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Abstract 7 

In a meta-analysis of a large number of time series on arthropod abundance in natural and 8 

managed areas of the United States, Crossley et al. reported no evidence of an overall decline 9 

in insect abundance and diversity1. We found inconsistencies in the selection of data and 10 

major concerns in the statistical analysis, which, we argue, invalidate their conclusions. We 11 

call for rigorous methodologies in meta-analyses of biodiversity trends because relevant 12 

information is crucial for stakeholders and policy makers. 13 

 14 

Matters arising 15 

The extent of the decline of insect populations worldwide is much debated2-4, with major 16 

implications for public policy investment for the protection of biodiversity. Crossley et al. 17 

conducted a meta-analysis of 5,375 geographically and taxonomically varied time series on 18 

arthropod abundance during 4 to 36 years across the United States1. They suggested that the 19 

broad representation of taxa, habitats, feeding guilds and sampling methods made their data 20 

well suited to detect any overall decline in insect biodiversity. They concluded that there was 21 

no significant change in insect populations, a result that was consistent across insect feeding 22 

groups and between heavily disturbed and relatively natural sites. However, we argue that 23 

serious inconsistencies in the selection of data and issues in the statistical analysis invalidate 24 
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their conclusions.  25 

Regarding data selection, the article is intended to be a meta-analysis of insect abundance 26 

trends in US Long Term Ecosystem Research (LTER) sites, but it departs from this 27 

description in three ways. First, 39.5% of time series are from the Suction Trap Network 28 

(STN). One suction trap of the STN is located in the Kellogg LTER site, and all STN data, 29 

encompassing ten US states, were incorporated into the Kellogg LTER dataset up to 20145. 30 

But the dataset used in the meta-analysis, spanning up to 2019, is not linked to a LTER. The 31 

inclusion of this dataset may bias results because the STN exclusively provides data on 32 

aphids, and was primarily aimed at documenting pest aphids5, which benefit from intensive 33 

agriculture. Second, 9% of the time series were of non-insect arthropods or included both 34 

insects and other arthropods, and therefore should have been excluded (Table 1). Third, 35 

several LTER datasets were not included in the analysis, without justification (e.g. refs 6-9). 36 

These inconsistencies add to other criticisms of this article10 regarding unaccounted-for 37 

changes in sampling location and sampling effort at LTER sites and the unaccounted-for 38 

impact of experimental conditions on insect populations in experimental datasets.  39 

The statistical approach in Crossley et al. reveals further problems. These authors modelled 40 

separately abundance trends of each species in each considered ‘locale’ of each LTER (in the 41 

R script, a locale could be an arthropod group, a location or a collection method)11. For each 42 

species of each locale of each LTER (hereafter, LLS), changes in abundance were estimated 43 

by performing a univariate regression of the scaled logarithm of abundance on scaled time, 44 

with a Gaussian auto-regressive error of order 1 (box 1). This statistical modelling raises four 45 

issues. 46 

Insert box 1. 47 
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First, most individual time series were too short to provide reliable estimations of the four 48 

unknown parameters for each LLS: the intercept and the slope of the linear regression, the 49 

autocorrelation coefficient and the variance of the error term. Indeed, 75% of LLS time series 50 

had 4 to 14 years of data. While no simple threshold number of years exists, 16 years of 51 

continuous monitoring are often necessary to identify long-term changes in abundance12. 52 

Although some limited sensitivity analysis was provided with a better sub-dataset involving a 53 

minimum of 15 years of data, this strict dataset only included less than 6% of time series. 54 

Second, the analysis was performed at a very fine taxonomic level, implying that a high 55 

proportion of abundance counts was equal to zero (the full dataset contained 49% of zeros and 56 

the strict dataset, 30.5%; moreover, 71% of the series in the full dataset, and 84% in the strict 57 

dataset, contained at least a zero). In this context, the log-transformation of the data carried 58 

out in the article was inadequate. As the logarithm of 0 is undefined, all zero abundance 59 

values were shifted upwards before being log-transformed by adding an arbitrary value. Such 60 

rudimentary log-transformation is to be proscribed because results depend on the chosen 61 

value13. Given the high occurrence of zero counts in the dataset, zero-inflated models, 62 

classically used for a long time now, would have allowed dealing appropriately with this 63 

problem14. 64 

Third, the model corrected for scale differences between abundance series without accounting 65 

for imperfect detection, which can be of particular concern for rare species. This problem may 66 

be illustrated by the case of Aphis asclepiadis, NEPAC locale, Midwest STN LTER site 67 

(external database S1 in ref 11). In the ten years of record included in the meta-analysis, its 68 

abundance was 0 for the nine first years, and 1 for the last year. This time series (like the 69 

others in the dataset) was not composed of abundance levels, but estimations of abundance. 70 

Due to imperfect detection, a shift from an estimated abundance from 0 to 1 provides poor 71 

information on the real abundance trend. After scaling log-abundances (see Box 1), this 72 
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uninformative A. asclepiadis data series was erroneously modelled as having the highest 73 

abundance increase of all the time series (external database S2 in ref 11), while it could just 74 

reflect the rarity of the species or its poor detection. The same slope could have been obtained 75 

with a time series actually reflecting a significant abundance change, with for example a 76 

hundred insects in all years except one year with a thousand insects. Simple models of 77 

occurrence and abundance have already been developed to cope with this problem.15 Not 78 

using them is a serious shortcoming of the article by Crossley et al. 79 

A fourth major flaw lies in the drawing of the violin plots in figure 2 of the article. For each 80 

LTER, or, depending on cases, each LTER locale, this figure gathered all estimated slopes 81 

(one per LLS) which were used to draw a violin plot. However, a violin plot, a median or a 82 

mean are statistical estimators built to estimate their counterparts in the population. These 83 

estimators are based on the assumption that observations in the sample are independent and 84 

identically distributed. But in Crossley et al., each slope was estimated separately from the 85 

others and thus had its own variability, which depended on the design of data in the series. 86 

Therefore, the slopes were not identically distributed, meaning that violin plots, average 87 

abundance trends and their confidence intervals were not relevant and should not have been 88 

presented. Moreover, the authors transformed all time units using a common scale varying 89 

between 0 (the first year of the LLS abundance time series) and 1 (its last year). Obviously, 90 

since time series had different lengths, the time scale varied depending on series and thus 91 

slopes cannot be compared. Figure 2 by Crossley et al. and all related discussion are thus 92 

meaningless. 93 

As all analyses of diversity (richness, evenness and β diversity) in the article relied on these 94 

estimations of abundance and on the same modelling, they shared similar methodological 95 

problems. 96 

We also point out that we had to re-program the R script provided by the authors using their 97 
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external databases S1 and S2 (ref 11) to make it run. 98 

Overall, we argue that these methodological shortcomings invalidate the results of the meta-99 

analysis by Crossley et al. The analysis of their dataset would have required an adequate 100 

global model for all data, considering all our criticisms and those of ref. 11. We call for the 101 

application of rigorous standards for meta-analyses on global change, especially because 102 

results could have significant impact on policy decision-making and the fate of biodiversity. 103 

Insert Table 1. 104 
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Table 1. Times series with non-insect arthropods 155 
Arthropod 
subphylum 

or class 

Number 
of time 
series 

Information in the “order” and/or “species” 
column of external database S211 

Involved LTER 
sites 

Time series of only non-insect arthropods 

Arachnida 423 

“Amblypygida”, “Anactinotrichidea”, 
“Araneae”, “Ixodida”, “Mesostigmata”, 

“Opiliones”, “Oribatida”, “Pseudoscorpiones”, 
“Scorpiones”, “Solifugae”, “Solpugida” or 
“Trombidiformes” in the “order” column; 

“Various” in the “order” column and “Acari” 
(described as “Arachnida” in the 

corresponding North Temperate Lakes LTER 
dataset) in the “species” column; 

No “order” provided; the “species” column 
indicates “VAE_COA” or “VAE_RUS”, for 
the Vaejovis coahuilae and Vaejovis russelli 

scorpion species 

Cedar Creek, 
Central Arizona 

Phoenix, Harvard 
Forest, North 

Temperate Lakes, 
Sevilleta 

Crustacea 29 

“Amphipoda”, “Decapoda”, “Harpacticoida” 
or “Isopoda” in the “order” column; 

“Various” in the “order” column and “Copep”, 
“Clado” or “Ostra” (respectively described as 

“Maxillopoda”, “Branchiopoda” and 
“Ostracoda” in the corresponding North 
Temperate Lakes LTER dataset) in the 

“species” column 

Central Arizona 
Phoenix, Georgia 

Coastal 
Ecosystems, 

North Temperate 
Lakes 

Entognatha 18 “Collembola” in the “order” column 
Central Arizona 
Phoenix, North 

Temperate Lakes 

Myriapoda 14 

“Chilopoda”, “Geophilomorpha”, 
“Lithobiomorpha”, “Scolopendromorpha”, 
“Scutigeromorpha” or “Spirobolida” in the 

“order” column; 
No “order” provided; “Diplopoda” in the 

“species” column 

Central Arizona 
Phoenix 

Time series including both insects and other arthropods 

No 
information 
provided in 
the dataset 

10 

No “order” provided; the “species” column, 
rather than individual species, indicates 

aquatic invertebrate communities in terms of 
the following functional feeding groups: 

mixed substrate filterers, gatherers, predators, 
scrapers or shredders; or rockface filterers, 
gatherers, predators, scrapers or shredders 

Coweeta 

  156 



9 

Box 1. Model used by Crossley et al. 157 

Each time series i is composed of abundance levels Ait for LLS i and for years ti1 to 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖. 158 

The scaled logarithm of abundance of LLS i in year t, yit, is obtained in two steps. First, the 159 

abundance value Ait is replaced either by its logarithm, log Ait, or, if Ait = 0, by the logarithm 160 

of a constant, log ci, where ci is half the minimum non-zero abundance in time series i, to 161 

obtain a series of log-transformed abundances ait. Second, the empirical mean 𝑎𝑎�i of log-162 

transformed abundances of the series is subtracted to each ait and this difference is divided by 163 

the empirical standard deviation si of log-transformed abundances, which yields 164 

yit = (ait – 𝑎𝑎�i) / si. 165 

The scaled year xit is obtained by transforming the first year of time series ti1 to 0, and its last 166 

year 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 to 1, and scaling all years accordingly as xit
 
= (tit – ti1)/( 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 – ti1). 167 

The proposed modelling is: yit = βi1
 
+ βi2

 
xit + εit, where εit

 
=ρi εi,t-1 + ηit, with ηit ∼N(0,σi

2). 168 
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