17 (19.33) 54.42 (19.42) a,b a,b

Total milk (kg) 731.91 (150.04) 986.85 (223.17) 859.28 (186.63) 708.76 (148.61) 962.03 (188.91) 865.54 (168.78) NS ***
Perturbed Lactation Model (PLM)2

a 2.14 (0.49) 2.89 (0.71) 2.58 (0.73) 2.18 (0.68) 2.68 (0.66) 2.49 (0.71) NS ***
b 0.16 (0.07) 0.16 (0.07) 0.16 (0.07) 0.17 (0.09) 0.20 (0.08) 0.19 (0.08) *** NS
c 0.002 (0.001) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001) 0.004 (0.001) 0.003 (0.001) *** ***
RMSE3 (kg/d) 0.19 (0.05) 0.25 (0.04) 0.22 (0.05) 0.18 (0.03) 0.24 (0.06) 0.21 (0.06) NS ***
Peak milk4 (kg) 3.56 (0.44) 4.75 (0.68) 4.28 (0.83) 3.59 (0.50) 4.86 (0.73) 4.37 (0.90) a,b ***
Peak time5 (d) 77.73 (45.07) 67.81 (32.26) 68.89 (29.72) 57.80 (24.11) 60.56 (33.26) 59.50 (30.04) *** NS
SN

6 (kg) 723.99 (148.53) 976.64 (220.74) 850.34 (184.59) 701.91 (147.12) 951.36 (185.47) 826.62 (166.29) NS ***
SN
∗7 (kg) 780.74 (165.60) 1069.68 (255.55) 925.20 (210.56) 753.54 (163.07) 1041.65 (212.87) 897.59 (188.04) NS ***

N 7.53 (1.28) 7.44 (1.51) 7.48 (1.41) 7.64 (1.33) 7.33 (1.45) 7.45 (1.41) NS NS
L (%) 6.19 (2.75) 7.51 (3.66) 6.97 (3.37) 5.87 (2.01) 7.36 (3.39) 6.79 (3.02) NS ***

Signification codes: NS: not significant, a,bP < 0.05, ***P < 0.001.
N: mean of total number of perturbations, L: milk yield loss.

1 Wood (1967): a, b and c: estimated Wood parameters.
2 Perturbed Lactation Model (PLM) based on Wood.
3 RMSE of model fit.
4 peak milk ¼ a⋅ b

c

� �b
⋅e−b .

5 peak time ¼ a
b.

6 Total milk based on the PLM perturbed lactation curve: SN=∑t0
t1y(t).

7 Total milk based on the PLM unperturbed lactation curve: SN∗=∑t0
t1y(t)

∗ .
8 Number of lactation curves.
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the number of perturbations and themilk loss (−0.20)were also found.
Distributions ofN, L and RMSE showed an even larger difference accord-
ing to the parity than to the breeds. Rather than the total number of per-
turbations, these results show that it is the intensity of perturbations
that contribute the most to the loss in milk yield over the lactation.

Perturbation timing and shape

Table 3 gives descriptive statistics on the parameters of PLM charac-
terizing the 2 354 perturbations detected during the fitting procedure:
time tP, intensity k0, collapse speed k1and recovery speed k2 according
to the lactation stage determined with Grossman's model. Most of the
perturbations were detected during the late and middle stages of lacta-
tion (respectively, n = 1 063 and n = 1 054) compared to those de-
tected in the early stage (n = 237). The parameter k0increased from
Fig. 4. Individual unperturbed curves extracted fromdata after removal of the estimatedperturb
lactation data; atypical curves correspond to outlying estimates of the parameter c governing m
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early, middle to late lactation stage (Table 3). These results suggest
that throughout the lactation process, perturbations become more in-
tense. The parameter k1 decreased from early to late stages of lactation.
This suggests that perturbations tended to be sharper at the beginning
of lactation, with a high speed of collapse and recovery, while they
tended to be smoother when the lactation progressed.

The PLM parameter k0, which drives the intensity of the perturba-
tion, varied considerably between 0.001 and 1 (set as a boundary).
The parameter k1(which drives the collapse speed of the perturbation),
and the parameter k2(which drives the speed of recovery) varied be-
tween 0 and 10 (set as a boundary). These parameters tend to vary
across lactation stages. A gradual increase in k0 and a gradual decrease
in k1 and k2 according to early, middle and late lactation stages were
found (Table 3). In the late stage, 30.20% of the perturbations were de-
tected with a parameter k2 equal to 0, which implied a perturbation
ations using perturbed lactationmodel (PLM) for increasing parity number (fit on 319 goat
ilk persistency).



Fig. 5. Pearson linear correlation matrix of perturbed lactation model (PLM) parameters estimates. Panels (a) and (b): the a, b and c parameters defining the unperturbed curve (a: by
parity and b: by breed of goat). Panels (c) and (d): the number of perturbations N, milk loss and RMSE (c: by parity and d: by breed of goat).
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without any recovery period. Among these perturbations, 85.39% had a
k0 value equal to 1, which implies a perturbation affecting 100% of the
milk yield. These perturbations correspond to the drop in milk yield at
Table 3
Descriptive statistics of the disturbance parameters for the 2 354 disturbances detected by
the disturbed lactation model at the early, middle and late of lactation (estimated by
Grossman model) in dairy goats.

Perturbations Stage of lactation (2 354)

Early (237) Middle (1 054) Late (1 063)

Mean SD Mean SD Mean SD

tp: starting time 33.8 34.0 107 63.0 202 60.0
k0: intensity 0.45 0.33 0.51 0.35 0.67 0.36
k1: collapse speed 4.01 4.17 3.41 3.87 2.76 3.69
k2: recovery speed 1.13 1.96 1.18 1.79 0.95 1.71

(1) k0 corresponds to the maximal proportion of milk withdrawn at nadir of a perturba-
tion, (2) k1 and k2 are fractional rates of the PLM differential system (unit is d-1) and cor-
respond to the rates of change of the proportion of milk withdrawn during, respectively,
the collapse and recovery phase of a perturbation.

7

the very end of lactation, before drying off. On the other hand, in the
early and middle stages, the perturbations detected with a k2 equal to
0 were 1.70 and 7.07%, respectively.
Discussion

Combining an unperturbed curve model with models of individual
perturbations

In this study, we described the PLM model proposed as a tool for
extracting simultaneously perturbed and unperturbed lactation curves
fromdailymilk time series. The keynovelty feature of PLM is to combine
an explicit representation of perturbations with a mathematical repre-
sentation of the theoretical shape of the lactation curve.

Regarding the mathematical representation of the lactation curve,
the structure of PLM is generic and any equation can be used to describe
the general pattern of milk production throughout lactation (see Fig. S1
in Supplementary material showing illustration of results with other
lactation models). The Wood model (Wood 1967) was chosen in this
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study as it is one of the most well-known and commonly used mathe-
matical models of lactation curve. Behind the choice of considering a
general pattern of lactation that is distorted by perturbations, the bio-
logical assumption is that the dairy female has a theoretical production
potential (the unperturbed curve) corresponding to the expression of
its genetics in a given environment. This genetic potential for milk pro-
ductionmay not be fully expressed in the farm environment in part due
to perturbations (the perturbed curve).

Regarding the representation of perturbations, we chose an explicit
formalism with a compartmental structure for every single perturba-
tion. With this conceptual choice, PLM overcomes limitations of recent
models developed for capturing perturbations (Sadoul et al., 2015;
Nguyen Ba et al., 2019; Revilla et al., 2019). It allows the capture of mul-
tiple perturbations with contrasted features: from a sharp and short
drop (for instance due to a diarrhoea episode) to a long and slow de-
crease (for instance due to a subclinical infection). The PLM also allows
to determine the time at which the perturbations occur during the lac-
tation. This last point is of great interest to add value to on-farm data
where challenges imposed to animals do not result from controlled tri-
als and arise from the farm environment.

By combining a general model of the lactation curve with an explicit
model of perturbations, PLM provides two key outputs: first, the unper-
turbed curve of the lactating female that reflects its production potential
in a non-perturbed environment, and second the perturbed curve
which reflects the production permitted by the farm environment. The
PLM parameters (k0, i, k1, i and k2, i) provide the most useful information
on the perturbed lactation curve including scale and shape for each per-
turbation. Indeed, by providing a perturbed curve, we give an estimate
of the number of perturbations and for each perturbation an estimate of
its time of start tP, i, intensity k0, i, collapse speed k1, i and recovery speed
k2, i. This not only allows PLM to be flexible in capturing different types
of perturbations (e.g., gestation, drying off, disease), but also to produce
metrics to compare the effect of these perturbations on milk yield.

Fitting perturbed lactation model to lactation data

Beyond the original concepts behind PLM, a key methodological
issue was the development of the fitting algorithm. The number of pa-
rameters to be determined is important, including the Wood parame-
ters of the unperturbed curve (3 parameters), and PLM parameters (4
parameters for each perturbation). To overcome the difficulty of esti-
mating a high number of parameters, a 2-step algorithm was imple-
mented. The first step of the procedure was to determine Wood
parameters and the times when the perturbations start. The second
step of the procedure was to determine PLM parameters. This 2-step al-
gorithm was selected for three main reasons. The first one was related
to the visual quality of the fitting results itself. Indeed, the obtained
fitted curve is always very close to what would have been drawn after
simply looking at the raw data and wondering what the lactation
curve would be without perturbations. This proximity to what could
have been inferred was considered intuitive, yet subjective. The second
reason was related to the issue of finding the number of perturbations.
The PLM procedure allows an automated determination of an optimal
number of perturbations, without a priori estimates or use of an arbi-
trarily chosen stopping criterion. Preliminary results have shown that
allowing a maximal number of 15 perturbations to be detected in the
first step of the algorithm was enough for the considered data set. The
third reason pertained to the model parameters identifiability issue
(Muñoz-Tamayo et al., 2018). Since the fitting is based on a huge num-
ber of repeated fittings fromwhich the systematically detected times of
perturbations are retained, the 2-step fitting algorithm facilitates the
practical identifiability of themodel parameters. Thiswasdemonstrated
by applying the overall fitting algorithm several times to the same data
set. Given that obtained parameter estimates were the same between
the different runs, not only it strengthens the convergence properties
of the algorithm but also it guarantees model parameters identifiability.
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Fitting results (see Fig. 6) have shown that, in some cases, parameter
estimates characterizing an individual perturbation reached their initial
upper boundaries (1 for parameter k0, i and 10 for parameters k1, i and
k2, i). This situation concerns perturbations with a narrow and deep
peak shape. By construction, the value of the parameter k0, i (intensity
of the perturbation) is a proportion and thus not supposed to exceed 1.
For the parameters k1, i and k2, i, a value of 10 already represents a very
abrupt collapse or recovery, respectively. These results are therefore con-
sidered relevant. However, a next step may be to test the model on a
larger data set to assess the need to broaden these boundaries.

Perspective of using perturbed lactation model as a phenotyping tool

The PLMwas developed to improve the ability to phenotype animals
by extracting biological meaningful information from raw data. The un-
perturbed curve fitted by PLM makes it possible to compare animals
based on their potential of milk production. With this information, ani-
mals can be ranked based on the production level they would have
achieved in a non-perturbed environment, instead of being ranked
based on the measured production level assuming no perturbations
were encountered. This ranking may be of interest for the farmer's
breeding strategy, to identify animals that have both a high production
potential and ability to copewith their environment or animals that are
able to recover fast after a challenge.

The perturbed curve and the characteristics of each perturbation
(time, intensity, collapse and recovery) open the perspective of working
on perturbations as such and using this information for breeding and
management. As a phenotyping tool, PLM can be useful for genetic selec-
tion. Studying characteristics of perturbations throughoutmany lactations
of a large number of individuals and linking them to genetic or genomic
information opens perspectives to evaluate their heritability and their po-
tential genetic impact. PLM can also be a valuable tool for on-farm man-
agement. Linking perturbations with other information on the animals,
such as lactation stage, parity, gestation stage, can help to detect sensitive
periods where perturbations are more likely to occur. By cross-checking
information on perturbations from all animals with information on the
farm environment (for instance temperature, feed availability), it would
be possible to detect synchronous occurrences of perturbations and link
them to farm environmentor management practices during times of
stress. With this better understanding of environmental effects on animal
production, on-farm preventive measures could be made.

Understanding the effects of the environment on-farm animals and
understanding how they cope with challenges during crucial times
could help to gain insights on resilience and robustness. These complex
dynamic properties are highly desirable to face the changes occurring in
the livestock sector (Dumont et al., 2014). While the conceptual frame-
work towork on resilience and robustness is nowwell defined in animal
sciences, we still need operational metrics (Friggens et al., 2017). Such
metrics have been proposed for a single perturbation by Revilla et al.
(2019) and Sadoul et al. (2015). The detection of perturbations in ani-
mal performance can provide a proxy to estimate the frequency and se-
verity of disorders such as clinical mastitis (Erb et al., 1985).We found a
low perturbation rate at the early lactation period. Normally, this period
is known by the fragility of the animals facing problems such as meta-
bolic diseases and mastitis. This can be explained by the definition of
the duration of the early lactation period. Some authors, such as De
Haas et al. (2008) or Urioste et al. (2012), arbitrarily fixed the duration
of this period from5 to 150 days. In this paper, the early lactation period
was defined by Grossman's model and their duration varied from 1.2 to
34.4 days. Studying perturbations in lactation curves also makes it pos-
sible to compare animals facing the same stress and detect the ones
with the greatest adaptive capacities.

To our knowledge, existing metrics for dropped milk yields per day
in the lactation curve, as proposed by Elgersma et al. (2018) or
Adriaens et al. (2020), are based on a variance approach applied to the
whole curve. Fluctuations in milk yield are summarized with a single



Fig. 6. Pearson linear correlationmatrix on the perturbed lactationmodel (PLM) parameters by stage of lactation in dairy goat: tp: perturbations times detected; k0: intenstity, k1: collapse
and k2: recovery of perturbation.
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statistical measure. Complementary to this type of approach, PLM can
decompose the whole curve and characterize each perturbation, with
metrics that are consistent with the concept of resilience of each and
subsequent perturbation. The PLM model offers a way of quantifying
the consequences of external factors and exploring hypotheses about
the biological types of responses due to specific perturbations. With
this respect, PLM is an interpretive tool providing informationwith a bi-
ological meaning. With the development of on-farm technology mea-
surements, an interesting perspective for PLM is to be used to assess
other biological time series data, such as BW changes, DM intake and
hormones dynamics during lactation.

Perturbed lactation model limitations

Amajor limitation of PLM resides in its dependency on the quality of
data. Indeed, if data are recorded with a low accuracy (due to technical
problems of measurements), the outputs of PLM do not have consis-
tency as detected perturbations have nothing to do with perturbations
9

of the lactation curve, but are related to accuracy problem as intuitively
identified when evaluating the curve shape. In addition, PLM has been
developed with daily records. It will be necessary to evaluate if PLM
can operate correctly with less frequent data.
Conclusion

By combining a general description of the lactation curve with an ex-
plicit representation of perturbations, the PLMmodel allows the charac-
terization of two complementary aspects of milk production: the
potential production in a non-limiting environment, reflecting genetic
potential of a dairy female, and the deviations induced by the real farm
conditions, reflecting the capacity of a dairy female to cope with the en-
vironment. Translating raw time series data into quantitative indicators
makes it possible to compare the phenotypic responses of animals to
challenges and therefore bring insights on their resilience to external fac-
tors. In that sense, PLM could be used as a valuable phenotyping tool and
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it contributes to provide decision solutions for dairy production that are
grounded in a biologically meaningful framework.
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