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Sequence‑based GWAS 
and post‑GWAS analyses reveal 
a key role of SLC37A1, ANKH, 
and regulatory regions on bovine 
milk mineral content
Marie‑Pierre Sanchez1*, Dominique Rocha1, Mathieu Charles1, Mekki Boussaha1, 
Chris Hozé1,2, Mickaël Brochard3, Agnès Delacroix‑Buchet1, Philippe Grosperrin4 & 
Didier Boichard1 

The mineral composition of bovine milk plays an important role in determining its nutritional and 
cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra 
produced during milk recording, combined with cow genotypes, provide a unique opportunity to 
decipher the genetic determinism of these traits. The present study included 1 million test-day 
predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 
had genotype data available. All investigated traits were highly heritable (0.50–0.58), with the 
exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL 
(18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-
coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory 
SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). 
Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland 
compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, 
encoding proteins involved in ion transport were located in the most significant QTL. This study 
therefore highlights a comprehensive set of functional candidate genes and variants that affect milk 
mineral content.

Bovine milk contains many essential nutrients, such as lactose (~ 48 g/L), fatty acids (~ 37 g/L), proteins 
(~ 34 g/L), and minerals (~ 9 g/L). Although less abundant than other solid components of milk, the major min-
erals—potassium (K), calcium (Ca), phosphorus (P), sodium (Na), and magnesium (Mg)—have an important 
effect on both human health and the cheese-making process. In humans, all of these minerals are necessary for 
many vital functions and therefore for the maintenance of good health. Dairy products can represent an impor-
tant source of minerals in the human diet, especially of well-assimilated Ca1. In milk, minerals are found either 
in solution (soluble fraction) or in colloidal form (insoluble fraction). Some minerals are exclusively found in 
the soluble fraction (e.g., K and Na) while others exist in both fractions (e.g., Ca, P, and Mg). In the soluble frac-
tion, Ca, P, and Mg exist in different forms, including ions and salts (phosphates and citrates), while in colloidal 
form, they are associated with casein molecules in the micelles and play a role in the structure and stability of 
these assemblages during the cheesemaking process2. Higher mineral concentrations are therefore associated 
with improved coagulation properties of milk3,4 and could enhance the nutritional value for human consumers.

Despite the potential benefits to human nutrition and milk processing, little is known about the genetic 
factors that influence milk mineral composition, mainly because the determination of mineral content via ref-
erence analyses is costly and time-consuming. A number of studies have reported genetic variation in milk 
mineral composition5–11, but to our knowledge, only two studies have conducted genome-wide association stud-
ies (GWAS) to investigate the genomic regions associated with these traits9,12. Both of those prior studies used 
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777 k SNPs and a relatively small sample of cows. As an alternative to reference analyses, mid-infrared (MIR) 
spectrometry can predict various milk components, including mineral fractions13–15, quickly and cheaply. Because 
of these advantages, milk MIR spectra are routinely recorded and stored. The combination of this technology 
with i) the widespread genotyping of cows for genomic selection, ii) the availability of whole-genome sequence 
(WGS) data from the 1000 Bull Genomes Project16, and iii) ever-increasing knowledge of the bovine genome17,18 
creates the possibility of large-scale, high-resolution analyses for identification of the genes and variants that 
affect the mineral content of milk. We have previously applied this approach—whole-genome sequence-based 
GWAS combined with MIR predictions—to investigate milk protein composition19 and cheese-making traits20, 
and in both cases we succeeded in highlighting functional candidate genes. In particular, the genes SLC37A1 and 
ANKH were strongly linked with milk quality; both encode transmembrane proteins involved in ion transport 
and are therefore likely to have an effect on milk mineral composition. However, in these genes, as well as in 
other genes we identified, the variants with the most significant effects were mostly found in non-coding regions 
with limited annotation, which made it difficult to distinguish the causal variant. This pattern is quite general 
and many studies have reported the major role of regulatory variants in the architecture of complex traits21. To 
address this challenge, further investigation of non-coding regions is needed, particularly with respect to binding 
sites of transcription factors and non-coding RNA which could regulate gene expression.

The main objective of this study was to identify the best candidate genes and variants that might affect the 
content of Ca, P, Mg, K, Na, and citrate in milk, as predicted from MIR spectra. For this, we first conducted a 
GWAS on imputed WGS data of 19,586 Montbéliarde cows, and then performed post-GWAS analyses using 
different sources of annotation data to further refine our results.

Results
We analyzed six traits predicted from MIR spectra in Montbéliarde cows, representing the mineral (Ca, P, Mg, 
K, and Na) and citrate content of milk. MIR prediction equations originated from the Optimir project14,15. The 
accuracies of these MIR predictions, as assessed by the coefficient of determination (R2) in a validation popula-
tion (Table 1), ranged from 0.68 to 0.90, with the exception of Na (0.44).

Heritability and genetic correlation estimates for mineral and citrate content.  Genetic param-
eters, i.e. heritabilities (h2) and genetic correlations (rg), were estimated for milk mineral and citrate content, as 
predicted from more than 1 million test-day records from 126,873 cows (Table 2). At the test-day level, herit-
ability estimates were moderate for Na content (h2 = 0.32) but higher for other minerals (h2 = 0.50 to 0.56) and 
citrate (h2 = 0.48). Na was negatively and poorly correlated with other minerals (-0.23 ≤ rg ≤  − 0.02) and citrate 
(rg =  − 0.15), while the levels of most other minerals were generally positively correlated (0.11 ≤ rg ≤ 0.60); the 
exception was the relationship between Ca and K (rg =  − 0.22). Values of the genetic correlation between citrate 
and mineral levels in milk ranged quite broadly, depending on the mineral: null with K (rg = 0.01 with K), slightly 
negative with Na (rg =  − 0.15) and P (rg =  − 0.16), and highly positive with Ca (rg = 0.57) and Mg (rg = 0.59).

Table 1.   Mean, standard deviation (SD), and accuracy (R2), estimated by cross-validation, of mid-infrared 
(MIR) predictions for concentrations of minerals and citrate in milk from Montbéliarde cows.

Trait Abbrev Mean SD R2 MIR prediction

Calcium, in mg kg−1 of milk Ca 1161.4 92.6 0.82

Phosphorus, in mg kg−1 of milk P 1007.0 77.5 0.75

Magnesium, in mg kg−1 of milk Mg 1473.8 104.5 0.77

Potassium, in mg kg−1 of milk K 100.5 7.2 0.68

Sodium, in mg kg−1 of milk Na 341.7 44.5 0.44

Citrate, in g kg−1 of milk Citrate 8.27 1.49 0.90

Table 2.   Estimates of heritability (in bold, diagonal) and genetic correlation (above the diagonal) for the 
concentrations of minerals and citrate in milk (SE < 0.01).

Ca P Mg K Na Citrate

Ca 0.50 0.34 0.60 − 0.22 − 0.20 0.57

P 0.56 0.58 0.39 − 0.23 − 0.16

Mg 0.52 0.11 − 0.02 0.59

K 0.53 − 0.05 0.01

Na 0.32 − 0.15

Citrate 0.48
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QTL identified in GWAS.  We conducted single-trait GWASs on imputed WGSs from 19,586 cows 
(12,907,802 variants) and primarily identified 96 trait x region combinations with significant effects 
(-log10(P) ≥ 8.4) on milk mineral and citrate composition by applying the procedure described in the Methods 
section (Fig. 1). In two genomic regions (a 12Mbp-region on BTA1 and a 27Mbp-region on BTA20), the single 
marker analyses identified multiple trait x region combinations (10 and 15, respectively). Therefore, conditional 
analyses including the most significant variant identified in each region was applied to decipher if significant 

Figure 1.   –log10(P) value of the effect of variants on milk mineral (Ca, P, Mg, K, and Na) or citrate content 
plotted against their position on Bos taurus autosomes.
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variants were due to linkage disequilibrium (LD) with the same causal mutation or to the presence of multiple 
causal mutations. These analyses led to the exclusion of 4 and 9 trait x region combinations on BTA1 and BTA20, 
respectively, resulting in 83 independent QTL. These QTL corresponded to 50 genomic regions located on Bos 
taurus (BTA) autosomes 1, 2, 3, 4, 5, 6, and 7 (Table 3) and 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 
and 29 (Table 4). Of these, 18 regions had effects on several traits (2 to 5), while 32 affected only one trait. The 

Table 3.   QTL identified for milk mineral and citrate content on Bos taurus (BTA) autosomes 1 to 10 (when a 
QTL region affected multiple traits, the most significantly affected trait is indicated in bold).

Region QTL Trait BTA

Confidence Interval of the QTL Variant with the most significant effect (frequency p and effect b of the ALT allele)

From (bp) To (bp) # variants # genes Position (bp) ID p R2 −log10P b SE Name of gene(s) Impact

1 1 P 1 135,384,680 136,262,601 8 3 136,262,601 rs210630730 0.199 0.69 11.5 8.57 1.23 TMEM108 Intron

2 4 Mg 1 142,826,156 142,837,365 9 1 142,834,737 rs109459130 0.576 0.85 64.1 1.48 0.09 SLC37A1 Intron

2 5 P 1 142,826,156 142,835,551 7 1 142,834,737 rs109459130 0.576 0.85 219.3 30.2 0.95 SLC37A1 Intron

2 6 K 1 142,826,156 142,838,477 31 1 142,835,551 rs109717634 0.613 1.00 138.1 22.4 0.89 SLC37A1 Intron

2 7 Na 1 142,826,156 142,835,551 7 1 142,835,551 rs109717634 0.613 1.00 19.5 − 3.77 0.41 SLC37A1 Intron

3 9 Mg 1 145,114,056 146,804,023 64 3 146,775,338 rs43048006 0.630 0.33 10.3 − 0.70 0.11 – –

4 11 Na 2 5,738,340 7,483,560 104 7 5,739,439 rs209271012 0.111 0.86 10.4 3.85 0.58 LOC104971101 lncRNA

5 12 Na 2 131,111,763 131,742,987 206 9 131,197,793 rs133533873 0.672 0.99 13.8 2.84 0.37 ALPL Intron

6 13 Na 3 15,459,107 15,540,579 7 6 15,470,670 rs110073735 0.026 0.92 8.9 − 5.20 0.86 EFNA1 / 
LOC107132270

Intron / 
lncRNA

7 14 Ca 4 48,711,128 48,835,496 22 4 48,711,294 rs381111559 0.291 0.59 13.0 − 10.5 1.42 SLC26A4 Intron

8 15 Na 4 75,153,659 77,188,370 14 7 77,147,308 rs386097640 0.024 0.87 9.5 6.65 1.06 GCK Intron

8 16 Ca 4 77,147,308 77,257,775 9 7 77,173,366 rs133824313 0.025 0.98 9.1 14.8 2.40 GCK Intron

8 17 Mg 4 77,037,103 77,188,370 8 4 77,173,366 rs133824313 0.025 0.98 11.1 1.34 0.20 GCK Intron

9 18 Ca 4 91,807,789 92,192,288 182 6 92,192,288 rs42451422 0.028 0.95 9.5 13.4 2.13 LRRC4 / SND1 Intron / 
Intron

10 19 Ca 5 108,256,181 109,217,271 87 11 109,141,258 rs383141568 0.570 0.82 8.4 5.73 0.98 BID Intron

11 20 Ca 5 111,637,039 111,848,859 47 7 111,745,513 rs384814366 0.231 0.94 16.6 − 9.38 1.11 MRTFA = MKL1 Intron

12 21 Ca 5 116,403,262 116,463,104 48 8 116,429,840 rs382268272 0.049 0.58 60.5 − 34.8 2.11 LOC101903383 lncRNA

12 22 Na 5 116,403,262 116,907,862 72 17 116,429,922 rs110716509 0.050 0.67 9.3 5.05 0.81 LOC101903383 lncRNA

12 23 Citrate 5 116,403,262 116,468,630 50 8 116,439,760 rs110048000 0.042 0.56 9.5 − 0.25 0.04 PPARA​ Intron

12 24 Mg 5 116,403,806 116,463,104 36 6 116,448,403 rs110659119 0.048 0.97 24.2 − 1.38 0.13 PPARA​ Intron

12 25 P 5 116,420,172 117,323,874 28 5 116,448,403 rs110659119 0.048 0.97 19.5 − 13.5 1.46 PPARA​ Intron

13 26 Ca 5 119,066,644 119,069,138 25 1 119,068,337 rs134583661 0.046 0.95 48.4 − 24.8 1.69 – Intergenic

13 27 Mg 5 119,066,644 119,069,138 25 1 119,068,337 rs134583661 0.046 0.95 20.1 − 1.29 0.14 – Intergenic

13 28 P 5 119,066,644 119,069,138 25 1 119,068,337 rs134583661 0.046 0.95 17.9 − 13.2 1.50 – Intergenic

14 29 K 6 40,012,262 40,518,049 18 2 40,024,540 rs43610452 0.064 0.99 11.7 − 11.6 1.66 SLIT2 Intron

15 30 P 6 42,855,236 43,032,274 17 3 42,870,371 rs42610629 0.523 0.97 9.2 5.59 0.91 – Intergenic

16 31 K 6 43,297,568 43,322,676 12 1 43,322,676 rs43463132 0.778 0.97 40.7 13.2 0.98 – Intergenic

17 32 P 6 45,018,531 45,401,570 78 4 45,056,055 rs378008740 0.713 0.76 30.6 12.7 1.09 – Intergenic

17 33 K 6 45,018,882 45,401,570 66 4 45,328,581 rs135848932 0.174 1.00 120.0 − 27.4 1.17 SEL1L3 Intron

17 34 Ca 6 45,328,392 45,411,116 17 4 45,393,335 rs134399380 0.183 0.91 8.6 7.24 1.22 – Intergenic

17 35 Na 6 45,215,035 45,401,570 17 4 45,401,485 rs108972810 0.177 0.99 10.2 − 3.39 0.52 SMIM20 / 
LOC112447060

Upstream 
BS DOF5.3 / 
lncRNA

18 36 K 6 47,687,737 49,094,600 79 1 48,145,964 rs43461552 0.336 0.92 26.9 − 10.6 0.98 – Intergenic

19 37 K 6 50,277,420 51,315,936 82 2 51,311,430 rs110769289 0.555 0.53 9.1 − 5.72 0.93 – Intergenic

20 38 K 6 56,960,135 56,970,541 6 1 56,968,022 rs134533189 0.091 0.41 9.4 − 8.37 1.34 RELL1 Intron

21 39 Na 6 85,409,619 86,104,900 312 15 85,512,651 rs110772556 0.660 0.98 8.6 2.79 0.47 – Intergenic

21 40 Mg 6 85,587,260 85,599,456 41 2 85,594,649 rs209134503 0.481 0.85 29.8 − 1.09 0.10 ODAM Synonymous

21 41 Ca 6 85,406,891 85,599,456 44 5 85,594,717 rs135113545 0.485 0.79 17.0 − 10.6 1.24 ODAM Intron

21 42 P 6 85,564,407 87,276,896 1004 6 87,033,142 rs110121930 0.613 1.00 12.3 − 7.88 1.09 – Intergenic

22 43 Mg 6 88,380,434 88,436,951 4 1 88,390,406 rs133413027 0.252 0.99 9.8 − 0.56 0.09 – Intergenic

23 44 Citrate 6 117,331,679 117,456,476 30 7 117,407,851 rs43489995 0.306 0.30 10.4 0.22 0.03 TMEM175 / DGKQ Downstream / 
Synonymous

23 45 Ca 6 117,331,679 117,457,454 42 6 117,442,167 – 0.407 0.41 19.8 12.7 1.37 GAK Intron

24 46 Na 7 1,055,458 1,365,056 387 3 1,057,563 rs210648426 0.346 0.91 14.3 − 2.85 0.36 RASGEF1C Intron

25 47 Ca 7 37,353,946 39,223,460 24 16 39,194,875 rs41567828 0.068 0.99 9.1 12.8 2.08 LOC107132625 lncRNA

25 48 P 7 38,917,914 40,541,631 10 5 40,541,609 rs1116258782 0.009 0.22 16.9 31.7 3.71 – Intergenic

25 49 Ca 7 39,528,343 42,832,365 179 16 41,321,781 rs209051255 0.059 0.76 11.6 18.4 2.63 ENS-
BTAG00000053872

Upstream BS 
FOXD3

26 50 Ca 7 43,090,012 44,848,268 250 19 44,836,642 rs210107035 0.068 0.98 17.1 21.6 2.51 FSTL4 / 
LOC101902643

Intron / 
lncRNA
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four regions with the most significant effects (-log10(P) ≥ 50) each affected four to five traits; these were located 
on BTA 1 (~ 142.8 Mbp, for P, K, Mg, and Na; Fig. 2), 20 (~ 58.2 Mbp, for citrate, Mg, K, and Ca; Fig. 2), 6 (~ 45.3 
Mbp, for K, Ca, P, and Na), and 5 (~ 116.4 Mbp, for Ca, Mg, P, citrate, and Na). Ten other regions with smaller but 
still highly significant effects (20 ≤  − log10(P) < 50) were located on BTA 5 (~ 119.0 Mbp), 6 (~ 43.3, 48.1, and 85.6 
Mbp), 11 (~ 103.2 Mbp), 17 (~ 50.8 Mbp), 19 (~ 60.6 Mbp), 20 (~ 55.9 and 60.8 Mbp), and 22 (~ 32.8 Mbp); these 
also generally affected multiple milk components. All remaining significant QTL regions (8.4 ≤  − log10(P) < 20) 
were spread across 22 different autosomes. Overall, 6 to 21 different QTL were identified for each trait, and their 
cumulative effects explained from 19.8% to 45.5% of the genetic variance of a given trait (Table 5). The most 
significant QTL, located on BTA1 and BTA20, explained more than 23% of the genetic variance of P and citrate, 
respectively.

Table 4.   QTL identified for milk mineral and citrate content on Bos taurus (BTA) autosomes 11 to 29 (when a 
QTL affected multiple traits, the most significantly affected trait is indicated in bold).

Region QTL Trait BTA

Confidence Interval of the QTL Variant with the most significant effect (frequency p and effect b of the ALT allele)

From (bp) To (bp) # variants # genes Position (bp) ID p R2 −log10P b SE Name of gene(s) Impact

27 51 K 11 13,798,363 15,368,263 563 7 14,405,285 rs110177775 0.102 0.96 10.3 8.04 1.22 – Intergenic

28 52 Citrate 11 103,239,082 103,277,147 279 5 103,244,306 rs435710868 0.514 0.85 23.9 0.21 0.02 ENS-
BTAG00000048091

Down-
stream

28 53 P 11 103,239,082 103,277,147 278 6 103,250,796 rs379692402 0.473 0.72 25.0 − 11.8 1.13 – Intergenic

29 54 Na 12 68,052,340 69,715,887 87 7 68,475,505 rs133520200 0.257 1.00 9.2 − 2.91 0.47 – Intergenic

30 55 Na 12 73,666,737 73,725,910 47 1 73,674,445 rs136814628 0.680 0.99 8.5 2.53 0.43 HS6ST3 Intron

31 56 K 13 54,405,085 54,637,805 45 8 54,431,192 rs133004626 0.623 0.95 10.2 − 6.48 0.99 – Intergenic

32 57 Citrate 14 238,942 613,906 35 15 453,437 rs384162250 0.512 1.00 11.0 0.10 0.01 PPP1R16A Upstream

32 58 K 14 232,311 639,312 79 20 515,185 rs460225555 0.501 0.96 14.8 5.60 0.70 VPS28 Down-
stream

32 59 P 14 271,581 758,897 64 20 577,322 rs133788084 0.212 0.21 13.8 12.6 1.64 FBXL6 Upstream

32 60 Ca 14 284,571 700,497 27 7 666,982 rs133196323 0.025 0.34 13.0 32.2 4.31 MROH1 Intron

33 61 Na 15 52,059,631 52,851,538 466 6 52,461,335 rs210668186 0.218 0.60 9.2 − 2.65 0.43 FCHSD2 Intron

34 62 K 17 50,508,807 50,988,913 227 6 50,825,796 rs474259058 0.055 0.95 21.3 15.1 1.56 BRI3BP Intron

35 63 Ca 18 10,563,963 10,833,324 11 4 10,833,324 rs137549452 0.045 0.91 11.3 − 12.9 1.86 KLHL36 / COTL1 Upstream / 
Upstream

36 64 Ca 19 56,448,441 56,609,243 340 8 56,524,233 rs207749796 0.335 0.87 16.1 7.39 0.89 FADS6 Intron

37 65 Na 19 60,550,831 60,870,548 95 2 60,555,853 rs435138644 0.783 0.61 23.6 4.40 0.43 – Intergenic

37 66 Ca 19 60,009,085 60,870,548 41 1 60,561,566 rs41923848 0.843 0.73 11.2 − 7.19 1.05 – Intergenic

38 67 Ca 20 31,888,449 31,888,449 1 1 31,888,449 rs385640152 0.009 0.91 17.0 − 25.1 2.92 GHR / 
LOC112443004

Missense / 
lncRNA

39 68 Mg 20 31,888,449 31,888,449 1 2 31,888,449 rs385640152 0.009 0.91 13.9 − 1.85 0.24 GHR / 
LOC112443004

Missense / 
lncRNA

39 69 P 20 31,888,449 31,888,449 1 1 31,888,449 rs385640152 0.009 0.91 10.3 − 17.0 2.59 GHR / 
LOC112443004

Missense / 
lncRNA

40 75 Ca 20 58,185,895 58,207,145 21 1 58,189,663 rs110048176 0.170 1.00 25.3 13.1 1.24 ENS-
BTAG00000048498 lncRNA

40 76 Mg 20 58,185,895 58,388,462 65 3 58,189,663 rs110048176 0.170 1.00 117.2 2.34 0.10 ENS-
BTAG00000048498 lncRNA

40 77 Cit-
rate 20 58,185,895 58,388,462 81 3 58,204,929 rs109956167 0.166 0.90 187.2 0.73 0.02 ENS-

BTAG00000048498 lncRNA

40 78 K 20 58,185,895 58,388,849 69 2 58,386,888 rs134021638 0.054 0.92 26.3 17.4 1.61 ANKH Intron

41 81 Cit-
rate 20 63,223,010 64,759,735 87 2 63,223,010 rs109390768 0.595 0.98 14.9 0.14 0.02 – Intergenic

41 82 Mg 20 63,223,010 64,753,386 13 1 63,223,010 rs109390768 0.595 0.98 9.0 0.47 0.08 – Intergenic

42 85 Mg 21 39,683,083 41,254,513 144 2 39,933,138 rs134950504 0.070 0.99 9.3 − 0.85 0.14 – Intergenic

43 86 P 22 28,516,349 30,130,198 35 3 30,130,198 rs108953480 0.966 0.90 8.6 11.4 1.92 FOXP1 / ENS-
BTAG00000052330

Upstream / 
lncRNA

44 87 P 22 32,774,174 32,787,867 10 2 32,786,684 rs208411747 0.040 0.92 20.6 − 14.5 1.53 FAM19A4 Intron

44 88 Mg 22 32,772,562 33,329,180 45 4 32,786,854 rs209198296 0.046 0.82 13.3 − 1.03 0.14 FAM19A4 Intron

45 89 K 24 49,837,381 50,315,415 274 8 50,074,695 rs448650804 0.324 0.61 11.1 5.18 0.76 – Intergenic

46 90 P 24 58,272,345 58,396,158 102 4 58,306,855 rs380879212 0.362 0.56 12.8 5.26 0.71 LMAN1 Intron

47 91 Ca 25 20,480,835 20,482,817 2 1 20,480,835 rs109069510 0.888 0.99 8.4 − 8.01 1.36 HS3ST2 Intron

48 92 Mg 27 36,511,563 36,592,556 65 6 36,522,002 rs378026790 0.488 0.96 15.2 0.63 0.08 GPAT4 Upstream

49 93 K 28 6,518,121 6,534,988 2 2 6,518,121 rs42033936 0.224 0.98 13.0 − 6.44 0.86 KCNK1 Intron

49 94 Na 28 5,987,406 6,889,024 58 3 6,518,121 rs42033936 0.224 0.98 10.8 − 2.70 0.40 KCNK1 Intron

50 95 Ca 29 9,193,304 9,907,275 162 7 9,517,882 rs380735416 0.163 0.41 13.1 8.67 1.16 PICALM Upstream

50 96 Na 29 8,731,208 10,144,903 486 11 9,923,696 rs385315120 0.166 0.87 14.8 − 4.28 0.54 TMEM126B Down-
stream
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Annotation of GWAS peaks.  The sizes of the confidence intervals (CI) of QTL ranged from 1 bp to 3.3 
Mbp; each CI contained between 1 and 1004 variants with significant effects (99.3 on average). While only ca. 
6% of the tested variants were included on SNP chips, these chip variants (mainly HD) were disproportionately 
represented among the variants ranked in the top 10 in QTL peaks, and accounted for nearly 43% of the variants 
ranked first in the peaks, i.e. “top 1” variants (Fig. 3). For less than one-third of the QTL detected (24/83), the 
variant with the most significant effect was not located in a gene. Depending on the set of significant variants 
under consideration (all, top 100, top 50, top 10, or top 1), between 25.1% (top 1 variants) and 28.8% (all vari-

Figure 2.   –log10(P) values of the effects of variants on milk mineral (Ca, P, Mg, K, and Na) or citrate content 
plotted against their position on Bos taurus autosomes 1 and 20.

Table 5.   Number of QTL and the percentage of genetic variance explained for each trait.

Trait Number of QTL

% of genetic variance 
explained by the QTL

Total Min Max

Ca 21 33.1 0.43 5.0

P 14 41.7 0.27 23.3

Mg 13 31.0 0.42 10.6

K 14 42.2 0.66 13.6

Na 15 19.8 0.52 2.6

Citrate 6 32.9 0.76 23.1
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ants in the CI of the QTL) of variants were intergenic, while 60.5% (top 1) to 65.7% (top 10) of variants were 
located in genes, including upstream and downstream regions (Table 6). In all QTL, we therefore identified at 
least one positional candidate gene (1 to 20 per QTL, 5.3 on average). In total, 271 different genes were found 
within the CIs of the 83 QTL. In the four QTL regions with the most significant effects, the top-ranked variants 
were located in the genes SLC37A1 (BTA1), ANKH (BTA20), SEL1L3 (BTA6), and PPARA​ (BTA5); and the top-
ranked variants in the remaining QTL were located in dozens of other genes (Tables 3 and 4). The majority of the 
variants located in genes were intronic, and were only rarely found in coding regions: only 1%, approximately, 
of variants were non-synonymous, i.e. 84 variants within the CIs of the QTL, and 55, 24, 4, and 1 among the top 
100, top 50, top 10 and top 1 variants, respectively (Table 6). Out of these non-synonymous variants located in 
coding regions of genes, 4 are serious candidates because they were found among the 10 most significant vari-
ants of the QTL peaks: G446S in SLC26A4 (ranked 2nd for the QTL found on BTA4 at 48.7Mbp for Ca), V298M 
in ENSBTAG00000050954 (ranked 10th for the QTL found on BTA7 at 40.3Mbp for P), F267V in ARHGAP39 
(ranked 5th for the QTL found on BTA14 at 0.4Mbp for K and Citrate) and F257Y in GHR (ranked 1st for the 
QTL found on BTA20 at 31.9Mbp for P, Ca and Mg). We also found a relatively high proportion of variants 

Figure 3.   Percentages of chip variants (50 K, HD, or “research” SNPs, in green) and imputed variants (in blue) 
found among the top 50 variants of QTL peaks. Dashed lines represent the total percentage of chip variants (6%, 
in green) and imputed variants (94%, in blue) of all variants that were tested in the GWAS.

Table 6.   Annotation of variants located within confidence intervals of the QTL (a single variant could have 
different annotations).

Annotation

ALL Top 100 Top 50 Top 10 Top 1

N % N % N % N % N %

Intergenic 3705 28.8 1785 27.3 1062 26.0 269 25.1 29 25.9

Total protein coding 5575 63.3 2745 61.8 1792 62.9 494 65.7 49 60.5

Intron 3223 36.6 1427 32.1 980 34.4 267 35.5 33 40.7

Downstream 1203 11.7 635 12.1 368 11.1 71 8.0 4 4.2

Upstream 948 9.2 562 10.7 378 11.4 136 15.3 9 9.4

3′ UTR​ 102 1.0 40 0.76 23 0.69 5 0.56 0 0

Missense 84 0.81 55 1.1 24 0.78 4 0.68 1 1.0

Synonymous 76 0.74 38 0.73 28 0.84 10 1.1 3 3.1

5′ UTR​ 61 0.59 44 0.84 27 0.81 13 1.5 0 0

Splice region 11 0.11 5 0.10 1 0.03 0 0 0 0

Splice acceptor 1 0.01 0 0 0 0 0 0 0 0

Frameshift 1 0.01 0 0.00 0 0 0 0 0 0

Total non-coding RNA 693 7.9 487 11.0 315 11.1 69 9.2 11 13.6

lncRNA 552 8.8 367 11.4 237 11.2 68 12.1 11 18.3

miRNA 69 1.1 50 1.5 42 2.0 1 0.18 0 0.00

scaRNA 4 0.06 4 0.12 4 0.19 0 0.00 0 0.00

snRNA 67 1.1 65 2.0 31 1.5 0 0.00 0 0.00

tRNA 1 0.02 1 0.03 1 0.05 0 0.00 0 0.00

Total 10,311 100 5234 100 3327 100 888 100 96 100
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located in non-coding RNA (7.9% of all variants in the CIs of the QTL and 13.6% of top 1 variants). As presented 
in Table 6, these variants were mostly located in long non-coding RNA (lncRNA), less frequently in micro RNA 
(miRNA) and small nuclear RNA (snRNA), and very rarely in small nucleolar RNA (small Cajal body-specific 
RNA, scaRNA), and transfer RNA (tRNA).

We then completed annotation of the QTL (1) identifying putative regulatory SNPs (rSNPs) located within 
transcription factor binding sites (TFBSs) according to the procedure described in the Methods section, and 
(2) using transcriptomic data available on the Cattle Gene Atlas website, http://​cattl​egene​atlas.​roslin.​ed.​ac.​uk/.

In the CIs of 40 of the 83 QTL, we identified 184 variants that overlapped with the TFBSs of 438 transcrip-
tion factors (TFs), i.e. putative rSNPs (see Supplementary Table S1). These 438 TFs had 67 unique target genes 
among the 271 positional candidates identified in the QTL. Each TF targeted from 1 to 5 positional candidate 
genes, and 110 TFs had binding sites (BSs) at multiple loci. One TF (ASCL2) targeted 5 genes (BHLHE23, DGKQ, 
RMND5B, bta-let-7a-3, and bta-mir-2443), while 2, 21, and 85 TFs targeted 4, 3, and 2 genes, respectively. Two 
top 1 variants, rs108972810 (~ 45.4 Mbp in the upstream region of SMIM20 on BTA6, for Na) and rs209051255 
(~ 41.3 Mbp in the upstream region of ENSBTAG00000053872 on BTA7, for Ca) were in the TFBSs for the TFs 
DOF and FOXD3, respectively. In total, for 22 QTL, top 10 variants were found in the TFBSs of 19 different 
target genes (including CSN2, PAEP, GPAT4, BRI3BP, and PPARA​), which are potentially regulated by 47 TFs.

We then assessed the degree to which these positional candidate genes and TFs demonstrated tissue-specific 
expression. Of the 271 genes and 438 TFs associated with milk-mineral QTL, 203 and 160, respectively, were 
present in the Cattle Gene Atlas, which contains expression data from 91 different tissues or cell lines. Using 
the model described in the Methods section, we assessed the overexpression or tissue specificity of these genes 
by evaluating the t-statistic and the P value, Pt, associated with the effect of the tissue under consideration (see 
Supplementary Tables S2 and S3). Among the 203 positional candidate genes and 160 TFs with a putative regula-
tory effect on these genes, we calculated the number that were overexpressed in each tissue type (Pt < 10−4). The 
profiles obtained for both categories of genes, presented in Fig. 4, were quite similar. The tissues or cell types in 
which we found the highest number of genes associated with milk mineral composition were white blood cells (51 
candidate genes and 59 TFs) and mammary gland (47 candidate genes and 45 TFs). In each tissue, we identified 
the most-specific genes by retaining the top 10% with respect to t-statistic values, i.e. 20 candidate genes and 16 
TFs. Among the candidate genes that were most specific to mammary gland, we found the genes encoding the 
main milk proteins (CSN1S1, CSN1S2, CSN2, CSN3, and PAEP), and SLC37A1 and ANKH, which are located 
within the QTL that had the most significant effects in the present study. The ASCL2 TF, which potentially 
regulates five genes located in the CIs of the QTL, was one of the most mammary-gland-specific TFs. Among 
genes specific to white blood cells, we found COTL1, MKL1, and FOXP1. SLC37A1 was not among the 20 most-
specific genes but it was ranked 22nd. In the upstream or intronic regions of these four genes, we identified the 
top-ranked variant of four different QTL, located on BTA18, BTA5, BTA22, and BTA1, respectively. Furthermore, 

Figure 4.   Counts of significantly expressed genes (P < 10−4) in 91 tissues, showing (a) positional candidate 
genes and (b) transcription factors identified as putative regulators of these genes.

http://cattlegeneatlas.roslin.ed.ac.uk/
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we identified 27 rSNPs for which both TF and target gene were highly specific to the mammary gland; these 
combinations were composed of 26 unique TFs and 15 unique target genes (see Supplementary Table S4).

Focus on the SLC37A1 and ANKH gene regions.  As mentioned above, two QTL—located on BTA1 
(142.8 Mbp) and BTA20 (58.2 Mbp) in the vicinity of the SLC37A1 and ANKH genes, respectively—had very 
strong effects on milk mineral and citrate content. The SLC37A1 region affected P, K, Mg, and Na levels while 
the ANKH region had effects on citrate, Mg, K, and Ca (Fig. 2). These two regions alone affected all six milk 
components analyzed in this study. They explained a high proportion of the genetic variance in P (23.3%), citrate 
(23.1%), Mg (17.9%, i.e. 7.3% for SLC37A1 and 10.6% for ANKH), and K (15.4%, i.e. 13.6% for SLC37A1 and 
1.8% for ANKH), but had much more moderate effects on Na (2.6%) and Ca (2.2%).

In the SLC37A1 region, the variant with the most significant effect was located in an intron; it was an imputed 
variant (R2 = 0.85) for P and Mg (rs109459130 at 142,834,737 bp) and a chip variant (HD SNP) for K and Na 
(rs109717634 at 142,835,551 bp). For both variants, which were located 814 bp apart, the most frequent allele 
(0.58 and 0.61, respectively) increased the amount of all minerals affected by this region.

In the ANKH region, we identified three different top 1 variants, depending on the trait. For K, the top 
variant was rs134021638 (at 58,386,888 bp, imputed with R2 = 0.92), located in an intronic region of ANKH; 
for Ca, Mg and citrate, the top variants were located in an lncRNA ENSBTAG00000048498 (rs110048176 at 
58,189,663 bp, HD SNP for Ca and Mg and rs109956167 at 58,204,929 bp, imputed variant with R2 = 0.90 for 
citrate). ENSBTAG00000048498 spans from 58,186,301 to 58,224,434 bp and is located around 83 kbp upstream 
of the ANKH gene (58,307,527–58,477,497 bp). In all cases, the alleles responsible for an increase in citrate and 
mineral content were not the most common, with a MAF of 0.05 for the ANKH variant (rs134021638) and 0.17 
for the two other variants.

In both regions, we examined the top-ranked variant for the most-affected traits, i.e. rs109459130 and 
rs109956167, and tested the interaction effects of their genotypes on milk mineral and citrate content. The 
results, presented in Fig. 5, revealed no significant interaction for any of the traits analyzed (P ≥ 0.02), suggesting 
that the effects of the two regions on milk composition were additive.

Discussion
To the best of our knowledge, this study is unique because it is the first GWAS of imputed whole-genome 
sequences based on the most-recent bovine reference genome with such a large population of cattle (19,586 
cows); and it is the first attempt to investigate milk mineral content with a sequence-based GWAS, which here 
assessed a very large panel of genomic polymorphisms (12.9 million).

Using this approach, we identified 83 QTL that explained a substantial part of the genetic variance (up to 
42.2%) for mineral and citrate content in cows’ milk; in each QTL region, we then identified functional candi-
date genes and variants. Our results build on those of two previous studies that used GWAS to investigate the 
mineral composition of milk—based on mineral content measured with reference methods and HD 777 k SNP 
genotypes—in small populations of Holstein (3719 and 44412) or Jersey (3219) cows. The study of Buitenhuis et al.9 
was dedicated to mineral composition while Kemper et al.12 attempted to identify QTL that overlapped between 
milk production and composition traits. Only two QTL were shared between the two studies: a region located 
on BTA1 that affected P, for which both studies identified SLC37A1 as the best functional candidate gene, and a 
region located near the DGAT1 gene on BTA14 that affected Ca and P. In our study, we also identified these two 
regions, together with dozens of other regions located throughout the bovine genome.

By considering a very large dataset (more than 1 million test-day records of 126,873 cows), we estimated 
heritability values for mineral and citrate composition to be moderate to high, i.e. higher5,7,8,10 than or similar6,9 
to those previously reported in the literature. Furthermore, we found strong genetic correlations among Ca, P, 
and Mg and among Ca, Mg, and citrate, which was consistent with the studies of Toffanin et al.5 and Denholm 
et al.8. Among minerals, Na had both the lowest heritability value (0.32 vs 0.48–0.56 for the other minerals) 

Figure 5.   SLC37A1 and ANKH genotypes and genotype interaction effects on milk mineral (Ca, P, Mg, K, and 
Na) or citrate content.
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and the smallest percentage of genetic variance explained by its associated QTL (19.8% vs 33.1–42.2% for the 
other minerals). Ca, P, and Mg shared more QTL than any other group of minerals: 7, 6, and 6 QTL were shared 
between Ca and P, Ca and Mg, and P and Mg, respectively, while 4 QTL had effects on all three. In contrast, 
despite the high degree of genetic correlation between Ca, Mg, and citrate, only 2 QTL were shared among these 
three traits; however, one of these was a QTL located on BTA20 (~ 58.2 Mbp) that explained 2.2%, 10.6%, and 
23.1% of the genetic variance of Ca, Mg, and citrate, respectively. Overall, estimates of genetic correlations were 
consistent with QTL results, which probably reflects the common biological pathway of these minerals in milk. 
In colloidal form, Ca, P, and Mg are associated with caseins in the micelles while in the soluble fraction, Ca and 
Mg are associated with citrate. Further studies, using random regression models fitted across lactation, could 
investigate the pattern of genetic relationships between the different milk minerals during lactation and thus 
provide a better understanding of the underlying biological mechanisms.

The resolution of our study was high enough to identify a single or a few positional candidate genes in most 
of the 83 QTL we identified. In each of these regions, though, the variant with the most significant effect was 
not necessarily located in a gene. As an example, we detected the overrepresentation of chip SNPs at the top of 
the QTL peaks (42.7% of the top 1 variants), and the majority of these SNPs were located in intergenic regions. 
Chip SNPs are directly genotyped or have a higher imputation accuracy than the surrounding variants, which 
probably enabled more precise estimation of their effects. To identify the best candidate variant(s) for each QTL, 
we therefore considered not only the variant with the most significant effect, but the set of variants ranked at the 
top of the peak that were located in or close to genes. In most cases, we found that these variants were located 
in non-coding regions of genes; for example, 15.3% and 12.1% of all top 10 variants were located in upstream 
regions of genes or in lncRNA, respectively, i.e. in putative regulatory regions. To further refine our results, we 
consulted in silico annotations of rSNPs in upstream regions of genes as well as existing knowledge regarding 
genomic regions that are transcribed into non-coding RNA. Moreover, to support the putative roles of these 
variants, we also considered the tissue specificity of candidate genes and transcription factors. Unfortunately, 
the expression dataset, which was based on Ensembl release 94, did not contain all of the genes located in QTL 
regions. Here we present some examples of QTL in which the putative causal mutation was located in a regula-
tory region, with particular attention to functional candidate genes previously associated with milk composition 
and the QTL with the most significant effects in this study.

GPAT4 (glycerol-3-phosphate acyltransferase 4) was the best candidate gene for the QTL on BTA 27 with effects 
on Mg. Although it was not the most notable QTL in terms of its effect on minerals, this region, and this gene 
in particular, have been highlighted by previous studies as affecting milk composition (fat, protein, and lactose 
content)19,22–24. In these studies, five variants in linkage disequilibrium—four in the upstream region and one in 
the 5′ UTR region of GPAT4—were highlighted as the best candidate causal variants. In our study, these variants 
were ranked in the top 5 in the GWAS peak; the variants ranked 3rd (rs209479876) and 5th (rs209855549) alter 
the WRKY48 and TWI transcription factor binding sites (TFBSs), respectively, and are more likely to be the 
causal variants. Daetwyler et al.23 also highlighted rs209479876 as the best causal variant in this region because 
of the high probability that it overlaps a TFBS. We also confirmed that GPAT4 was overexpressed in the mam-
mary glands (P = 3.10−12) compared to 90 other tissues or cell types, but expression data were not available for 
the TFs associated with this gene.

For the QTL identified on BTA11 at ~ 103.2 Mbp with effects on P and citrate, the top two variants in the 
peak for P (the most-affected trait) were intergenic. Instead, the variants ranked 3rd to 7th were located in 
the upstream region of the PAEP (progestogen-associated endometrial protein) gene; the 5th-ranked variant, 
rs110710904, probably alters a binding site of the Macho-1 transcription factor (P = 0.02). PAEP, which is one 
of the most mammary-gland-specific genes (Pt = 1.8.10−37), encodes β-lactoglobulin, the most abundant whey 
protein in cow milk. Two non-synonymous variants in this gene, rs109625649 and rs110066229, were previously 
highlighted as the causal mutations underlying β-lactoglobulin concentration in milk25. In our study, these were 
respectively ranked 157th and 171st in the peak, i.e. far below the top-ranked variants upstream. These results 
corroborate previous reports that these two putatively causative missense mutations did not explain all the effects 
of the region on milk composition19,20 and highlight an rSNP as a likely causative variant.

BRI3BP (BRI3 binding protein), located on BTA 17 at ~ 50.8 Mbp, has been previously associated with de 
novo short chain fatty acid synthesis in bovine milk26,27. In our study, this region appeared to have effects on the 
K content of milk, and we found that BRI3BP was significantly overexpressed in mammary gland compared to 
the 90 other tissues investigated (P = 3.9.10−8). The first seven variants in the peak were located in an intronic 
region of BRI3BP. The 8th (rs477456528) and 9th (rs440703666) variants, instead, were located in the upstream 
region of the gene and rs440703666 probably alter the binding site of the transcription factor SPL8. This variant 
thus represents a very attractive functional candidate in this region.

In the four regions with the most significant effects on milk minerals, we identified SLC37A1 (BTA 1), ANKH 
(BTA 20), SEL1L3 / SMIM20 (BTA 6), and PPARA​ (BTA 5) as the best candidate genes.

Five of the six traits analyzed in this study were affected by a QTL region at ~ 116.4 Mbp on BTA5. Here, a 
variant located at 116,438,773 bp (1000G_80994138) ranked 2nd for four traits. This variant was located in the 
upstream region of PPARA​ (peroxisome proliferator activated receptor alpha) and overlapped the binding sites for 
the transcription factors E2F4, RSC3, RSC30, TDA9, and TFDP1. In this QTL region, top 1 variants were located 
either in an intronic region of PPARA​ (citrate, Mg, and P) or in an lncRNA, LOC101903383 (Ca and Na). PPARA​ 
encodes the PPAR-α transcription factor, a key regulator of lipid metabolism belonging to the superfamily of 
PPAR hormone receptors28; expression of this TF in mammary gland was previously found to be associated with 
milk fatty-acid composition in dairy cows29,30. Here, we did not detect any mammary-gland specificity of PPARA​ 
but we did observe that this gene was expressed in this tissue. It is therefore possible that polymorphisms in the 
binding sites of this TF or in the lncRNA LOC101903383, located 1.3 kbp upstream of PPARA​, could regulate 
the expression of PPARA​ and be responsible for the strong effects of this region on milk composition.
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On BTA6 at ~ 45.3 Mbp, we identified a QTL with very strong significant effects on K and to a lesser extent 
on P, Na, and Ca. Within the confidence interval of this QTL, we found 80 different potential variants, of which 
the majority (69) were intergenic, 9 were located in an intronic region of SEL1L3 (SEL1L family member 3), and 
2 were in the upstream region of SMIM20 (small integral membrane protein 20). However, when we examined 
only the top 10 variants for the different traits, the number of distinct variants shrank to 18 (9 intergenic, 7 in 
SEL1L3, and 2 in SMIM20). Of these, two (rs108972810 at 45,401,485 bp and rs136498639 at 45,401,570 bp) 
were located in the upstream region of SMIM20 and overlapped a TFBS. SEL1L3 was previously identified as a 
candidate gene in a QTL region with effects on bovine milk protein composition19. Instead, to the best of our 
knowledge, this study is the first to propose SMIM20 as a candidate gene for milk composition. However, the 
functional link between these genes and milk composition has yet to be established, as we found both genes to 
be endometrium-specific and underexpressed in mammary glands compared to the 90 other tissues investigated.

For milk mineral composition, the two best functional candidate genes highlighted by our analysis were 
SLC37A1 (solute carrier family 37, member A1) and ANKH (inorganic pyrophosphate transport regulator). These 
two genes were previously found to be overexpressed in mammary glands relative to 17 other types of tissue31, 
and here we found both among the top 10% of mammary-gland-specific genes (Pt = 3.4.10−26 and 6.6.10−16, 
respectively). This suggests that the main function of these genes occurs in epithelial cells of this tissue. SLC37A1 
and ANKH both encode transmembrane proteins involved in ion transport and have been found to play a role 
in inorganic anion transport20. Variants located in both genes explained a large degree of the genetic variation 
in milk mineral content. Earlier studies also linked SLC37A1 with mineral content, in particular that of P9,12, 
while both genes have been implicated in determining milk protein composition in Holstein, Montbéliarde, and 
Normande cows19 and cheese-making traits in the same Montbéliarde cows we analyzed here20. These results are 
consistent with what is known about the association of minerals with casein molecules in micelles; milk mineral 
composition is strongly related to milk protein composition2 and therefore to cheese-making traits3,4.

In SLC37A1, 7, 31, 9, and 7 variants were located in the confidence intervals of QTL for P, K, Mg, and Na, 
respectively. These variants (32 of which were unique) were overwhelmingly located in introns of the gene, in a 
12.3-kbp-region from 142,826,156 to 142,838,477 bp. Among these 32 variants, we were not able to distinguish 
the best candidate based on annotation, but two variants, 814 bp apart, were particularly highly ranked for all 
traits. Specifically, rs109459130, at 142,834,737 bp, was ranked 1st, 2nd, 1st, and 3rd for P, K, Mg, and Na, respec-
tively, while rs109717634, at 142,835,551 bp, was ranked 2nd, 1st, 3rd, and 1st for P, K, Mg, and Na, respectively. 
Of these, the first (rs109459130) appeared to be the better candidate because it was top-ranked for the most 
affected trait, P, and because it was imputed (R2 = 0.85), while the second variant was an HD SNP (R2 = 0.997).

In the region of the ANKH gene, we found 81, 65, 69, and 21 variants in the confidence intervals of QTL for 
citrate, Mg, K, and Ca, respectively. These represented 82 unique variants, all located either in intronic regions of 
the ANKH gene (59 variants between 58,344,839 and 58,388,849 bp) or in the lncRNA ENSBTAG00000048498 
(23 variants between 58,185,895 and 58,212,187 bp). The same variant was ranked first for both Mg and Ca. Two 
top-1 variants were located in the lncRNA ENSBTAG00000048498—rs109956167 (at 58,204,929 bp) for citrate 
and rs110048176 (at 58,189,663 bp) for Mg and Ca—while the top-ranked variant for K was located in ANKH 
(rs134021638 at 58,386,888 bp). We propose rs109956167 as the best candidate causal variant because i) it was 
ranked 1st for the most-affected trait (citrate), ii) it was imputed, in contrast to rs110048176 which was from the 
HD chip, and iii) it was the only variant present in the top 10 for all traits affected by this region (4th for Mg, 6th 
for Ca, and 9th for K). We hypothesize that the lncRNA ENSBTAG00000048498, which is 83 kbp downstream 
of the closest gene, ANKH, may affect milk mineral content by regulating the expression of ANKH and thus the 
amount of protein available for ion transport.

When we examined the best candidate variants in the regions of SLC37A1 (rs109459130) and ANKH 
(rs109956167), we found that alleles of these genes did not have significant interactions with respect to the six 
milk composition traits analyzed in this study and that, combined together, these two regions explained a large 
part of the genetic variance in milk mineral content. The allele that increased mineral content was the most 
frequent allele of SLC37A1 (allele A, frequency = 0.58), while it was the least frequent allele in the ANKH region 
(allele C, frequency = 0.17).

Compared to previous studies, our GWAS-based investigation of milk mineral composition was conducted 
at the whole-genome level, after imputation with the most recent reference genome and using data from a large 
population of animals. This approach led to the identification of a large number of genomic regions that explain 
a great deal of the genetic variance of the traits studied here. Moreover, post-GWAS investigations conducted 
using different annotation datasets enabled the identification of candidate causal genes and the prioritization 
of candidate variants in these genomic regions. In most situations, exonic variants were not proposed as the 
best candidates, although they cannot be excluded in four QTL regions, including GHR. In contrast, the best 
candidate variants often were putative regulatory variants. Although the functional causative effect of the can-
didate variants remains to be demonstrated, this study highlights a ‘short list’ of candidate variants, in particular 
rs109459130 (SLC37A1) and rs109956167 (ANKH), whose favorable alleles can be feasibly selected to increase 
the mineral content (Ca, P, Mg, and K) of milk and therefore improve both its nutritional and cheese-making 
qualities in Montbéliarde cows.

Methods
Ethics statement.  Milk samples were analyzed with MIR spectrometry during routine milk recording in 
commercial herds of Montbéliarde cows in the Franche-Comté region (France). We did not perform any experi-
ments on animals and no ethical approval was required.
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Animals and phenotypes.  The original dataset was generated by the From’MIR project and is described 
in detail by Sanchez et al.11,20. It comprised 6,670,769 mid-infrared (MIR) spectra of milk samples from 410,622 
Montbéliarde cows. The concentrations of five milk minerals (Ca, P, Mg, K, and Na) and citrate were predicted 
from MIR spectra using equations developed by the Optimir project14,15 (Table 1). As previously described11,20, 
to ensure that the dataset was homogeneous (and less computationally demanding), we retained only the first-
lactation records with at least seven test-day records per cow for estimating variance components (1,100,238 
test-day records from 126,873 cows11). To estimate environmental effects used to derive the phenotypes included 
in GWAS, at least three test-day records per cow were required, corresponding to a dataset of 1,442,371 test-day 
records from 189,817 cows20.

Estimation of genetic parameters.  First lactation data were analyzed using bivariate repeatability ani-
mal models applied to all pairs of traits. (Co)variance components were estimated using the AI-REML algorithm 
as implemented in Wombat software32, with the following linear animal model:

where y is the vector of test-day observations; a ~ N(0,A⊗ G0) is the vector of random additive genetic effects, 
p ~ N(0, I⊗ P0) is the vector of random permanent environmental effects, and e1 ~ N(0, I⊗ R0) is the vector 
of random residual effects.X, Z, and W are incidence matrices, A is the relationship matrix among individuals 
calculated from the pedigree (traced back over four generations and containing 315,661 animals), and I the 
identity matrix. G0, P0 and R0 are 2 × 2 matrices of additive genetic, permanent environmental, and residual 
variances-covariances, respectively. The β vector included the fixed effects of the herd x test-day x spectrometer 
combination, stage of lactation, and season of calving.

Genotypes and imputation to whole‑genome sequences.  A subset of 19,586 cows for which MIR 
spectra were available had been genotyped for the purpose of genomic selection using the BovineSNP50 (50 K, 
6505 cows) or the EuroG10K BeadChip (Illumina Inc., San Diego, 13,081 cows); the latter contains generic 
SNPs and a research add-on for causal or predictive SNPs for traits of interest in cattle. Missing genotypes were 
imputed using FImpute software33 for the 53,469 autosomal SNPs (50 K and “research” SNPs, 50 K+) that passed 
all quality control filters (individual call rate > 95%; SNP call rate > 90%; minor allele frequency (MAF) > 1% in 
at least one major French dairy cattle breed; genotype frequencies in HW equilibrium with P > 10−4). Whole-
genome sequences (WGSs) were then imputed in two steps. In the first step, 777 K high-density and “research” 
SNPs (HD+) were imputed with FImpute software using a within-breed reference set of 522 Montbéliarde bulls 
genotyped with the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA)34. Finally, allele dosages of 
the WGSs were imputed using Minimac software35 and WGS variants of 1479 Bos taurus animals from the 7th 
run of the 1000 Bull Genomes Project, representing 17 cattle breeds and including 63 Montbéliarde bulls. This 
2-step strategy was found to be the most accurate36 (eg, Boowman & Veerkamp, 2014) because (1) the first step 
takes advantage of the high number of HD genotypes of influential bulls and is performed with very limited 
loss in accuracy34 (Hozé et al., 2013) ; (2) the number of sequenced Montbéliarde bulls was too limited for an 
accurate imputation to sequence when used alone; and (3) linkage disequilibrium is partially conserved across 
breeds at the HD level (~ several kb), making use of close breeds sequence data very beneficial. WGS variants 
were selected following the protocol defined by the 1000 Bull Genomes consortium16,23, as described in Bous-
saha et al.37. Short reads were filtered for quality and aligned to the ARS-UCD1.2 reference sequence17, and small 
genomic variations (SNPs and InDels) were detected using SAMtools 0.0.1838. Raw variants were then filtered 
to produce a dataset of 25,050,323 variants. The precision of imputation from HD+ to WGS was assessed using 
R2 values calculated with Minimac software35. Only variants with R2 ≥ 0.20 and MAF ≥ 0.005 were retained for 
association analyses, i.e. 12,907,802 variants, with a mean R2 of 0.67 and MAF of 0.19.

GWAS.  We performed single-trait association analyses between all 12,907,802 polymorphic variants and 
each of six milk mineral and citrate traits, described in Table 1. All association analyses were performed using 
the mlma option of GCTA software (version 1.24), which applies a mixed linear model that includes the variant 
to be tested39:

where yd is the vector of so-called yield deviations, i.e. test-day records adjusted for non-genetic effects with the 
mixed linear model (1) using Genekit software40 and averaged per cow; m is the overall mean; bv is the additive 
fixed effect of the variant to be tested for association; xv is the vector of imputed allele dosages, ranging from 0 
to 2; u ∼ N

(

0,Gσ 2
u

)

 is the vector of random polygenic effects, with G the genomic relationship matrix (GRM) 
calculated using the HD SNP genotypes (which offer both high density and accuracy of imputation), and σ 2

u 
the polygenic variance, estimated based on the null model 

(

yd = 1m+ u + e
)

 and then assumed as known 
while testing for the association between each variant and the trait of interest; and ε ∼ N

(

0, Iσ 2
ε

)

 is the vector 
of random residual effects, with I the identity matrix and σ 2 the residual variance. Association was tested using 
a t-statistic calculated by dividing the variant effect estimate by its standard error.

In order to correct for multiple testing, the Bonferroni correction was applied to take into account all 12.9 
million independent tests. The 5% genome-wide threshold of significance therefore corresponded to a nominal 
P-value of 4 × 10−9 (-log10(P) = 8.4) per test. When a given trait was significantly affected by multiple variants, 
variants that were located less than 2 million base-pairs (Mbp) apart were grouped together to define QTL, 

(1)y = Xβ + Za +Wp+ e1,

(2)yd = 1m+ xvbv + u + ε,
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considering the variants belonged to the same QTL region. The bounds of the confidence intervals (CIs) of 
each region were then determined based on the positions of variants that were included in the upper third of 
the QTL peak.

In regions where multiple neighboring QTL were identified (BTA1 and BTA20), conditional analyses were 
carried out using the cojo option of GCTA​39 in order to conclude if multiple significant variants in a genomic 
region were due to LD with the same causal mutation or to the presence of multiple causal mutations. Association 
analyses were performed by including in the model the most significant variant as a fixed effect and by testing all 
variants in these neighboring QTL that were not in strong LD with the conditional variant (r2 < 0.9).

Functional annotations.  Genomic regions and variants were annotated with FAANGMine v1.1 (https://​
faang​mine.​elsik​lab.​misso​uri.​edu/), developed by the Functional Annotation of ANimal Genomes initiative18 
and which integrates the ARS-UCD1.2 bovine reference genome with a variety of external data sources, includ-
ing RefSeq from NCBI (https://​www.​ncbi.​nlm.​nih.​gov) and Ensembl (https://​www.​ensem​bl.​org) gene sets.

The ability of genetic variants to alter transcription factor binding sites (TFBSs) was predicted with a custom 
script that used TFBS models from the JASPAR (JASPAR CORE 2018 collection41), HOCOMOCO (version 
v1042), and TRANSFAC (version v3.2 public43) databases. These databases contain curated sets of transcription 
factor binding models represented as Position Weight Matrices (PWM), which are derived from published collec-
tions of experimentally defined eukaryote TFBSs. Only vertebrate PWMs were downloaded for use in our study.

Gene overexpression or specificity in different tissues was determined using gene expression patterns of 24,616 
genes (Ensembl release 94) available in the Cattle Gene Atlas, which contains 723 RNA-seq datasets represent-
ing 91 tissues and cell types, classified into 17 biological categories (http://​cattl​egene​atlas.​roslin.​ed.​ac.​uk/). To 
assess the expression specificity of each gene in a given type of tissue (by excluding tissues in the same biological 
category), we applied the following linear model as described in Fang et al.44:

where ye is the vector of expression level in the tissues, assessed by the scaled log2FPKM (Fragments Per Kilo-
base per Million mapped reads); me is the overall mean; xt is the vector of the variable with value 1 for samples 
of the tested tissue and − 1 for samples outside the same category; bt is the corresponding tissue effect; z is the 
incidence matrix related to the corresponding covariables effects c , including age, sex and study effects; ee is the 
residual effect. Model (3) was implemented adapting R scripts available on the Cattle Gene Atlas website. For each 
gene, a t-statistic was computed by dividing the tissue effect by its standard error. A gene was considered to be 
overexpressed in a tissue if the probability associated with the t-statistic (Pt) was lower than 10−4. To determine 
the tissue specificity of genes, we ranked the genes in each type of tissue by their t-statistics; the top 10% were 
considered to be tissue-specific.

SLC37A1‑ANKH genotype interactions.  We tested putative interaction effects between the genes 
SLC37A1 and ANKH on milk mineral and citrate content with the following mixed linear model:

where yd as defined in (2); mi is the overall mean; gSLC37A1 and gANKH are the fixed effects of the genotypes of 
the best candidate variant in the SLC37A1 and ANKH regions, respectively; gSLC37A1 x gANKH represents the 
interaction between the two genotypes;M,N , and O are incidence matrices related to the individual effects of the 
SLC37A1 and ANKH genotypes and their interaction, respectively; s is the vector of random sire effects and P 
the corresponding incidence matrix; and ei is the vector of random residual effects. All effects were tested using 
t-statistics computed in the MIXED procedure of SAS software.

Data availability
The data (genotypes and phenotypes) that enabled the findings of this study were made available by UMOTEST, 
CEL25-90, and GENIATEST. However, restrictions apply to the availability of these commercial data: they were 
used under license for the current study, and are not publicly available.
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