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diversity trends  2 
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US Long Term Ecological Research sites, Nature Ecology & Evolution (2020) doi:10.1038/s41559-4 
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  6 

Abstract 7 

In an analysis of a large number of time series on arthropod abundances in natural and managed 8 

areas of the United States, Crossley et al. reported no evidence of an overall decline in insect 9 

abundance and diversity1. We identified major concerns in the statistical analysis and 10 

inconsistencies in the selection of data, which, we argue, invalidate their conclusions. We call for a 11 

rigorous methodology in analyses of biodiversity trends because relevant information is crucial for 12 

stakeholders and policy makers. 13 

  14 

Matters arising 15 

The extent of the decline of insect populations worldwide is much debated2-5, with major 16 

implications for public policy investment in biodiversity protection. Crossley et al. conducted a 17 

statistical analysis of 5,375 geographically and taxonomically varied time series on arthropod 18 

abundance during 4 to 36 years across the United States1. They concluded that there was no 19 

significant change in insect populations. However, we argue that issues in the statistical analysis and 20 

inconsistencies in data selection invalidate their conclusions. 21 

The modelling proposed by Crossley et al. relied on the following steps: i) collecting data, ii) 22 

separating each species of each locale of each LTER (in the R script, a locale could be an arthropod 23 

group, a location or a collection method), iii) pre-processing data (Box 1),  iv) running a different 24 

autoregressive linear model for each species of each locale of each LTER (hereafter, LLS), 25 



v) combining all estimated slopes into a “sample”, vi) analysing this “sample” using violin plots, T 26 

tests and confidence intervals (Fig. 1). The statistical analysis carried out in this last step relied on 27 

the assumption that the observations in the sample were independent and identically distributed 28 

(iid). This assumption was violated for two reasons. First, the pre-processing step included a time 29 

scaling to change the minimum year of each LLS time series to 0 and its maximum year to 1. As the 30 

time length varied from 4 to 36 years depending on LLS, the scaled time x varied across LLS time 31 

series. Therefore, the estimated slopes did not represent abundance trends per year, but per time 32 

units x varying over time series and without a clear meaning. Second, according to the linear 33 

regression theory, the expectation and variance of the estimated slopes depend on the number of 34 

measures of the x variable (i.e. the length of the time series) and the distances of y measures to the 35 

model (i.e. the quality of the model approximation). Among LLS time series, there are different 36 

time lengths, and different qualities of approximation. Therefore, the slopes cannot be iid, and 37 

estimations and tests used in step vi) are not reliable. To circumvent this problem, it would be more 38 

appropriate to use a hierarchical model to analyse the whole dataset. 39 

Insert Box 1 and Figure 1. 40 

Other problems are as follows. First, most individual time series were too short to provide reliable 41 

estimations of the four unknown parameters specific to each LLS (Box 1). Indeed, 44% of LLS time 42 

series only had 4 to 9 years of data. While no simple threshold exists, we do not see how to reliably 43 

estimate four parameters with less than ten data points, which will only provide a very imprecise 44 

estimation. Some limited sensitivity analysis was provided with a stricter data subset involving a 45 

minimum of 15 years of data, but this strict dataset only included less than 6% of the time series. It 46 

represented a much more limited variety of situations than the total sample and was therefore much 47 

less representative. This is another argument in favour of a global modelling approach, which would 48 

improve the precision of the trend estimate of any given LLS by using data from other LLS. 49 

Second, the analysis was performed at a very fine taxonomic level, implying that a high proportion 50 

of abundance counts was equal to zero (the full dataset contained 49% of zeros and the strict 51 



dataset, 30.5%; moreover, 71% of the series in the full dataset, and 84% in the strict dataset, 52 

contained at least a zero). As the logarithm of 0 is undefined, all zero abundance values were shifted 53 

upwards before being log-transformed by adding an arbitrary value. Such rudimentary log-54 

transformation of count data is to be avoided because results depend on the chosen value and 55 

coefficient estimates are inaccurate6,7. Zero-inflated models would have dealt appropriately with the 56 

problem of high occurrence of zeros in the dataset8. 57 

Third, the model corrected for scale differences between abundance series without accounting for 58 

imperfect detection, which can be of particular concern for rare species. This problem may be 59 

illustrated by the case of Aphis asclepiadis, NEPAC locale, Midwest STN LTER (external database 60 

S19). In the ten years of records, its abundance was 0 for the nine first years, and 1 for the last year. 61 

This time series (like the others in the dataset) was not composed of abundance levels, but 62 

estimations of abundance. Due to imperfect detection, a shift from an estimated abundance from 0 63 

to 1 provides poor information on the real abundance trend. After scaling log-abundances (Box 1), 64 

this uninformative A. asclepiadis data series was erroneously modelled as having the highest 65 

abundance increase of all the time series (external database S29), while it could just reflect the rarity 66 

of the species or its poor detection. The same slope could have been obtained with a time series 67 

reflecting a significant abundance change, with for example a hundred insects in all years except the 68 

last year with a thousand insects. In total, 16% of time series included only abundance values of 0 69 

and 1, and 27% of time series included only abundance values of 0, 1 and 2.  Simple models of 70 

occurrence and abundance have already been developed to cope with the problem of imperfect 71 

detection.10 72 

As all analyses of diversity (richness, evenness and β diversity) in the article relied on these 73 

estimations of abundance and on the same modelling, they shared similar methodological problems. 74 

We also point out that we had to re-program the R script provided by the authors using their 75 

external databases S1 and S29 to make it run. 76 



Regarding data selection, the article is intended to analyse insect abundance trends in US Long 77 

Term Ecosystem Research (LTER) sites, but it departs from this description in two ways. First, 78 

39.5% of time series are from the Suction Trap Network (STN). One suction trap of the STN is 79 

located in the Kellogg LTER site, and all STN data, encompassing ten US states, were incorporated 80 

into the Kellogg LTER dataset up to 201411. But the dataset used in the analysis 81 

(https://suctiontrapnetwork.org), spanning up to 2019, is not linked to a LTER. Its inclusion may 82 

bias results by minimising the damages of intensive farming, because the STN exclusively provides 83 

data on aphids, and primarily aims to document pest aphids11, which benefit from intensive 84 

agriculture12,13, unlike most insects (e.g. aphid natural enemies13 or bees14). 85 

Second, the reference to insects in the title of the article is confusing as almost 10% of time series 86 

were of non-insect arthropods or included insects and other arthropods. In Fig. 2, three of the 22 87 

violin plots concerned or involved crustaceans. Unlike the rest of the dataset, the violin plot from 88 

the Coweeta LTER related to aquatic invertebrate communities in terms of functional feeding 89 

groups, and not individual species. These inconsistencies add to other criticisms of this article15 90 

regarding unaccounted-for changes in sampling location and sampling effort at LTER sites and the 91 

unaccounted-for impact of experimental conditions on insect populations. 92 

As a conclusion, the methodology chosen in this article is very approximate with several identified 93 

problems likely to substantially bias the results. The analysis would have required an adequate 94 

global model for all data, considering all our criticisms and those of ref. 15. We call for the 95 

application of rigorous standards for analyses on global change, especially because results could 96 

have a significant impact on policy decision-making and the fate of biodiversity. 97 

 98 
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 134 

Box 1. Model used by Crossley et al. (2020) 135 

Each time series i was composed of abundance levels Ait for LLS i and for years ti1 to 𝑡௜்೔. 136 

The first step of data pre-processing consisted in log-transforming abundances. For LLS i in year t, 137 

the abundance value Ait was replaced either by its logarithm, log Ait, or, if Ait = 0, by the logarithm 138 

of a constant, log ci, where ci was half the minimum non-zero abundance in time series i, to obtain a 139 

series of log-transformed abundances ait. 140 

In a second step, log-abundances were scaled: the empirical mean 𝑎തi of log-transformed abundances 141 

of the series was subtracted to each ait and this difference was divided by the empirical standard 142 

deviation si of log-transformed abundances. This yielded the scaled logarithm of abundance of LLS 143 

i in year t, yit, defined as yit = (ait – 𝑎തi)/si. 144 

In a third step, the authors transformed all time units using a common scale varying between 0 (the 145 

first year of the LLS abundance time series) and 1 (its last year). The scaled year xit was obtained by 146 

transforming the first year of time series ti1 to 0, and its last year tiTi to 1, and scaling all years 147 

accordingly as xit
 

= (tit – ti1)/(𝑡௜்೔ – ti1). 148 

The proposed modelling was a linear model with a Gaussian auto-regressive error of order 1: 149 

yit = i1
 

+ i2
 

xit + it, where it
 

=i i,t-1 + it, with itN(0,i
2). 150 



For each individual LLS time series, this model implied the estimation of four parameters, βi1, βi2, ρi 151 

and σi, the slope βi2 representing the abundance trend and therefore being the parameter of interest. 152 

 153 

Figure 1. Modelling steps in Crossley et al. (2020) and arising problems. Time trends were 154 

estimated separately for each species of each locale of each LTER (LLS). The time scaling was 155 

performed on LLS of different time lengths and the quality of approximation varied across LLS. 156 

Therefore, the abundance time trends were not independent and identically distributed as assumed 157 

when calculating the average abundance trends, confidence intervals and significance tests 158 

associated with the violin plots of Fig. 2 in Crossley et al. (2020). A global hierarchical modelling 159 

would have circumvented this problem. 160 

 161 
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