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Abstract

Forest biomass estimation at large scale is challenging and generally entails large

uncertainty in tropical regions. With their wall-to-wall coverage ability, passive

remote sensing signals are frequently used to extrapolate field estimates of forest

aboveground biomass (AGB). However, studies often use limited reference data

and/or flawed validation schemes and thus report unreliable extrapolation error

estimates. Here, we compared the ability of three medium- to high-resolution

passive satellite sensors, Landsat-8 (L8), Sentinel-2B (S2) and Worldview-3

(WV3), to map AGB in a forest landscape of Thailand. We used a large air-

borne LiDAR-derived AGB dataset as a reference to train and validate a ran-

dom forest algorithm and conducted robust error assessments and variable

selection using spatialized cross-validations. Our results indicate that the

selected predictors strongly varied among the three sensors and between analy-

ses were restricted to low (≤200 Mg ha−1) and high (>200 Mg ha−1) AGB

areas. WV3 and S2 data outperformed L8 data to extrapolate AGB (RMSE of

68 and 72 against 84 Mg ha−1, respectively) due to the inclusion of the

red-edge band and, probably, to their higher spatial and spectral resolution.

Sensitivity to large AGB values was higher for WV3 than for S2 and L8 with

saturation point of 247 Mg ha−1 against 204 and 192 Mg ha−1. AGB values

above these saturation points remained poorly predictable, especially for L8,

indicating that several tropical forest AGB maps should be interpreted with

extreme caution. However, predicted gradients of lower AGB values

(≤200 Mg ha−1), i.e., in early forest successional stages, were fairly consistent

among sensors (r > 0.70), even if the mean absolute difference between esti-

mates was large when AGB predictions were extrapolated out of the calibration

area at regional level (34%). We finally showed that calibrating the model only

within the sensitivity AGB domain (e.g., <200 Mg ha−1) minimizes the risk of

induced bias for estimating small AGB values. These results provide important

benchmarks for interpreting previously published maps and to improve future

validation schemes.
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Introduction

Tropical forests store large amounts of terrestrial carbon and

thus play a significant role in the global carbon budget (Pan

et al., 2011). However, the amount of carbon stocks stored

in these high-biomass forests remains highly uncertain

(Mitchard et al., 2013). Forest aboveground biomass (AGB),

a proxy for carbon stock, is often estimated from field-based

measurements that are upscaled with the help of passive or/

and active remote sensing (RS) data (Berninger et al., 2018;

Réjou-Méchain et al., 2019). Many RS data sources have

been proposed as candidates for extrapolating forest AGB in

the tropics, including multispectral high (e.g., RapidEye or

Worldview; Bastin et al., 2014; Ploton et al., 2013) to med-

ium and coarse (e.g., Sentinel-2, Landsat or MODIS; Avita-

bile et al., 2012; Baccini et al., 2008, 2012; Ghosh & Behera,

2018; Saatchi et al., 2011) resolution. However, these studies

often faced two common problems. First, the somewhat lim-

ited number of field data used to calibrate the RS model may

result in important model calibration errors and in poor

ability to capture the full spectrum of vegetation heterogene-

ity (Marvin et al., 2014). Second, the use of flawed validation

schemes, where non-spatially independent observations are

used for validation, lead to overly optimistic prediction

errors (Ploton et al., 2020). These two limitations generally

result in poor understanding of the functional relationship

between RS signals and forest AGB and in a poor ability to

quantify uncertainties in AGBmapping.

Airborne Light Detection and Ranging (LiDAR) cap-

tures detailed spatial variations in forest structure and

hence has proven to be a reasonably accurate alternative

for scaling up a limited number of field data estimates to

landscape-scale with a 10%–15% accuracy at 1-ha resolu-

tion (Zolkos et al., 2013). However, due to the high acqui-

sition cost of airborne LiDAR data, extrapolation areas are

often restricted to relatively small spatial coverage (typi-

cally less than 100 km2; Silva et al., 2017). LiDAR-derived

AGB estimates have thus been proposed as a key interme-

diate product between field and satellite-based data with a

two-step upscaling strategy consisting of first calibrating

an intermediate-scale AGB map using field and LiDAR

data, and then using this map as a reference to calibrate

satellite images of coarser resolution and broader swath

(Asner et al., 2013; Baccini & Asner, 2013; Baccini et al.,

2012; Sagang et al., 2020; Xu et al., 2017). This two-step

strategy has several advantages, such as considerably

improving the representativeness and number of calibra-

tion and validation data (Marvin et al., 2014), minimizing

the spatial mismatch that may arise between field and

satellite data (Mascaro et al., 2011; Réjou-Méchain et al.,

2019) and providing enough data to design robust calibra-

tion and validation schemes, accounting for spatial auto-

correlation (Ploton et al., 2020).

Sensitivity to forest AGB of the many RS predictors

derived from passive satellite proposed in the literature,

remains poorly known/evaluated, especially in dense forests.

It has already been shown that many satellite-derived vegeta-

tion indices widely used for predicting forest AGB in tem-

perate and boreal forests saturate at higher AGB values of

typically >150 Mg ha−1 (Meyer et al., 2019; Mutanga &

Skidmore, 2004). Nevertheless, new freely available products

such as Sentinel-2 multispectral instrument (MSI) with

three bands in the red-edge and higher spatial resolution

(10 m against 30 m for Landsat) may increase our capabili-

ties to map forest AGB (Chang & Shoshany, 2016; Malen-

ovský et al., 2012). Until recently, the upscaling potential of

Sentinel 2 data has been little investigated for tropical for-

ests. Finally, in addition to spectral bands and band ratios,

several studies have demonstrated that texture indices from

high to very high-resolution images have a good potential

for estimating forest AGB with no saturation at high AGB

values (Couteron et al., 2015; Pargal et al., 2017; Ploton

et al., 2017). At such a fine resolution, the information

extracted from the distribution of tree crown sizes may

indeed correlate well with forest AGB (Couteron et al., 2015;

Tuominen & Pekkarinen, 2005).

Several studies have attempted to assess the saturation

limit of different satellite data for estimating forest AGB

(Li et al., 2019; Lu et al., 2016; Mermoz et al., 2015;

Zhao et al., 2016). However, only a few studies have

compared the saturation limits of different sensors using

a large AGB reference dataset, such as LiDAR-AGB data,

with spatially independent observations for validation.

This study was designed to assess and compare the AGB

prediction potential of multi-resolution passive RS prod-

ucts in a tropical forest landscape. We used a recently

published 60-km2 LiDAR-AGB map as a reference to

assess the predictive power of multispectral bands, and

their derived spectral and textural indices, from three

different space-borne sensors: Landsat-8, Sentinel-2B and

Worldview-3. Specifically, this study aims to (i) deter-

mine the relative predictive power and range of sensitiv-

ity of these medium- to high-resolution satellite data

using spatially independent observations for validation;

(ii) identifying the raw bands and their derived indices

that best predict low and, possibly, high forest AGB val-

ues; and (iii) discussing the implications of the use of

current passive satellite data for mapping aboveground

biomass and carbon in tropical forests.

Materials and Methods

Study area

The study area is located in Khao Yai National Park

(KYNP), which covers over 2000 km2 in central Thailand
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(14° 25ʹ 20.4″ N, 101° 22ʹ 36.9″ E; Fig. 1). KYNP is the

first national park of Thailand, established in 1962. The

altitude of the national park ranges from 100 to 1350 m.

The forest of interest consists of seasonal evergreen forest

that lies between approximately 700 and 900 m altitude,

which covers roughly half of the park area. This forest

annually receives approximately 2200 mm of precipitation

with annual mean temperature of about 23°C (Jenks

et al., 2011), and has a dry season of 5–6 months (Brock-

elman et al., 2017). Below 700 m the park contains semi-

evergreen and deciduous forests, some highly degraded,

and above 900 m the forest grades into wetter, lower

montane forest of lower stature. The study area within

the seasonal evergreen forest zone consists of a mosaic of

mature and secondary forests of different successional

stages (Chanthorn et al., 2017; Jha et al., 2020).

Data preparation

Airborne LiDAR-derived and field AGB data

Airborne LiDAR-derived AGB values are those produced

in Jha et al. (2020). In brief, airborne LiDAR data were

acquired at very high density (>25 pts m−2) using a

RIEGL LMS Q680i on 10 April 2017 on ca. 64 km2 of

forest area located in the northern part of KYNP (Fig. 1).

We additionally used 70 field plots (each approximately

0.5 ha) belonging to different successional stages (from

young- to old-growth forests) where all trees >5 cm in

diameter were censused using a protocol developed by

the FORESTGEO-CTFS network (Jha et al., 2020). AGB

at the field plot level was estimated by summing individ-

ual tree AGB estimates for all trees using the pantropical

allometric model of Chave et al. (2014) through the BIO-

MASS R package (Réjou-Méchain et al., 2017). Field plot

AGB values ranged from 80 to about 580 Mg ha−1 with

an average of 315 Mg ha−1 LiDAR top-of-canopy height

(TCH) was calibrated against the 70-field plot AGB esti-

mates through a log-log linear model to produce a

LiDAR-AGB map at 60-m resolution with an associated

error of 45 Mg ha−1 (14%) (Jha et al., 2020).

Passive earth observation satellite data

We used three different sources of passive multispectral

satellite data: Landsat-8 (L8), Sentinel-2B (S2) and

Worldview-3 (WV3). The characteristics of the images

and bands used are summarized in Table 1. For L8 and

S2, data were acquired during the dry season (November

to April) to minimize cloud cover. Atmospheric correc-

tion and dehazing were carried out on orthorectified and

radiometrically calibrated products and the bottom-of-at-

mosphere (BoA) reflectance was computed using the

Overland image processing software (developed by Airbus

Defense and Space; Feret & Barbier, 2018). The different

image tiles were mosaicked to cover the whole KYNP

area.

We also used a high-resolution WV3 image fully covering

the LiDAR area, but given its prohibitive cost, we did not

purchase WV3 data over the whole of KYNP area. From the

ortho-ready product, we performed the orthorectification

using rational polynomial coefficients (accuracy < 0.3 m),

the LiDAR digital surface model and ground control points.

Due to administrative issue the WV3 was acquired just

before rainy season i.e., June 2018 instead of dry season but

the image contained less than 15% cloud cover, which was

masked in subsequent analyses. To make the three images

radiometrically comparable, the digital number values of the

original WV3 images were calibrated and converted to the

BoA reflectance values.

The pre-processed L8, S2 and WV3 images were resam-

pled at 60-m pixel size resolution for comparing the

upscaling potential of the three datasets at the same scale

and to match the LiDAR-derived AGB map. The main

reason for aggregating all data to 60-m was to minimize

the edge effects and potential geolocation errors that

strongly blur the forest AGB-RS signal at smaller scales in

tropical forests (Mascaro et al., 2011; Réjou-Méchain

et al., 2019).

To maximize the comparison between sensors, all anal-

yses were conducted only considering the WV3 cloud-

and shadow-free pixels.

Remote sensing predictors

We used 37–57 AGB predictors according to the data

source, including the original aggregated bands, intra 60-

m pixel statistics based on bands at original resolution

and derived multispectral or textural indices (Table 2).

These predictors were chosen from the literature, follow-

ing their claimed capability to predict AGB. We catego-

rized predictors into three groups: multispectral bands,

spectral metrics and intrapixel metrics.

We used several spectral metrics and, depending on the

expected physiological processes captured, categorized

them as vegetation indices (VIs) and Biophysical variables

(BVs). VIs (indices 1–11 in Table 2) enhances the spectral

features sensitive to vegetation density while reducing

noise due to soil or atmosphere effects (Clevers, 2014).

They are therefore expected to correlate with AGB but are

also well-known to saturate rapidly with increasing AGB

values (Baloloy et al., 2018). In order to minimize this

problem, we also used modified vegetation indices where

Red band is replaced by the Red-edge band (Zhang et al.,

2017).

BVs (indices 12–16 in Table 2) are also expected to

relate to the vegetation status, mainly through its
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Figure 1. Study area. (A) Location of the study area in Thailand (in yellow); (B) location of Khao Yai National Park; (C) digital elevation model

(DEM) of the total area of Khao Yai National park with the location of the LiDAR scene (in white frame) with AGB values at 60-m resolution.
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chlorophyll content (Widlowski et al., 2004). The chloro-

phyll content of a forest stand is indeed expected to cor-

relate, at least partially, with AGB (Boutton et al., 1988;

Keeler et al., 2015). The wavelength regions most sensitive

to chlorophyll pigment variation lie between 550 nm (i.e.,

green) and 715 nm (Red-edge); hence, these two bands

were used to enhance chlorophyll factors (Baloloy et al.,

2018).

Finally, to utilize the full potential and the information

provided by the original resolution of the three sensors,

we computed 60-m intrapixel statistics. For the three sen-

sors, we calculated the standard deviation, coefficient of

variation and homogeneity of all the available bands at

their original spatial resolution. Due to the high-resolu-

tion nature of WV3, we additionally derived image tex-

ture variables from the panchromatic band of the WV3

image using 60-m windows (indices 17–18 in Table 2).

We used the Fourier Transform Textural Ordination

(FOTO), an unsupervised analysis aimed at extracting fea-

tures from high-resolution images, to describe canopy

characteristics, such as crown size and heterogeneity

(Couteron et al., 2005; Ploton et al., 2012). As suggested

by Ploton et al. (2016), we additionally computed lacu-

narity texture variables that are directly sensitive to

canopy gaps. We used the first three axes of independent

Principal Component Analyses, performed on the table of

Fourier r-spectra on the one hand and lacunarity spectra

on the other hand (indices 17–18 in Table 2).

Therefore, in total, we used as candidates for the AGB

prediction model 37 variables for L8 data, 57 variables for

S2, and 52 variables for WV3, hereafter, referred to as RS

predictors. We additionally added as a predictor the ele-

vation (30-m resolution) from the Shuttle Radar Topog-

raphy Mission (SRTM) because topography has an

impact on water and nutrient availability and is known to

strongly impact forest AGB variation (Réjou-Méchain

et al., 2014).

Statistical model

We used a Random Forest (RF) machine-learning algo-

rithm to predict LiDAR-derived AGB values from several

predictors selected through a robust selection procedure.

The RF algorithm accounts for non-linear relationships

between predictors and the response variable, as well as

for interactions between predictors. This approach has

been shown to be very efficient (Mascaro et al., 2014),

especially when RS data have a strong sensitivity to a

large range of AGB, and when the training data are

numerous, independent and widespread across the area of

interest (Meyer et al., 2019). However, RF is known to be

highly subject to the overfitting and is strongly influenced

by spatial autocorrelation among observations (Ploton

et al., 2020). We thus adopted a leave-one-block-out

(LOBO) cross-validation approach, as increasingly recom-

mended to minimize spurious autocorrelation effects

(Ploton et al., 2020; Roberts et al., 2017), where the whole

LiDAR-derived AGB map was divided into four indepen-

dent spatial blocks of ca. 1200 ha each. This approach

consisted in (i) first fitting each RF model with three

blocks of training data, leaving one block for validation,

(ii) then using the model to predict the observations held

out of model calibration. The process of spatial cross-vali-

dation was repeated for all four sets of blocks to improve

model prediction accuracy. Here, we assessed accuracy

with the root mean square error (RMSE), that is indepen-

dently evaluated from all the four blocks (hereafter

referred to as LOBO-RMSE criterion). A spatial

Table 1. Characteristics of passive earth observation satellite data.

Landsat-8 Sentinel-2 Worldview-3

Data download

source

USGS http://glovis.usgs.gov PEPS https://peps.cnes.fr/rocket/ Purchased from Digital Global

Data catalogue WRS-2 path/row: 129/50 &

128/50

47 PQS; 47PQR; 47 PRR

Sensor OLI & TIRS MSI –
Spatial Coverage 2170 km2 2170 km2 113 km2

No. of images 2 2 1

Date 5/11/2018 & 14/12/2018 3/11/2018 & 23/03/2019 23/06/2018

Spatial resolution 30 m 10 m MSS-1.2 m/Pan 0.3 m (used for

Texture)

Bands with

associated

spectral range

mean in

micrometers

B2 Blue0.483, B3 Green0.560,

B4 Red0.660,, B5 NIR0.865,

B6 SWIR-11.650, B7 SWIR-

22.220

B2 Blue0.490, B3 Green0.560, B4 Red0.665, B5 Red-

edge10.705, B6 Red-edge20.740, B7 Red-

edge30.783, B8 NIR10.842, B8A NIR narrow or

Vegetation Red Edge0.865, B11 SWIR-11.610,

B12 SWIR-22.190

B1CoastalBlue0.426, B2Blue0.481,

B3Green0.547, B4Yellow0.605,

B5Red0.661, B6Red-edge0.725,

B7NIR10.832, B8NIR20.948
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variogram analysis performed on LiDAR predicted AGB

values revealed that AGB is not anymore spatially aggre-

gated above 3000 m in our study area (Fig. S1) so that

dividing our study area into four blocks of

3464 × 3464 m using iteratively data from one block to

validate the model trained from data belonging to the

three other blocks generates validation data that are both

statistically and spatially independent of the calibration

data. As the variable importance index provided by RF

derives from internal Out-of-Bag procedures that do not

account for spatial dependence in observations, we

designed a forward selection procedure that starts by

selecting the best discriminant variable according to the

LOBO-RMSE criterion. The process then continues by

selecting the second-best discriminant variable, and so on.

We finally kept only predictive variables that contributed

to a decrease of absolute RMSE by more than 1 Mg ha−1

to minimize any model overfitting that would occur by

chance. To assess the overall gain of our final selected RF

model, we compared it with a null model containing all

predictors but where AGB values were randomized during

the model calibration stage. This process was repeated

fifty times to provide the mean and standard deviation of

the fifty RMSE values expected under the null model.

We additionally assessed the sensitivity of each sensor

to predict AGB above and below to an arbitrary threshold

of 200 Mg ha−1. To do this, we repeated the calibra-

tion/validation and variable selection steps described

above independently for each sensor but restricting the

analyses to areas where the LiDAR-derived AGB values

were either below (1652 ha) or above (3,561 ha)

200 Mg ha−1 and compared the LOBO-RMSE criterion

among sensors.

Sensor comparisons

Signal sensitivity to forest AGB

For each sensor, we independently assessed the signal sat-

uration point, i.e., the AGB value above which a marked

decrease in sensitivity of signal to AGB is observed (Joshi

et al., 2017). To identify this signal saturation point, we

Table 2. Summary of some predictor variables. The variable used in each sensor is marked by ×.

S.

No Variables Equations

Variables

derived from

Sensors

ReferencesL8 S2 WV3

1 Normalized difference vegetation index (NDVI) NIR�Red
NIRþRed × × × Tucker (1979)

2 Transformed NDVI (TNDVI)
ffiffiffiffiffiffiffiffiffiffiffi
NDVI

p þ0:5 × × × Tucker (1979)

3 Pan NDVI (PNDVI) NIR� GreenþRedþBlueð Þ
NIRþ GreenþRedþBlueð Þ × × × Wang et al. (2007

4 Wide dynamic range vegetation Index (WDRVI) 0:1∗NIRð Þ�Red
0:1∗NIRð ÞþRed × × × Gitelson (2004)

5 Green NDVI (GNDVI) NIR�Greenð Þ
NIRþGreenð Þ × × × Gitelson et al.

(1996)

6 Normalized difference water index (NDWI) Green�NIR
GreenþNIR × × × (McFeeters, 1996)

7 Normalized burn ratio (NBR) NIR�SWIR
NIRþSWIR × × Miller and Thode

(2007)

8 Normalized difference red edge or NDVI red

edge (NDRE)

NIR1�Red Edge 1
NIR1þRed Edge 1 × × Sims and Gamon

(2002)

9 Moisture index (MI) NIR2�SWIR
NIR2þSWIR × Gao (1995)

10 Green vegetation index MSS (GVIMSS) �0:283�0:660þ0:577Red Edgeþ0:388NIR2 × × Bannari et al. (1995)

11 Specific leaf area vegetation index (SLAI) NIR
RedþSWIR × × Lymburner et al.

(2000)

12 Chlorophyll green (Cgreen) NIR
Green

� ��1 × × × Gitelson et al.

(2006)

13 Chlorophyll index green (Clgreen) NIR
Green

� ��1 × × × (Gitelson, 2004)

14 Chlorophyll index red/red-edge (Clred) NIR
RedorRedEdge

� �
�1 × × × Gitelson (2004)

15 Chlorophyll vegetation index (CVI) NIR Red
Green2

� �
× × × Vincini et al. (2008)

16 Leaf chlorophyll index (LCI) NIR2�Red
NIR2þRed × × Pu et al. (2008)

17 FOTO (texture) PCA axes 1 to 3 × Couteron et al.

(2005)

18 Lacu (texture, lacunarity) PCA axes 1 to 3 × Ploton et al. (2017)

19 DEM (23/09/2014) (SRTM) × × × Rodrı́guez et al.

(2006)
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used the observed values and the predicted ones, obtained

from the LOBO cross-validation approach, and fitted a

piecewise linear regression model. This regression

approach allows the detection of a breaking point in a

linear relationship. In order to facilitate cross-sensor com-

parisons, we selected only one breaking point and used

1000 bootstrap replicates to estimate its 95% confidence

interval (CI).

We then used the Pearson’s correlation (r) between

observed and predicted AGB to quantify the model predic-

tive power below and above the signal saturation point.

Inter-sensors comparison

We compared the AGB predicted by different sensors

through a standard major axis (SMA) regression

approach. Contrary with classic ordinary least-squares

(OLS) regression, which assumes that only Y values have

associated errors, SMA accounts for errors in both X and

Y and thus does not assume any hierarchy between the

two variables.

Variable transferability among sensors

The best predictors of forest AGB may vary from sensor

to sensor (Brosofske et al., 2014). In order to identify the

most universal or transferable AGB predictors across sen-

sors, we repeated the LOBO-RMSE selection procedure

considering only the common variables (n = 15) among

the three sensors.

AGB extrapolation to the whole study area

We finally compared the AGB prediction from L8 and S2

data at the scale of the KYNP, hence outside the calibra-

tion area, using a SMA regression model between AGB

values predicted by both sensors. This analysis did not

aim at assessing the accuracy of the extrapolated values,

because no validation data were available outside our

LiDAR area, but to understand how consistent were the

S2 and L8 predicted AGB values when extrapolated

regionally, out of the calibration area, as it would be done

for any large-scale prediction study.

All statistics in this study were performed using the

random Forest package (Liaw & Wiener, 2002) of the R

software version 3.6.1 (https://www.r-project.org/).

Results

Selection of the predictors

Our selection procedure retained four to five predictors

for each sensor (the addition of other variables did not

reduce the LOBO-RMSE by more than 1 Mg ha−1;

Fig. 2). Scatterplots between LiDAR-derived AGB values

and the selected predictors taken individually are given in

the Figures S2–S4. Our spatial cross-validation approach

showed that the selected predictors for L8, S2 and WV3

predicted LiDAR-derived AGB values with an RMSE of

ca. 84 Mg ha−1 (29%), 72 Mg ha−1 (24%) and

68 Mg ha−1 (23%), respectively (Table S1). We also

assessed the sensitivity of different satellite sensors for

predicting low (≤200 Mg ha−1) and high (>200 Mg ha−1)

AGB values (Fig. S5). As expected, our spatial cross-vali-

dation approach revealed that, for all satellite sensors,

AGB values ≤200 Mg ha−1 were much more accurately

predicted (r = 0.65–0.79; relative RMSE of 19%–24%,

compared to 28% with the null model) than AGB values

>200 Mg ha−1 (r = 0.09–0.36; relative RMSE of

21%–25%, compared to 31% with the null model). S2

and WV3 tended to provide more accurate estimates for

both low and high AGB values than L8. The number of

selected predictors was smaller for low AGB values (2–3)
than for high AGB values (4–5). The Green band0.560
(B3) of L8, the Red-edge band0.705 (B5) of S2, and the

NDRE index of WV3 were independently retained as the

best predictors for low AGB values, with correlations with

the LiDAR-derived AGB gradient below to 200 Mg ha−1,

of −0.62, −0.78 and 0.78, respectively (Fig. S6). The best

predictor for the AGB gradient above >200 Mg ha−1 for

L8, S2 and WV3 sensors were Green band0.560 (B3),

GVIMSS index and Red-edge band0.725 (B6), respectively,

with independent correlations shown in Figure S7.

Functional form of satellite-derived AGB
models

We found that the signal saturation points varied among

satellite datasets and were ca. 192 Mg ha−1 (95% CI

185–197) for L8, 204 Mg ha−1 (95% CI 200–209) for S2,

and 247 Mg ha−1 (95% CI 240–255) for WV3 data

(Fig. 3). Above these thresholds, all datasets exhibited sig-

nificant, albeit weak, correlations between observed and

predicted datasets, but with a better performance of S2

and WV3 data compared to L8 data. For all data sources,

the models tended to overestimate small AGB values and

strongly underestimate large AGB values.

Sensor comparisons

Inter-sensors comparisons

The comparison of the paired predicted AGB values by

the different sensors indicated relatively good overall

agreement, especially for low AGB values (Fig. 4). For

higher AGB values (>250 Mg ha−1), the highest, albeit
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weak, correlations were observed between L8 and S2 pre-

dictions and between WV3 and S2 predictions (r = 0.33

and 0.31, respectively, P < 0.0001). By contrast, WV3

predictions for these large AGB values were comparatively

poorly correlated with L8 predictions (r = 0.16). The

SMA regression showed significant departures from the

Figure 2. Selection of sensor predictors using both a leave-one-block-out (LOBO) cross-validation approach and a forward selection for the three

satellite datasets (A–C). The first selected predictor is the one contributing to the highest decrease in LOBO-RMSE, and then additional predictors

are added to the model using the same rule. Only predictors contributing to a decrease of more than 1 Mg ha−1 in the LOBO-RMSE are selected

in the final model (in blue). The expected LOBO-RMSE under a null model, i.e., breaking the link between forest AGB and RS signal, is

represented by a red dot.

Figure 3. Predicted and observed (LiDAR) AGB for the three satellite datasets obtained from a leave-one-block-out cross-validation approach (A)

L8 predicted AGB versus LiDAR-derived AGB (B) S2 predicted AGB versus LiDAR-derived AGB; (C) WV3 predicted AGB versus LiDAR-derived AGB.

Pearson’s r correlation coefficient and associated P values for each piecewise regression segment are reported within each panel. Blue to red

colour indicates low to high point density, respectively.
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1:1 line but did not reveal any major bias between sensor

predictions.

Variable transferability among sensors

The common selection procedure, based on the mean

LOBO-RMSE among the three sensor datasets, resulted in

five selected predictors: the Green, Blue and Red bands,

and the GNDVI and PNDVI indices (Fig. 5). The result-

ing prediction errors were 84, 77 and 71 Mg ha−1 for L8,

S2 and WV3, respectively, indicating that the higher

potential of WV3 and S2 is not only due to the availabil-

ity of other bands, but is also marked when similar spec-

tral regions and indices are used.

Extrapolation to the regional scale

Using the predictors independently selected from S2 and

L8 data, we predicted AGB over the whole KYNP area at

the 60-m resolution, but with a unique open class for

pixels ≥200 Mg ha−1 because of signal saturation (Fig. 6).

The overall correlation coefficient between the two

Figure 4. Relationship between predicted AGB values from the three datasets (A) Landsat-8 and Worldview-3 (B) Sentinel-2 and Landsat-8 (C)

Worldview-3 and Sentinel-2. Blue to red colour indicates low to high point density, respectively.

Figure 5. Selection of the best predictors common to the three satellite datasets. The method is the same as that used for Figure 2, but here,

predictors are selected based on the mean of the three sensor-specific LOBO-RMSE values. The first five predictors are chosen based on our

criteria for selecting variables that contributed to a decrease in mean RMSE by more than 1 Mg ha−1.
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estimates was 0.56, but L8 predictions were, on average,

34% higher than S2 predictions, resulting in estimates of

total AGB stock for these low AGB areas of 18.02 Tg (ter-

agrams) and 11.81 Tg, respectively. WV3, which provided

the most accurate local estimates, was not available over

the full extent.

Discussion

In this paper, we used imagery from three different satel-

lite sensors to assess their potential to map AGB at a large

scale in a heterogeneous dense forest area. Using both a

large LiDAR dataset and robust statistical procedures con-

trolling for spatial autocorrelation, we showed that higher

resolution products such as WV3 and S2 provide more

accurate AGB predictions than L8 data in a tropical forest

landscape. As discussed below, this higher accuracy may

originate from both the higher spatial and spectral resolu-

tion of WV3 and S2 data compared to L8, and the avail-

ability of the Red-edge band. Globally, predictions of low

AGB values (≤200 Mg ha−1) were fairly consistent among

sensors, even if systematic differences of nearly 34% were

observed when we extrapolated the predictions over the

full region of interest.

The relative potential of passive remote
sensing data to map forest AGB

As expected, we found that predictors from the three

satellite sensors conveyed important information on forest

AGB variation, at least for low AGB values

(≤200 Mg ha−1). For these low AGB values, the three

datasets provided consistent predictions (r > 0.70), with

an error ranging from 19% to 24%, and did not show

major systematic differences in paired predictions. For

higher AGB values, L8 provided almost no information

while S2 and WV3 showed modest correlations (r > 0.3)

between observations and predictions. More generally, we

also found a significantly higher potential of WV3 and S2

data to predict AGB values, compared to L8 data, even

when analyses were restricted to common bands (Fig. 5).

Four reasons may explain this higher potential. First, as

can be seen by comparing the analyses based on all vari-

ables (Fig. 2) and restricted to common variables (Fig. 5),

the Red-edge bands from S2 and WV3, absent from L8,

significantly improved prediction accuracy. The Red-edge

region is located in a transitional reflectance region,

between Red band and NIR region (Horler et al., 1983),

and thus has potentially good sensitivity to forest struc-

ture (Gitelson, 2004). Second, the higher spatial resolu-

tion of these products, compared to L8, may allow

capturing more subtle AGB variation, even in high AGB

areas. Third, the higher resolution also led to a higher

number of pixels aggregated at the mapping resolution

(60 m), thereby increasing the "averaging effect" of indi-

vidual pixels error on map predictions, thus potentially

resulting in a "purest" signal at the 60-m stand level.

Fourth, one cannot exclude the possibility that differences

in the image quality, e.g. due to varying understanding of

the impulse response, results in different effective spectral

and radiometric resolution, which may have then con-

tributed to differences in prediction accuracy.

The limit above which AGB can be inferred with pas-

sive sensors has been the subject of much discussion. For

Landsat TM/ETM and OLI, many studies have shown a

saturation point between 100 and 150 Mg ha−1 (Lu et al.,

2016). To our knowledge, there have been only a few

attempts to assess the saturation point in tropical forests

with S2 and WV3 sensors. Here, using a large LiDAR

dataset covering a broad forest structure gradient, we

have shown that passive sensors do not convey reliable

information above 200 Mg ha−1 for L8 and S2 data and

above 250 Mg ha−1 for WV3 data. Depending on the type

of sensor and the complexity of the vegetation structure,

the saturation points may, however, differ. Thus, caution

must be taken when transposing our saturation points to

other study sites and forest types.

Texture analyses based on canopy characteristics in

high to very high-resolution images have been previously

shown to be good predictors of forest AGB without obvi-

ous saturation effects at high AGB values (Couteron

et al., 2005, 2015; Ploton et al., 2012). In this study,

although the first FOTO PCA axis was selected, it only

modestly improved the model. Note also that taken indi-

vidually, texture metrics did not correlate significantly

with forest AGB (Fig. S8). The performance of such tex-

ture-based metrics to infer forest AGB has been shown to

vary strongly among sites and forest types (Pargal et al.,

2017; Ploton et al., 2017; Ploton et al., 2013) and to be

highly dependent on image acquisition parameters (Bar-

bier et al., 2011).

The problem of variable selection

The variables used to predict forest AGB vary strongly

among studies in the literature, limiting cross-region

comparisons (Brosofske et al., 2014). Our robust auto-

mated procedure showed that no more than four to five

variables should be retained for each sensor, from an ini-

tial set of 37 to 57 variables. For a few years now, the use

of RF algorithm has become a standard approach in the

field of RS. RF accounts for non-linear and interaction

effects among predictors but at the same time, may be

prone to overfitting (Xu et al., 2016). Despite this well-

known limitation, previous studies have used a plethora

of predictors (e.g., up to 24 in Pandit et al., 2018; 23 in
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Figure 6. Extrapolated AGB values over the whole Khao Yai area using (A). Landsat-8 and B. Sentinel-2 selected models. As suggested by our

results, AGB estimates >200 Mg ha−1 are considered as unreliable here and hence represented in an open class displayed in dark grey.
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López-Serrano et al., 2016; 13 in Chen et al., 2019; 28 in

López-Serrano et al., 2020) in RF model, with no robust

selection procedure. We have shown here that simple

models, accounting for no more than five RS predictors,

performed at least as well as more complex models and

that these simple models should be preferred based on

the parsimony principle, even if no detrimental effects of

overfitting were detected here (i.e., no increase in RMSE

with more complex models; Fig. 2 and Fig. S5).

We have also shown that the selected predictors vary

strongly from one sensor to another. The best AGB pre-

dictors were the Green0.560 band for L8, the Red-edge0.705
band for S2, and the NDRE index for WV3. Only the

WDRVI index was commonly retained for L8 and S2. We

also showed that the selection procedure favoured differ-

ent predictors according to the range of AGB values con-

sidered (below and above 200 Mg ha−1). However, the

selection of variables can be slightly affected by the acqui-

sition conditions, such as the period at which data were

acquired, even if additional tests using L8 data acquired

in May 2018 resulted in a similar AGB prediction error

(Fig. S9). Note also that fusing all satellite data within a

single model did not lead to any improvement, suggesting

that these data bring little complementary information

(Fig. S10). Lastly, when predictors were selected according

to their transferability among sensors (Fig. 5), the three

best predictors were the untransformed Green, Blue and

Red bands. These visible bands, especially Green and Blue,

are highly sensitive to variation in reflectance due to pho-

tosynthetic properties and vegetation cover (Rullan-Silva

et al., 2013) and hence are expected to convey relevant

information on forest structure. Surprisingly, while most

of the vegetation indices proposed to predict forest struc-

ture rely on the Red and NIR band, we found that this

band appears to be less informative than the Green and

Blue bands for forest AGB predictions (Table S2). How-

ever, visible untransformed bands are highly sensitive to

atmospheric effects and hence should be used with cau-

tion or with adequate correction model, especially when

analyzing temporal series.

Implications for tropical forest carbon maps

Several studies have produced forest carbon maps by

extrapolating extensive field- or LiDAR-based AGB esti-

mates on the basis of passive RS data (e.g., Asner et al.,

2013; Baccini et al., 2017; Xu et al., 2017), among which

some are considered as reference AGB maps for the trop-

ics (Baccini et al., 2012; Saatchi et al., 2011). In a recent

comment on the map produced by Baccini et al. (2017)

and Hansen et al. (2019) stated that the mapping exercise

overstated our current capabilities for mapping forest car-

bon stocks and dynamics in dense tropical forests. Our

present results, as well as the comparison of our LiDAR

AGB estimates with global biomass maps (Fig. S11), con-

firm this statement and call for much care in the interpre-

tation and use of published large scale tropical forest

carbon and AGB maps. As an example, over the whole of

KYNP area (ca. 216 770 ha), we were able to map with

enough confidence only 28% of the forested area corre-

sponding to patches with AGB below to 200 Mg ha−1,

because predictions above this threshold appeared largely

unreliable (Fig. 4). Thus, current passive satellite products

do have the potential to produce High Carbon Stock

(HCS) classifications, providing that HCS forests can be

considered as forests storing more than 100 Mg ha−1 C,

but cannot otherwise produce satisfactory continuous

AGB maps in tropical forests due to a lack of sensitivity

above 200 Mg ha−1. Within the low AGB area

(≤200 Mg ha−1), L8 and S2 data led to fairly consistent

predictions (r = 0.73; P < 0.0001), but with significant

local discrepancies at the edge and in the south-east

quadrant of the study area (Fig. S12), even if the lack of

field or LiDAR data in this area did not allow us to check

which predictions were the most accurate. However, if

AGB gradients were globally well-captured, absolute AGB

values were predicted to be 34% higher from L8 data

than from S2 data, suggesting that potential bias may

arise in the estimate of the total AGB stored, even in the

low AGB forests of KYNP (11.81 and 18.02 Tg with S2

and L8 data, respectively). One possible explanation is

that our LiDAR calibration area (i.e., about 3.2% of full

KYNP) does not perfectly represent the full extrapolated

area of KYNP, e.g., due to variations in topographical

conditions and forest types, which may have generated

different behaviours of S2 and L8 data and thus large dis-

crepancies (Wilkes et al., 2015). Finally, as already shown

by previous studies (e.g., Xu et al., 2017), we have

demonstrated that when calibrated with the full AGB gra-

dient, our algorithm strongly overestimates low AGB val-

ues (by 35%–57% for predicted values ≤200 Mg ha−1).

However, the bias in overall biomass prediction is much

lower when the model is only calibrated in the low bio-

mass domain, i.e., ≤200 Mg ha−1, in all three sensors

(Fig. S13). Thus, not only are large AGB values poorly

predicted by passive multispectral sensors, but this failure

also induces a systematic bias in low AGB predictions.

Conclusions

In this paper, using multi-source satellite sensor datasets,

we assessed the potential to map AGB at large scale in a

heterogeneous dense forest area. Our results indicate that

when passive RS data are used to predict forest AGB, (1)

difference in overall performance depends on the spatial

resolution, quality of sensor and on the bands available

12 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London

Upscaling Forest Biomass With Satellite Data N. Jha et al.



on the original satellite datasets, (2) extreme caution

should be taken when interpreting large predicted AGB

values, (3) a high uncertainty remains associated with

small AGB values, even if the associated AGB gradients

can be fairly well-captured, and (4) calibrating the model

only within the range of AGB values that can actually be

predicted minimizes the risk of induced bias. On a global

scale, our study points to the fact that, while waiting for

upcoming more AGB-oriented sensors, freely available

Sentinel data, which have a greater potential than the

widely used Landsat data, should be preferred to extrapo-

late AGB values, at least in low-AGB forests.
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Figure S1. Spatial Variogram of illustrate the spatial auto-

correlation of the LiDAR AGB. The distance is in meters.

Figure S2. Scatter density plots between the selected pre-

dictors of Landsat-8 individually with AGBLIDAR. (A)

Green0.560; (B) Blue0.483; (C) WDRVI; (D) CVI. Blue to

red color indicates low to high point density, respectively.

Figure S3. Scatter density plots between the selected pre-

dictors of Sentinel-2 individually with AGBLIDAR. (A)

Red-edge10.705 band; (B) WDRVI; (C) MI; (D) NDWI.

Blue to red color indicates low to high point density,

respectively.

Figure S4. Scatter density plots between the selected pre-

dictors of Worldview-3 individually with AGBLIDAR (A)

NDRE (B) GVIMSS (C) Cgreen (D) FotoPCA1 E.LCI.

Blue to red color indicates low to high point density,

respectively.

Figure S5. Selection of the best predictors of LiDAR-

derived AGB values below or equal to (A, B, and C) and

above (D, E and F) an arbitrary threshold AGB of

200 Mg ha−1 for three multi-spectral satellite sensors

using leave-one-block-out (LOBO) cross-validation

approach with a forward selection approach.

Figure S6. Scatter density plots between the best predic-

tors of different sensors for predicting AGBLIDAR value

below or equal to 200 Mg ha−1 (A) Landsat-8 Green0.560
Band (B) Sentinel-2 Red-edge10.705 Band C.

Figure S7. Scatter density plots between the best predic-

tors of different sensors for predicting AGBLIDAR value

above 200 Mg ha−1 (A) Landsat-8 Green0.560 Band (B)

Sentinel-2 GVIMSS (C) Worldview-3 Red-edge10.725 Band

with AGBLIDAR >200 Mg ha−1.

Figure S8. Scatter density plots between the texture vari-

ables of Worldview 3 with AGBLIDAR (A–C) FotoPCA1-3

(D–F) LacuPCA1-PCA3. Blue to red color indicates low

to high point density, respectively.

Figure S9. Selection of sensor predictors using both a

leave-one-block-out (LOBO) cross-validation approach

and a forward selection for Landsat 8 data acquired in

May 2018.

Figure S10. Selection of sensor predictors using both a

leave-one-block-out (LOBO) cross-validation approach

and a forward selection for the three satellite datasets

combined together.

Figure S11. The performance of several published global

and pan-tropical biomass maps to predict LiDAR-AGB

estimates in our study area with (A) The integrated

pantropical biomass map by Avitabile et al. (2016); (B)

Global forest biomass GEOCARBON based on Avitabile

et al. (2016) and Santoro et al. (2015); (C) The pantropi-

cal Baccini et al. (2012) map (most of our study area was

covered with cloud and hence masked out in their map)

(D) The pantropical Saatchi et al. (2011) map.

Figure S12. The arithmetic difference (pixel by pixel)

between Landsat 8 predicted AGB and Sentinel 2 pre-

dicted AGB. The AGB estimates >200 Mg ha−1 would be

unreliable as shown in our study case, and hence thresh-

old has been set to 200 Mg ha−1 (above threshold

denoted by dark gray).

Figure S13. Bias comparison for the low AGB values with

the complete calibration model (all AGB values; shown in

Left column A,C,E) and with the model calibration

restricted to low AGB values (≤200 Mg ha−1; shown in

Right column B,D,F).

Table S1. Accuracy estimates and saturation point values

found in the present study for the three studied sensors.

Table S2. Correlation between individual Blue, Green,

Red and NIR bands from the three sensors with LiDAR

AGB estimates.
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