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Abstract 24 

Endometriosis is a gynaecological disease characterised by the presence of endometriotic 25 

tissue outside of the uterus impacting a significant fraction of women of childbearing age. 26 

Evidence from epidemiological studies suggests a relationship between risk of endometriosis 27 

and exposure to some organochlorine persistent organic pollutants (POPs). However, these 28 

chemicals are numerous and occur in complex and highly correlated mixtures, and to date, 29 

most studies have not accounted for this simultaneous exposure. Linear and logistic regression 30 

models are constrained to adjusting for multiple exposures when variables are highly 31 

intercorrelated, resulting in instable coefficients and arbitrary findings. Advanced machine 32 

learning models, of emerging use in epidemiology, today appear as a promising option to 33 

address these limitations. In this study, different machine learning techniques were compared 34 

on a dataset from a case-control study conducted in France to explore associations between 35 

mixtures of POPs and deep endometriosis. The battery of models encompassed regularised 36 

logistic regression, artificial neural network, support vector machine, adaptive boosting, and 37 

partial least-squares discriminant analysis with some additional sparsity constraints. These 38 

techniques were applied to identify the biomarkers of internal exposure in adipose tissue most 39 

associated with endometriosis and to compare model classification performance. The five 40 

tested models revealed a consistent selection of most associated POPs with deep 41 

endometriosis, including octachlorodibenzofuran, cis-heptachlor epoxide, polychlorinated 42 

biphenyl 77 or trans-nonachlor, among others. The high classification performance of all five 43 

models confirmed that machine learning may be a promising complementary approach in 44 

modelling highly correlated exposure biomarkers and their associations with health outcomes. 45 

Regularised logistic regression provided a good compromise between the interpretability of 46 

traditional statistical approaches and the classification capacity of machine learning 47 

approaches. Applying a battery of complementary algorithms may be a strategic approach to 48 

decipher complex exposome-health associations when the underlying structure is unknown. 49 

 50 

Main findings capsule 51 
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Elastic-net provided a good compromise between the interpretability and performance, but 52 

applying a battery of complementary models may be best to support complex links between 53 

exposure and disease. 54 

 55 

  56 
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Introduction 57 

Endometriosis is a hormone-dependent gynaecological disease characterised by the presence 58 

of endometrial tissue outside the uterine cavity and contributes to a number of non-specific 59 

symptoms, such as chronic pelvic pain, dysmenorrhea, dyschesia, dyspareunia, and often 60 

infertility (Eskenazi et al., 2002; Giudice, 2010; Sampson, 1927). The precise aetiology of 61 

endometriosis remains unclear but is likely multicausal, influenced by hormonal, genetic, and 62 

environmental factors. Evidence from epidemiological studies suggests a relationship between 63 

risk of endometriosis and exposure to some organochlorine persistent organic pollutants 64 

(POPs) like dioxin 2,3,7,8-Tetrachlorodibenzodioxin (TCDD), polychlorobiphenyls (PCBs) and 65 

organochlorine pesticides (OCPs) (Cano-Sancho et al., 2019), mechanistically supported by 66 

experimental evidence (Bruner-Tran et al., 2010; Bruner-Tran and Osteen, 2010; Matta et al., 67 

2019). In a previous case-control study conducted in France (Ploteau et al., 2017), we found 68 

statistically significant associations between presence of deep endometriosis and 69 

concentrations of certain POPs in adipose tissue (AT), including 1,2,3,7,8-70 

pentachlorodibenzodioxin (PeCDD), octaochlorodibenzofuran (OCDF), 71 

polybromodiphenylether (PBDE) 183, polybromobiphenyl (PBB) 153 or cis-heptachlor 72 

epoxide, among others. The approach previously used considered one pollutant at a time, with 73 

multivariable logistic regression adjusting for known and suspected confounding variables. 74 

This approach may prone to bias if associations are due to correlated coexposures. For this 75 

reason, multipollutant models are today encouraged to evaluate coexposure-outcome 76 

associations under collinear frameworks (Lenters et al., 2018; Weisskopf et al., 2018).  77 

Collinearity is an acknowledged problem in analyses based on ordinary least squares (i.e. 78 

linear regression). It occurs when two or more predictor variables are highly correlated, as is 79 

often the case in datasets with mixtures of environmental chemical exposures. This may 80 

exacerbate variances due to model misspecification, especially when prior biological 81 

knowledge of underlying associations is not available (Schisterman et al., 2017). In the last 82 

decades, novel statistical methods and computational frameworks have emerged motivated 83 

by the challenges posed by air pollution mixtures, expanding the spectrum of available 84 
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approaches to address the various data constraints (Bellinger et al., 2017; Stafoggia et al., 85 

2017; Taylor et al., 2016). Overall, the models may be grouped by their capacities to reduce 86 

data dimensionality, select variables (identify risk variables within highly redundant and 87 

correlated variables) and group or cluster observations (Billionnet et al., 2012; Stafoggia et al., 88 

2017). Among epidemiological studies, however, application of multipollutant approaches 89 

using biomarkers of exposure has been growing at a more modest pace. Some recent 90 

simulation studies have compared the performance of several multipollutant models to identify 91 

exposome-health associations with both continuous and dichotomous outcomes together with 92 

their interactions (Agier et al., 2016; Barrera-Gomez et al., 2017; Lenters et al., 2018; Sun et 93 

al., 2013). Results suggest there is no one-size-fits-all model and that model selection must 94 

be made on the basis of the data structures. 95 

At the same time, novel high-throughput approaches in mass spectrometry and generation of 96 

large spectral datasets have also favoured the implementation of data mining pipelines and 97 

machine learning (ML) techniques in some exposome-health studies (Bellinger et al., 2017; 98 

Manrai et al., 2017). Despite this, many powerful ML methods like neural networks, support 99 

vector machines, and boosting algorithms remain underexplored but show promise in their 100 

computational capacity for classification and variable selection with highly complex data 101 

(Stingone et al., 2017; Zhao et al., 2019). These algorithms have the potential to assess 102 

individual variable associations while simultaneously adjusting for coexposures, addressing 103 

the issue of collinearity. Although these ML methods have seldom been applied in the context 104 

of environmental epidemiology, their emerging use in medical research and other 105 

epidemiological fields (i.e. genetics) suggest that their application may hold promise for the 106 

novel development of multipollutant exposure models (Bellinger et al., 2017; Deist et al., 2018; 107 

Roffman et al., 2018; Tomiazzi et al., 2019).  108 

In this context, the objective of the present study was to apply and evaluate the performance 109 

of several ML methods in identifying the health status of patients. Following previous settings 110 

for systematic comparison of approaches in exposome-health research (Lenters et al., 2018), 111 

classification performance criterion is used for parameter tuning and model comparison. 112 
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Predictive capacity of models as an endpoint, however, has minor interest in this etiological 113 

research context. Instead, variable selection is sought as an endpoint, as a first step towards 114 

exploring complex biomarker-health associations within multidimensional and highly collinear 115 

frameworks. Exploratory data analysis using these models is thus conceived for a better 116 

understanding of the underlying structure of the biomarkers of exposure and the associations 117 

with endometriosis. 118 

Methods and Materials 119 

Study Population 120 

This study draws upon a case-control study conducted in Pays-de-la-Loire, France between 121 

2013 and 2015, focusing on a group of 80 persistent pollutants analysed in the AT of a sample 122 

population with and without endometriosis. Study design, recruitment, and methods have been 123 

previously reported (Ploteau et al., 2017). Briefly, the study enrolled a total of 99 women ages 124 

18-45. Cases (n= 55) included women diagnosed with deep endometriosis (with surgical 125 

confirmation) and controls (n = 44) comprised a similar group of women present at the clinic 126 

for other gynaecological issues unrelated to endometriosis, surgically confirmed to not have 127 

endometriosis and displaying no related clinical symptoms (i.e. chronic pelvic pain, 128 

dysmenorrhea, dyspareunia, infertility). From both groups, cases and controls, 2 g of parietal 129 

AT (subcutaneous fat) samples were collected and stored at -80°C. Data were gathered 130 

pertaining to the diagnosis, anthropometric variables, and other potentially relevant factors 131 

such as age, body mass index (BMI), breastfeeding and parity. All participants signed an 132 

informed consent form approved by the Bioethics Committee of GNEDS (Groupe Nantais 133 

d'Éthique dans le Domaine de la Santé). 134 

Exposure Assessment 135 

Biomarkers of exposure were determined in adipose tissue, which is the most stable matrix for 136 

POP measurements reflecting long-term exposure (Cano-Sancho et al., 2019). These 137 

exposure estimates capture the window between onset of the first symptoms and the diagnosis 138 

of endometriosis (7-10 years). The supporting methods used for chemical analyses have been 139 
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published elsewhere (Antignac et al., 2009; Bichon et al., 2015; Ploteau et al., 2016; Ploteau 140 

et al., 2017). In brief, samples were quantified with 13C-labeled congeners using isotope 141 

dilution and extracted under high temperature and pressure (ASE Dionex, Sunnyvale, CA, 142 

USA). Gravimetric methods were used to measure fat content, and extracts were reconstituted 143 

in hexane for cleanup. OCPs were isolated using gel permeation chromatography; other target 144 

substances were isolated using three successive purification steps: acid silica, Florisil®, and 145 

celite/carbon columns. PCDD/F, PCB, PBDE, PBB and OCP were measured by gas 146 

chromatography (Agilent 7890A) coupled with high-resolution mass spectrometry (GC-HRMS) 147 

on double sector instruments (JEOL MS 700D and 800D) after electron impact ionization (70 148 

eV), operating at 10000 resolutions (10% valley) and in the single ion monitoring (SIM) 149 

acquisition mode. HBCD isomers were quantified using liquid chromatography coupled with 150 

tandem mass spectrometry (LC-MS/MS) on a triple quadrupole instrument (Agilent 6410) using 151 

electrospray ionization and selective reaction monitoring. The full list of analysed chemicals 152 

and congeners can be ground in the Supplemental Table S1. All methods were validated 153 

according to Regulation (EU) No 376/2014 of the European Parliament (EU, 2014). Analysis 154 

was performed in an ISO 17025:2005 accredited laboratory. All internal exposure data were 155 

generated blinded to the case/control status of samples. Recoveries were in the 80–120% 156 

range, and expanded uncertainty was lower than 20%. Exposure levels for POPs were 157 

expressed in a lipid-weight basis (lw). 158 

Data pre-processing 159 

Missing data were characterised to determine their nature (Missing at Random vs Missing Not 160 

at Random). Numerical covariates missing at random (i.e. BMI, age) were imputed using MICE 161 

package in R. Distributions before and after imputation were checked to ensure consistency. 162 

Data missing not at random included several POPs that were either not detected through 163 

quantification or were found to be below the limit of detection. Exposure variables lower than 164 

the limit of detection (LOD) were assigned a value of LOD/2 (Cohen and Ryan, 1989). 165 

Variables for which over 75% of exposure data were missing or below LOD were excluded 166 
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from analysis for quality control purposes (See Table S1). Remaining exposure variables were 167 

log transformed, centred and scaled by their standard deviations. 168 

Exploratory Data Analysis 169 

Distributions of exposure levels of chemicals from cases and controls were summarised by 170 

median and interquartile ranges, and compared statistically by using Mann-Whitney-Wilcoxon 171 

tests. For all data analyses, the significance level threshold was set to p< 0.05. 172 

A first multivariate exploratory analysis was performed to investigate and visualise the 173 

underlying structure of the exposure data matrix. Bivariate correlation analysis was performed 174 

using Spearman rank test and depicted in heatmaps. Principal Component Analysis (PCA), 175 

run with FactoMineR package in R, and Clustering of variables around Latent Variables (CLV), 176 

run with ClustVarLV package, were used to detect clusters of co-observed exposure variables 177 

(Vigneau et al., 2015). Similar to PCA, CLV latent variables associated with clusters are 178 

synthetic components to facilitate data variability description. 179 

Multipollutant Data Analysis 180 

For multipollutant analysis, five supervised algorithms for classification and variable selection 181 

were applied (Regularised logistic regression, Artificial Neural Network (ANN), Support Vector 182 

Machine (SVM), Adaboost (ADA), and Partial Least Squares Discriminant Analysis (PLSDA). 183 

All models were run in a full mode (wherein all variables are included into the model) and with 184 

sparsity constraints (wherein classification performance is used to select only the most 185 

discriminant variables to include in the model). Sparse models, shrink the weight of less 186 

discriminant variables to zero, thus simplifying the model for classification purposes and 187 

addressing the risk of overfitting. For algorithms without inherent sparsity constraints, we 188 

employed Recursive Feature Elimination (RFE), a resampling approach that selects the subset 189 

of variables that minimises the model classification error by iteratively removing one feature at 190 

a time. Briefly, RFE follows three steps: (1) training the classifier by optimising feature weights; 191 

(2) computing the ranking criterion for all features, and finally (3) removing the feature with the 192 

smallest ranking criterion (Guyon, 2002; Kuhn, 2008). The process is then repeated.  193 
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Data was randomly partitioned in an 80/20 ratio for a training set and test set. The training set 194 

comprised 80% of observations and was used to train the algorithm to better understand the 195 

exposure profile of individuals with and without endometriosis (endometriosis status known). 196 

The test set, which comprised the remaining 20%, was used to evaluate the classification 197 

performance of the trained algorithm.  198 

Parameters were optimised for efficiency using a ten-times repeated cross validation (CV) to 199 

exhaust the dataset. Tuning parameters were calibrated and set for each model individually. 200 

For each model the coefficients associated with all (full models) or selected variables (sparse 201 

models) were estimate, generating a weight, or importance, according to its contribution to the 202 

final model. Thus, variables with greater variable importance values (VI) corresponded to those 203 

which contribute more to the final model.  204 

We also computed metrics for classification performance including Receiver Operating 205 

Characteristic (ROC), Area Under the Curve (AUC), sensitivity, and specificity. ROC curves 206 

measure a test’s ability to discriminate between cases and controls and is quantified by the 207 

AUC. An AUC of 1 means the test has 100% discriminative capacity, and a value of 0.5 means 208 

the test is unable to discern cases from controls any more than random chance. In general, 209 

values between 0.9-1.0 are considered very good, values 0.8-0.9 are considered good, 0.7-210 

0.8 as fair, 0.6-0.7 as poor, and 0.5-0.6 as failure (Tape, 2001). Sensitivity measures the 211 

capacity of the model to correctly identify positive cases, while specificity indicates the capacity 212 

to correctly identify controls. McNemar’s test on paired proportions was used to assess the 213 

predictive accuracy of the classification model. We also compared the agreement of variables 214 

selected between models, their VI, their interpretability and flexibility to be applied in 215 

epidemiological studies.  216 

All statistical analyses were performed in R software v.3.4.3. Model performance evaluation 217 

was conducted with the R Caret framework (Kuhn, 2008) that links multiple packages and 218 

functions for modeling, specifications summarized in Table 2. 219 

a) Regularised logistic regression: ridge and elastic-net regression 220 
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Elastic-net (ENET) is a penalised regression model, which integrates generalised regression 221 

models with regularisation techniques using penalty functions. It combines ridge regression, 222 

which applies a penalty term to the sum of squared coefficients to favour grouping highly 223 

correlated predictors, and a lasso constraint on the sum of the absolute values of the 224 

coefficients to minimise the impact of irrelevant variables and set their coefficients to zero. This 225 

provides the model sparsity (lasso) and robustness (ridge) (Zou and Hastie, 2005). The final 226 

model will thus include fewer features than the initial state, which is helpful to avoid overfitting 227 

the model to the training data. For this reason, ENET is particularly adapted to variable 228 

selection of data with high collinearity (Lenters et al., 2016).  229 

ENET is implemented using the glmnet function of the R package glmnet. Tuning parameters 230 

of glmnet are alpha (lasso, mixing percentage) and lambda (regularisation parameter). Alpha 231 

and lambda values ranged from 0 to 1. For the full model, the lasso penalty term alpha was 232 

set to 0, thus eliminating its intrinsic sparsity parameter. 233 

b) Artificial Neural Network  234 

ANNs are ML algorithms inspired by the structure of biological neural networks. They consist 235 

of a number of interconnected neural nodes. The structure of ANNs usually comprise three 236 

principal layers: the input layer includes input nodes (predictor variables), the output layer 237 

consists of a single output node (endometriosis status), and the middle hidden layer(s) are 238 

populated by a collection of hidden nodes with values which model the complex relationships 239 

between the input and output layers but which do not of themselves have a real world 240 

analogue. The synapses which connect each of these layers’ nodes to one another are 241 

weighted, which represents the strength of the connection, similar to coefficients in logistic 242 

regression models. In neural networks, the weight decay value acts as the regularisation term. 243 

ANN is implemented using the nnet package. Tuning parameters are size (number of hidden 244 

layers) and decay (weight decay). Size ranged from 1 to 50, and decay from 0 to 0.9.  245 

c) Support Vector Machine 246 

SVM is a classifier that works by reimagining data in a multidimensional space and generating 247 

multiple potential hyperplanes to separate data, then selecting the optimal hyperplane which 248 
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maximises the margins between the two groups (here, cases and controls). Typically, SVMs 249 

are used as a linear classification model, but they can also generate hyperplanes for nonlinear 250 

data using a kernel function. In this study, we used an SVM with a radial basis function (RBF) 251 

kernel for nonlinear data to transform the original feature space for better separation of the two 252 

groups. Regularisation is controlled by a cost parameter. The cost parameter controls the 253 

tradeoff between training errors and model complexity. A smaller cost value increases the 254 

number of training errors while larger costs may lead to overfitting. The sigma parameter with 255 

RBF kernel determines the flexibility of the decision boundary and how much influence a single 256 

feature can exert. Larger sigmas create a more flexible and smooth decision boundary with 257 

more variance and thus act as a more general classifier, while smaller sigma values are stricter 258 

and tend to make more local classifiers (Ben-Hur A., 2010). Tuning parameters of svmradial 259 

from the kernlab package are sigma (Sigma) and C (Cost). Sigma ranged from 0.001 to 1, and 260 

cost ranged from 0 to 100. 261 

d) Boosting trees: Adaboost 262 

Boosting algorithms iteratively combine the output of multiple weaker classifiers (decision 263 

trees) in a stepwise manner to improve performance at each iteration to make a strong 264 

classifier. Combining the boosting technique with decision trees allows each subsequent 265 

iteration to focus on increasingly harder to classify observations, regularising iteratively, and 266 

ultimately yielding a weighted sum which serves as the final classifier. Individual decision trees 267 

that are more performant contribute more to the final classifier. In this study, we used adaptive 268 

boosting, Adaboost (ADA), which specialises in minimising exponential loss function by 269 

adapting the weights to increase accuracy in predictions (Friedman et al., 2000). ADA 270 

Classification Trees was computed with the package fastAdaboost with tuning parameters 271 

nIter (number of trees), which ranged from 10 to 500, and method (boosting method). 272 

e) Partial least squares discriminant analysis 273 

Partial least squares discriminant analysis (PLSDA) models approximate the relationship 274 

between predictor variables and the response variable (endometriosis status), searching for 275 

directions of maximum covariance between the two. Using the softmax function, predictor 276 
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variables are assigned "probability-like" values (on a scale of 0 to 1 which sum to 1), and the 277 

class with the largest class probability is the predicted class. In the sparse form, only the most 278 

predictive or discriminative features from the data are selected to inform classification. 279 

The tuning parameter of plsda from the pls package is ncomp (number of components), which 280 

ranged from 2 to 54. 281 

 282 

Results 283 

Descriptive analysis 284 

Cases (n = 55) and controls (n = 44) were matched for age, BMI, and breastfeeding history, 285 

three factors which are known to be strongly correlated with internal exposure levels of POPs 286 

(Ploteau et al., 2016). Mean and standard deviation age of control and case group were 32.6 287 

(±6.5) and 34.3 (±6.2) years, respectively (Student T test, p=0.19). BMI also did not differ 288 

between groups, with 25.4 (±5.9) kg/m2 for controls and 24.0 (±5.1) kg/m2 for cases (p=0.21). 289 

Parity and breastfeeding were not included in the models due to their uncertain causal role in 290 

the pathogenesis of endometriosis (Ploteau et al., 2017; Upson et al., 2013). Cases exhibited 291 

lower average breastfeeding duration (4.1±14.9 months) than controls (1.3±3.1 months), but 292 

did not differ statistically (p=0.18). Distributions of concentrations of POPs in AT for cases and 293 

controls are provided in Supplemental Table S2.  294 

 295 
Exploratory Data Analysis 296 

Coefficients from the bivariate correlation analysis between pollutants are depicted in the 297 

heatmap in Figure 1. Clusters of dioxins, PCBs, brominated flame retardants and pesticides 298 

present positive correlations. Coplanar PCBs 189, 169, 167, 157, 156, 126, 123, 118, 114, 105 299 

were found to be positively correlated amongst one another but not with coplanar PCBs 77 300 

and 81. Interestingly, OCDF was not found to be strongly correlated with any other variable, 301 

save for a moderate positive association with 1.2.3.7.8.9 HxCDF and 1.2.3.4.7.8.9 HpCDF. 302 

PBDEs were found to be mildly negatively correlated with dioxins, furans, and pesticides, 303 

1.2.3.7.8 PeCDF and 2.3.7.8 TCDF, and non-coplanar PCBs 28, 52, and 101. Age was mildly 304 
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positively correlated with the same clusters of dioxins and coplanar PCBs. BMI did not show 305 

any correlations with any of the other variables. Heatmaps displaying the correlation analysis 306 

stratified by endometriosis status did not show visual differences between cases and controls 307 

(Supplemental Figure S1).  308 

Figure 1. Correlation analysis heatmap 309 

 310 

 311 

With regard to PCA, the two first components summarise more than a half of the data (42.49% 312 

of inertia retrieved by the first component, 13.10% by the second) (Supplemental Figure S2A). 313 

Factor maps depicting the correlations between pollutants variables and the two components 314 

are available in Supplemental Figures S2B-C.  315 
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Figure 2. Clustering of the exposure variables using CLV, (A) Dendrogram and (B) 316 
representation of the partition into five clusters on the basis of the two dimensional PCA 317 
variables configuration. 318 

  319 
 320 

CLV revealed the underlying structure of the data, which can be visualised in a dendrogram 321 

(Figure 2A), five clusters (K = 5) of which can be seen in a two dimensional PCA variables 322 

configuration (Figure 2B). The groups identified tend to form clusters around extant chemical 323 

families: dioxins, furans, pesticides, coplanar PCBs, non-coplanar PCBs, PBDEs, and PBBs. 324 

The partition of variables has been defined so that within each cluster the angles between 325 

vectors associated with the exposure variables and a latent (not observed) central variable are 326 

minimised (maximising correlation). However, some exposure variables such as HCBD (G4), 327 

or PBDE209 and PBDE153 (G5) which are both far from the centre of their respective cluster 328 

and not well represented into the first PCA map may have been difficult to assign to any of the 329 

five clusters highlighted. In the dendrogram, it can be seen that HCBD would be in its own 330 

cluster at K = 11, and that PBDE209 and PBDE153 form a very small cluster. 331 

Multipollutant Data Analysis 332 

Parameter optimisation plots are available in Supplemental Figures S3-S7 and the final 333 

selected parameters are summarised in Table 1.  334 

A       B 



15 
 

Table 1. Summary of algorithms, package functions and parameters optimised throughout the 335 
calibration process for the full and sparse models. 336 
  

Model Package Method Tuning Parameters  
(full) 

Tuning Parameters 
(sparse) 

Regularised logistic 
regression  

glmnet glmnet alpha = 0 
lambda = 0.05 

alpha = 0.3 
lambda = 0.1 

Artificial Neural 
Network 

nnet nnet size = 2 
decay = 0.8 

size = 2 
decay = 0.8  

Support Vector 
Machine 

kernlab svmRadial sigma = 0.001 
C =100 

sigma = 0.001 
C = 100 

Adaboost fastAdaboost adaboost nIter = 100 
method = Adaboost.M1 

nInter = 100 
method = Adaboost.M1 

Partial Least Squares -
Discriminant Analysis 

pls plsda ncomp = 5 ncomp = 2 

 337 

Full Models 338 

For each model, a list of VIs was generated, signifying to what extent each variable contributed 339 

to the final model (Figure S8).  340 

Models were further compared according to their fit (Figure 3A, Table S3) and classification 341 

performance (Table S4) using a confusion matrix to determine accuracy, AUC, sensitivity, and 342 

specificity. Ridge, SVM and ANN scored highest in AUC (SD) (0.968 (0.035), 0.958 (0.059), 343 

0.956 (0.063) respectively. ENET had the highest scoring sensitivity (0.900 (0.129)) and ANN 344 

had the highest scoring specificity (0.900 (0.175)) with the lowest sensitivity (0.775 (0.208)). 345 
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Figure 3. Model Fit Comparison for (A) Full and (B) Sparse Models presented in median and 346 
interquartile range. 347 
 348 

 349 

Sparse Models 350 

Calibration plots of variable selection for each model are available in Supplemental Figures S9-351 

S13. Nineteen variables were identified by ENET (OCDF, cis-heptachlor epoxide, PCB77, 352 

PCB81, BMI, PCB123, trans-nonachlor, PCB52, PCB101, PCB157, 2.3.4.6.7.8 HxCDF, PBB153, 353 

1.2.3.4.6.7.8 HpCDF, Oxychlordane, PBDE183, PBDE154, and 1.2.3.4.6.7.8 HpCDD); twenty 354 
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variables were identified by ANN (OCDF, cis-heptachlor epoxide, PCB77, PCB81, PBB153, BMI, 355 

2.3.4.6.7.8 HxCDF, PCB157, 1.2.3.7.8 PeCDD, PBDE154, PBDE47, PCB52, trans-nonachlor, 356 

PCB28, PBDE153, PCB123, 1.2.3.4.6.7.8 HpCDD, oxychlordane, PBDE183, 1.2.3.4.6.7.8 357 

HpCDF); five were identified by SVM (OCDF, cis-heptachlor epoxide, PCB77, PCB81, trans-358 

nonachlor); ten were identified by ADA (OCDF, cis-heptachlore epoxide, PCB77, PBB153, 359 

oxychlordane, trans-nonachlor, dieldrin, PCB123, HCB, PCB105) and five by PLSDA (OCDF, cis-360 

heptachlor epoxide, dieldrin, PCB77, and PCB81) (Figure 4).  361 

Of particular interest, three variables were identified by all five models (OCDF, cis-heptachlor 362 

epoxide, and PCB77). Trans-nonachlor and PCB81 were identified by four of the five models. 363 

Three of the models identified PBB153, PCB123, and oxychlordane as important variables. 364 

Summary of classification performance metrics (accuracy, AUC, sensitivity, and specificity) are 365 

presented in Figure 4B and Table S4 for each model. Model fit accuracy for sparse models all 366 

ranged from 85.0-88.8%, and AUC indices (SD) were all greater than 0.95 (ENET 0.988 (0.024), 367 

ANN 0.989 (0.024), SVM 0.973 (0.058), ADA 0.954 (0.039), PLSDA 0.980 (0.045)). Sensitivity 368 

across models did not vary markedly from one another (ENET 0.817 (0.211), ANN 0.900 (0.129), 369 

SVM 0.891 (0.142), ADA, 0.867 (0.188), PLSDA 0.975 (0.079)), nor did specificity (ENET 0.915 370 

(0.111), ANN 0.895 (0.146), SVM 0.885 (0.256), ADA, 0.870 (0.106), PLSDA 0.775 (0.203)). 371 

Values of all model fit metrics are available in Supplemental Table S3. 372 

Finally, statistical significance of paired proportions was calculated in a confusion matrix. ENET, 373 

ANN, SVM, and ADA with RFE had a prediction accuracy of 84.2% (p = 0.015), which was 374 

significantly better than chance (57.9%); on the contrary, PLSDA with feature selection failed in 375 

significantly classifying better than chance (Figure S14). Sensitivity and specificity are listed in 376 

Supplemental Table S4. 377 
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Figure 4. Variables selected for sparse models on a 0-100 scale of predictive relative importance 378 

379 
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 380 

Discussion 381 

In this study, we applied for the first time a selection of multipollutant models, including three ML 382 

classifiers scarcely used in epidemiology, to support variable selection from a highly correlated 383 

dataset of POPs biomarkers. Full and sparse models were investigated to compare the balance 384 

between bias, variance, classification performance and interpretability of results. Full models, 385 

which include every variable into the final model, may be more useful in terms of biological 386 

interpretation, but at the risk of being computationally cumbersome, overfitting the data, and 387 

including unnecessary variables, especially when dealing with high dimensional data. Sparse 388 

models, which select variables on the basis of minimising classification error, address the issues 389 

of dealing with high dimensional data, but may fail to reveal true underlying biological associations 390 

by selecting only one representative biomarker from a cluster of correlated variables, as one 391 

particularly strong association may mask other structurally associated predictors. It is thus 392 

important in sparse models to note not only which variables are commonly selected across 393 

models but also which differ, taking into account their bivariate relationships as well. Thus in order 394 

to support the biological interpretation of findings and taking advantage of both types of models, 395 

the variables identified from sparse models should be judged against the structures from full 396 

models and the interdependency between variables. In any case, variable selection should be 397 

considered as a preliminary step to support the construction of causal structures and explanatory 398 

models under high dimensional settings with correlated exposures, as commonly found with POP-399 

endometriosis research.   400 

This initial exploration supports the use of regularised regression (i.e. elastic-net) for variable 401 

selection, exhibiting an adequate balance between classification performance and interpretability. 402 

In this study, powerful classifiers such as SVM, ANN or ADA did not outperform other commonly 403 

used algorithms such as PLSDA or ENET. Globally, variable selection was very consistent across 404 
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the different models with minor differences in the biomarker rankings. For sparse models, the 405 

number of discriminant variables retained was substantially lower for SVM and PLSDA than for 406 

the other models. Three variables appeared as the strongest predictors of endometriosis status, 407 

namely OCDF, cis-heptachlor epoxide, and PCB77. Trans-nonachlor and PCB81 were identified 408 

by four of the five tested models, while PBB153, PCB123, and oxychlordane were identified by 409 

three. These results are consistent with our previous findings using a sequential logistic 410 

regression followed by false discovery rate correction, with an Odds Ratio (95% CI) of 5.42 (2.73-411 

12.85) and 5.36 (2.44-14.84) for OCDF and cis-heptachlor epoxide, respectively (Ploteau et al., 412 

2017). Coplanar PCB 77 and 123, as well as polybrominated flame retardant PBB153, were also 413 

identified as important predictors. The correlations between pesticides cis-heptachlor epoxide and 414 

trans-nonachlor with PCDDs, coplanar PCBs, several furans and non-coplanar dioxins might 415 

mask the impact of the latter on endometriosis in sparse models. Interestingly, OCDF, the 416 

strongest signal identified by all five models, was not strongly correlated with any other predictor 417 

variable. 418 

The model fit of five models did not differ substantially in terms of AUC, specificity, or sensitivity. 419 

In this study, all five models had AUC values greater than 0.9, suggesting that this battery of 420 

algorithms presents a promising method of modelling the associations between concentrations of 421 

POPs in AT and endometriosis status. Interestingly, PLSDA with RFE performed well in model fit 422 

(AUC = 0.98) but scored lowest in classification accuracy  (i.e. 0.68 (95% CI; 0.43, 0.87)). This 423 

may be due to the use of RFE to induce sparsity, instead of using the intrinsic sparse PLSDA 424 

(sPLDSA) with lasso penalisation of PLS loading vectors (Le Cao et al., 2011; Le Cao et al., 425 

2008). The performance of the multiclass wrapper RFE has shown to decrease dramatically with 426 

the number and correlation of variables due to the backward elimination used for variable 427 

selection (Le Cao et al., 2011). We have applied RFE here to allow direct comparison among 428 

models; however, future studies with wide and highly correlated datasets should consider the use 429 
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of sPLSDA over the RFE procedure. Surprisingly, powerful classifiers such as ANN and SVM did 430 

not outperform the classification performance of more standard methods such as ENET with the 431 

present dataset. The small sample size of the dataset might explain the imperfect architecture of 432 

hidden layers, the number of neurons in each layer, and the activation functions in ANN 433 

(Alwosheel et al., 2018). 434 

Despite the emergent use of multipollutant models in environmental epidemiology, few studies 435 

have applied ML algorithms to gain better insight into the complex exposome-health associations 436 

(Stafoggia et al., 2017). In the field of endometriosis, two previous multipollutant approaches have 437 

addressed high-dimensional POP biomarker data structures from a common case-control study 438 

(Louis et al., 2005). The first study (Roy et al., 2012) applied a data-driven reduction approach, 439 

Bayesian Belief Network, to identify the most associated biomarkers conditional to all other 440 

exposures and including biologically relevant covariates of endometriosis. Authors found PCB114 441 

as the most influential biomarker from a mixture of 62 congeners. The second (Zhang et al., 2012) 442 

applied latent class models for a joint analysis of PCB mixtures, characterising biomarker-specific 443 

differences through random effects, accommodating the number of ordinal latent classes. 444 

Additionally, several recent studies have employed batteries of ML models to study other risk 445 

factors on health outcomes. For instance, Zhao et al. (2019) tested four different algorithms (ANN, 446 

SVM, ADA, Random Forest (RF)) on a population of 1113 workers exposed to industrial noise to 447 

predict hearing impairment. Predictive accuracy was found to be between 78.6-80.1% for all four 448 

models, which is comparable to the accuracies for ANN, SVM, and ADA (84.2%) found in this 449 

study. Although SVM had slightly higher accuracy than the other three models, the predictive 450 

abilities of the four models were not significantly different. Authors concluded that these 451 

algorithms may be a feasible tool for evaluation and prediction. Tomiazzi et al. (2019) evaluated 452 

hearing impairment in 127 Brazilian farmers exposed to pesticides and/or cigarette smoke, using 453 

ANN, SVM, and K-Nearest Neighbour. The models were able to distinguish exposure group from 454 
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control group but failed to differentiate between five different exposure classes (Tomiazzi et al., 455 

2019).  456 

Nevertheless, some methodological limitations remain. One challenge of ML algorithms is the 457 

balance between model complexity and classification performance. Full models, which can be 458 

powerful tools in mapping relationships between predictors and outcome, may overfit the data, as 459 

every variable is included in the final model even if they are arbitrary noisy variables. Sparse 460 

models risk losing valuable biologically relevant information in favour of predictive performance. 461 

There is currently no consensus on how to measure degree of overfitting, despite the intensive 462 

use of validation techniques aimed at controlling such risk (Hastie, 2009). Model performance 463 

depends heavily on not only the size of the datasets but also on the parameters of each model. 464 

Simulation studies have shown little impact of sample size on classification performance of ENET, 465 

lasso, boosted trees or sPLSDA, in high-dimensional (p=50) and high-correlated datasets (ρ=0.8) 466 

(Lenters et al., 2018). Nonetheless, our findings should be carefully considered due to the small 467 

number of observations of the dataset (n = 99). Sample size may also impact the stability of 468 

coefficients and the reproducibility of results, an inherent issue of data-driven calibrations based 469 

on k-fold CV to select the tuning parameters (Lim and Yu, 2016). Furthermore, we only conducted 470 

internal CV for model optimisation and model performance evaluation, constraining the 471 

generalisability of our findings and highlighting the need for supplementary analogue datasets to 472 

externally validate the findings. 473 

As the variable selection process should be considered a preliminary step previous to inferential 474 

analysis, an additional challenge posed by ML is the interpretability of outputs. ML algorithms are 475 

often viewed as “black boxes,” where it is difficult to inspect the inner workings of how outputs are 476 

generated and what they mean in a real-world context. The coupling of modelling techniques with 477 

graphical approaches has been proposed as a crucial way to apply and interpret ANNs in 478 

epidemiological research (Duh et al., 1998). In a simulation setting, kernel mapping in combination 479 
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with a perceptron neural network has shown to efficiently generate odds ratios from perceptron 480 

weights to ease epidemiological interpretation of complex nonlinear exposure-disease 481 

associations (Heine et al., 2011). Future simulation studies should aim to extend the knowledge 482 

of model performance of ML classifiers in exposome-health settings, exploring the impact of 483 

parametrisation, sample size, correlation and interaction between exposure variables (Barrera-484 

Gomez et al., 2017; Lenters et al., 2018). 485 

The field of biomarkers for exposure assessment is moving fast towards a more chemical agnostic 486 

paradigm, favouring the generation of massive spectral datasets (Andra et al., 2017). Application 487 

of this novel high-throughput technology in epidemiology will demand an accommodation of 488 

epidemiological frameworks and clear harmonisation and standardisation of statistical workflows 489 

for comparability of findings (Manrai et al., 2017). Thus, novel approaches should empower 490 

multidimensional modelling to account for confounding and mediation of biomarker mixtures 491 

(Bellavia et al., 2019; Mostafavi et al., 2019). For instance, two-stage regression has been applied 492 

to address confounding, with a preliminary regression step between each outcome and exposure 493 

against the confounders, and a secondary sPLS regression fitting the resulting residuals (Lenters 494 

et al., 2015). The targeted maximum-likelihood based estimation is a doubly robust approach with 495 

powerful applications in causal inference of observational research. This approach has the 496 

potential to integrate multiple environmental and dietary exposures with confounding variables 497 

(Papadoupoulou et al., 2019). Considering that there is no one single algorithm with a definitive 498 

approach to build multipollutant models in exposome-health associations, the statistical 499 

exposome toolbox should be furnished with a variety of complementary algorithms to support the 500 

understanding of complex associations. In this regard, these novel ML algorithms seem a 501 

promising complement to characterising non-linear associations under highly collinear  502 

circumstances, especially in cases were the interpretability may be compromised in favour of 503 

identifying subtler statistical signals from noise (Hamra and Buckley, 2018). 504 
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Conclusions 505 

In conclusion, the tested ML models were able to consistently reveal a number of pollutants 506 

associated with endometriosis, including OCDF, heptachlor epoxide and PCB77. The high 507 

classification performance for all five models suggests that ML may be a promising 508 

complementary approach in modelling highly correlated exposure matrices and their associations 509 

with health outcomes. It is important, however, to perform a follow-up explanatory statistical 510 

analysis on the identified variables of interest to make biological inferences. Regularised logistic 511 

regression provided a good compromise between the interpretability of traditional statistical 512 

approaches and the classification capacity of machine learning approaches for this initial 513 

exploration. Applying a battery of complementary algorithms may be a strategic approach to 514 

decipher complex exposome-health associations when the underlying structure is unknown. 515 

Future simulation studies should aim to evaluate the impact of parametrisation, overfitting, sample 516 

size, correlation between variables and to quantify model stabilities.  517 
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