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Abstract: Productivity of tropical lowland moist forests is often limited by availability and functional
allocation of phosphorus (P) that drives competition among tree species and becomes a key factor
in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling
to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test
the hypotheses that P-use is species-specific, and that species diversity relates to species P-use
and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate
monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species
explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component
analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing
compounds, which represented a continuum going from high concentrations of metabolites related to
non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of
P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and
low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific
P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation
from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.
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1. Introduction

Nitrogen (N) and phosphorus (P) are essential nutrients for photosynthetic carbon assimilation
and represent the most common net primary productivity limiting nutrients in terrestrial ecosystems.
Nitrogen availability constrains plant productivity in many temperate and boreal forests by limiting
leaf initiation and expansion [1] and synthesis of Rubisco and other photosynthetic proteins [2].
However, bioavailability of P often also limits productivity of terrestrial and aquatic ecosystems [3],
including in wet tropical forests [4]. Stocks, chemical forms and availability of P change with ecosystem
development and succession processes determining ecosystem properties along spatial and temporal
gradients [5–8]. Lowland tropical forest trees tend to experience long-term low P bioavailability, so it
is likely that species have evolved responding and adapting to P-limitation and thus was reflected
in tree community composition. Indeed, a recent study in a Panamanian tropical forest showed that
P-limitation of plant growth is species-specific, and growth of species adapted to low P availability is
rapid [9].

Tropical forests are characterized by high levels of biodiversity and aboveground biomass at a
range of spatial scales; however, the spatial distribution of plant species and soils is highly variable
within these forests, despite the tropical rainforest presented very often general characteristics, such as
high productivity, rapid nutrient turnover, highly weathered soils and low soil pH [10]. Variations
in climate, soil traits and gradients, and topography are drivers of diverse plant communities and
soil processes that interact to produce high levels of biodiversity [11]. Factors, such as geological
history [12], soil type [13,14] and trait [15,16], soil nutrient availability gradients [14,17–19], micro-site
singularities [20], topography [21] and slope differences [22], disturbance and regeneration regimes [23]
and species-specific responses to herbivory [24] are key drivers of species coexistence and tree diversity
in the tropics.

Understanding the allocation of P to different biologic functions, for example, growth,
energy transfer and storage, in sympatric tree species in a P-limited ecosystem will clarify strategies
and mechanisms of species niche segregation and intra-species avoidance of competition. This can
provide new essential clues that drives the high levels of tree diversity in tropical forests.

Shifting leaf allocation of P is a key response mechanism to low soil P availability [25].
Foliar P is functionally divided into four major fractions, comprising metabolic P—which includes
low-molecular-weight phosphate esters (ADP, ATP and sugar phosphates)—and inorganic phosphate
(Pi); nucleic acid P, most of which is contained in ribosomal RNA; structural P in membrane
phospholipids; and, residual P in phosphorylated proteins and unidentified residues [25–27]. Of these,
metabolic P is important in the study of P-limitation, due to the key roles of P-containing metabolites in
the Calvin–Benson cycle, where insufficient metabolic P may limit maximum photosynthetic rates [28].
Nucleic acid P, which generally represents 40%–60% of the organic P pool in leaves [29], is mostly
(>85%) contained in RNA, particularly ribosomal RNA (rRNA) in which high P-allocations sustain
rapid protein synthesis that is required for growth and photosynthesis [25]; thus, there tends to
be a positive correlation between rRNA and protein content, as well as with growth rate, over a
range of taxa [30]. Structural P accounts for 10%–20% of all foliar P [31] and is mainly contained in
phospholipids that are an essential component of plasmalemma and organelle membranes. The fourth
fraction, residual P, may represent 20% of total foliar P in tropical trees [25] and is probably mostly
contained in phosphorylated proteins. Concentration of residual P tends to be relatively constant,
because phosphorylated proteins are essential for many metabolic processes; however, under extreme
P-limited conditions, phosphatases may trigger dephosphorylation of proteins [31] that leads to a
reduction in residual P concentrations.
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31P nuclear magnetic resonance (NMR)-based metabolic profiling allows the quantitative and
qualitative analysis of organic-P from molecules involved in biologic functioning in plants and may
demonstrate species differences in proportional P-use among plant functions. This methodology has
been particularly used for molecular-level characterization of leaf organic P [32–35].

Here, we used 31P-NMR-based metabolic profiling to study species-specific P-allocation to
different biologic functions in contrasting plant communities along soil–topographic gradients to
understand drivers and mechanisms of niche differentiation related with species-specific P-use.
Specifically, we tested the hypotheses that (1) distribution and proportions of P-molecular compounds
are species-specific, and (2) there is a link between concentration and ratios of different P-metabolite
groups and plant functional traits.

2. Materials and Methods

2.1. Study Area

French Guiana lies between 2◦10′ and 5◦45′ N and 51◦40′ and 54◦30′ W, where 97% of the region
is covered by lowland wet tropical forest [36]. The dry season, which extends from September to
November, is associated with the displacement of the inter-tropical convergence zone. Mean annual
temperature is 25.8 ± 2 ◦C, with mean daily variations of 7 and 10 ◦C in the rainy and dry seasons,
respectively [37,38]. Study sites were in two old-growth rainforests, one at the Paracou Research Station
(5◦18′ N, 52◦53′ W) and the other at Nouragues Research Station (4◦05′ N, 52◦40′ W), where mean
annual rainfall is 3160 and 2990 mm, respectively [37,38]. Three topographic positions were selected at
each study, comprising hilltop (top), mid-slope at an intermediate elevation (slope) and lower slope at
low elevation, just above the creek (bottom).

2.2. Study Plots

We established four 20 × 20 m plots at each topographic position; distance between plots,
which were in the vicinity of undisturbed long-term (30 years) monitoring plots, was 10–200 m (both in
Paracou and Nouragues stations) (Figure 1). Sand content of soils was higher, and clay content was
lower at the lower slope plots than in the hilltop and mid-slope plots [38].
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potassium; P—phosphorus. the closest tree species to each sampling point with the corresponding 
S.D. (B). The abbreviation of the legend refer to the closest tree species: Aro—Aniba rosaeodora; Bpr—
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Lal—Licania alba; Mco—Moronobea coccinea; Mve—Micropholis venulosa; Oas—Oxandra asbeckii; Peu—
Pouteria eugeniifolia; Pgu—Paloue guianensis; Pop—Protium opacum; Ppt—Pradosia ptychandra; Spr—
Sterculia pruriens; Ssp—Sterculia speciose; TCl—Tovomita clusiaceae; Tpr—Talisia praealta; Vam 
Vouacapoua america; Vsa—Vochysia sabatieri. 

Figure 1. Principal components analysis (PCA) of P organic compounds and elements in leaf
material among (A) species and (B) variables. In panel B, metabolomic families are in black text;
ecophysiological variables are in green text; and stoichiometric variables are in red text. Polyphos—
polyphosphate; pyrophos—pyrophosphate; polyphosphos—polyphosphonate; orthophosphate
(orthophos), orthophosphate monosester (orthomono), orthophos—orthophosphate-diester;
glucose6phos—glucose-6phosphates; SPAD—chlorophyll content; C—carbon; N—nitrogen;
K—potassium; P—phosphorus. the closest tree species to each sampling point with the corresponding
S.D. (B). The abbreviation of the legend refer to the closest tree species: Aro—Aniba rosaeodora;
Bpr—Bocoa prouacensis; Car—Chrysophyllum argenteum—Cde—Capiro decorticans; Cfr—Catostemma
fragrans; Cgl—Caryocar glabrum; Csa—Chrysophyllum sanguinolentum; Csu—Carapa surimensis;
Ctu—Chimarrhis turbita; Dod—Dipteryx odorata; Dva—Drypetes variabilis; Eco—Eschweilera coriacea;
Ede—Eschweilera decolorans; Efa—Eperua falcata; Egr—Eperua grandiflora; Hbi—Hirtella bicornis;
hco—Hymanea courbaril; Lal—Licania alba; Mco—Moronobea coccinea; Mve—Micropholis venulosa;
Oas—Oxandra asbeckii; Peu—Pouteria eugeniifolia; Pgu—Paloue guianensis; Pop—Protium opacum;
Ppt—Pradosia ptychandra; Spr—Sterculia pruriens; Ssp—Sterculia speciose; TCl—Tovomita clusiaceae;
Tpr—Talisia praealta; Vam Vouacapoua america; Vsa—Vochysia sabatieri.

2.3. Sample Collection

We collected leaves from 199 trees of 31 species in the wet season (June) of 2015. The trees
were representative of the whole rainforest of the French Guiana and of the two studied sites,
Paracou and Nouragues. We collected leaves always in the same position and always of similar age
(mature middle-age leaves) with the help of professional climbers. Samples used in metabolomic
analyses require rapid processing and appropriate storage [39–42], so we placed about 2 g of leaf tissue
per sample immediately into a paper container that was then frozen in liquid nitrogen and transported
to the laboratory.

Frozen leaves were lyophilized and stored in paper containers at −80 ◦C; then samples were
ground to a fine powder using a ball mill at 1500 rpm for 3 minutes and stored at −80 ◦C prior to
analysis extraction.
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2.4. Nutrient Pools

Leaf subsamples were pulverized in a ball mill (MM400, Retsch, Haan, Germany) for the analysis
of elemental composition. Between 0.15 and 0.2 g of leaf was weighed with a microbalance (MX5 Mettler
Toledo, Columbus, OH, USA) for the determination of C and N contents by combustion coupled to an
isotope ratio mass spectrometer at the Stable isotopes facility (UC Davis, Davis, CA, USA). P and K
contents were determined by diluting 0.25 g of soil with an acid mixture of HNO3 (60%) and H2O2

(30% p/v) and digested in a microwave oven (MARS Xpress, CEM Corporation, Matthews, NC, USA).
The digested solutions were then diluted to a final volume of 50 mL with ultrapure water and 1% HNO3.
Blank solutions (5 mL of HNO3 with 2 mL of H2O2 with no sample biomass) were regularly analyzed.
The content of each element was determined using inductively coupled plasma/optical emission
spectrometry (ICP-OES Optima 4300DV, PerkinElmer, Wellesley, MA, USA). We used the standard
certified biomass NIST 1573a to assess the accuracy of the biomass digestion and analytical procedures.

2.5. One Dimensional 31P-NMR Analysis

Standard 1D 31P-NMR was used to quantify concentrations of the main organic and inorganic
P classes, comprising as DNA, total diesters and monoesters, phosphonates, pyrophosphate and
polyphosphate. Phosphorus was extracted by shaking 1.5 g of dry and ground leaf from each
composite leaf sample in 30 mL of a solution containing 250 mM NaOH and 50 mM Na2EDTA
(ethylenediaminetetraacetate) for 4 h [43–45]. Then, extracts were centrifuged (30 min, 14,000× g),
and 23 mL of resulting supernatant was frozen at −80 ◦C overnight and lyophilized. Lyophilization
yielded 750 ± 50 mg of material, 80 mg of which was redissolved in 640 µL (1:8 w/v ratio) of a solution
containing 530 µL of D2O, 10 µL of 14.2 M NaOD and 50 µL of 16 mM methylene diphosphonic acid
(MDPA) trisodium salt (CH3O6P2Na3, Sigma-Aldrich, St. Louis, MO, USA, product number M1886).
The MDPA was a reference for the quantification of individual P compounds, where each 50 µL spike
contained 50 µg of P. The redissolved solution was vortexed for 2 min and subsequently centrifuged
for 5 min at 10,000 rpm; then 560 µL of the solution was transferred to a 5-mm NMR tube for analysis.
During the extraction, we continuously maintained the pH at 8. We used all the samples at the same
pH to compare all the samples in the same condition. Subsequent organic phosphorus extraction in
NaOH–EDTA improved spectral resolution in solution 31P-NMR spectroscopy. Spectra were obtained
using a Bruker Avance III 600 MHz spectrometer (Bruker, Germany) operating at 161.76 MHz for 31P;
NaOH–EDTA extracts were analyzed using zgpg30 pulse sequence, with a relaxation delay of 2.0 s,
an acquisition time of 0.9 s, broadband proton decoupling, 8k scans were acquired per sample and using
64 K time domain data points, lasting each run an overall time of 4 h 40 min. Spectra were processed
with a line broadening of 2 Hz, and chemical shifts were determined in parts per million (ppm) relative
to an external standard of 85% orthophosphoric acid (H3PO4). Identification of the 5target P classes
was based on chemical shifts and previous reported data [32,36]. Spectral processing was done using
TopSpin 2.0 software. After a peak picking process, peak areas were calculated by deconvolution and
integration of individual peaks. Concentration of P-containing compounds (mg P kg−1 air dried leaf)
were calculated using the known concentration of spiked MDPA.

31P-NMR is an NMR technique that does not a require isotope labeling and highly sensitive with
NMR detection. Intensity in 31P spectra signals was assigned to P types by integrating across the broad
chemical shift regions of −21.5 to −18.5 ppm for non-terminal polyphosphate (poly-P), −5.3 to −4.8 ppm
for pyrophosphate (pyro P), −4.8 to −4.0 for terminal poly P, which is mainly assigned to inorganic
pyrophosphate and polyphosphates, −1.5 to 2.5 for diester-P and 2.5 to 7 ppm for orthophosphate
(ortho-P and monoester-P). Deconvolution, which was then used to determine the intensity of up
to 16 resonances in the ortho-P and monoester-P region, was initiated by manually identifying the
chemical shift of peaks and shoulders. Chemical shifts of corresponding resonances varied only slightly
between samples, and the largest variation was for orthophosphate resonance (range 5.56–5.74 ppm).
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This large variation most likely reflects sensitivity of orthophosphate chemical shifts to slight differences
in pH between samples [46].

2.6. Statistical Analyses

Differences in leaf P-compounds between species tested using PERMANOVA [47] of the NMR
data for each tree from which a leaf was collected, using Euclidean distance of species as a fixed factor.
The number of permutations was set at 2000. We scaled normalized areas of metabolite peaks and then
characterized and visualized differences among species and P compounds using principal components
analysis (PCA), partial least squares discriminant analysis (PLSDA) and Pearson’s correlation were
used to test the degree of correspondence between the 1D NMR measurements and the relationship
between elements and P organic compounds.

Statistical procedures were performed using R v2.12 (www.r-project.org) Core software using the
SEQKNN, DOBY, PHEATMAP, VEGAN, FACTOEXTRA, FACTOMINER, DPLYR and MIXOMICS
packages. Presented data are means ± SEM (Standard error of the mean), unless otherwise stated.

3. Results

3.1. Phosphorus Compounds Identification

On average, 31P-NMR spectra of NaOH–EDTA extracts (and relative proportions,%) from the
leaf samples were characterized thus: monoester at 3.4 to 5.4 ppm (c. 25%), unhydrolyzed diesters
at −1 to 2.3 ppm (c. 20%), DNA at −0.3 ppm (c. 20%), polyphosphate at −5.6 to −3.8 (c. 10%),
inorganic orthophosphate (hereafter called ‘phosphate’ at 5.7 to 6.5 (c. 10%), pyrophosphate (pyrophos)
inorganic form of P at 0.5 to 0.6. ppm (c. 5%) and glucose-6phosphates (glucose6phos) at 5.3 to
5.4 ppm (c. 5%). However, there were three main resonance areas in the spectra of acid-insoluble
compounds: P in monoesters, phospholipids (orthophosphate diester) and DNA. Signals from
nucleic acids (DNA −0.37 ppm) and phospholipids were differentiated in the orthophosphate
diester (orthophosdiester) region and identified in a leaf sample. Inorganic (polyphos) and organic
polyphosphates were differentiated by the presence of a signal at−9 ppm from theαphosphate of organic
polyphosphates (polyphosphos). Some orthophosphate monoesters, which were mainly represented
by RNA-derived mononucleotides and phosphatidyl choline, degraded rapidly to orthophosphate
diesters in NaOH–EDTA; DNA and other phospholipids were more stable [32,36].

3.2. Phosphorus Compounds and Elements Among Species

There were species differences in P organic compounds profiles (pseudo-F = 3.08; R2 = 0.67,
p < 0.001), where 67% of the variability was explained by species (Table 1).

Concentrations of P in the tree leaf material varied from 0.73 to 2.10 mg kg−1 (Table 2),
where NaOH–EDTA extracted P represented 65%–90% of total P; 15%–40% was inorganic P that was
almost completely lost during NaOH–EDTA extraction and loss of Porg did not exceed 15%–20%.
Proportions of monoester and diester-P varied among tree species (Table 2). The highest proportion
of diesters (55%) was recorded in Calostemma fragrans, Sterculia pruriens, S. speciosa, Protium opacum,
Aniba rosaeodora and Drypetes variabilis, while the lowest (10%) was found in Chrysophyllum argenteum,
Tovomita clusiacege, Eschweilera decolorans, Capirona decorticans, Paloue guianensis, Dipteryx odorata and
Talisia praealta. The proportion of phospholipid-P exceeded 30% in extracts from Tovomita clusiacege
and was 10% in extracts from the other species (Table 2).

Table 1. Test for species differences in phosphorus (P) organic compound content in leaf material.

Source df SS MS F R2 p

Species 33 10206396 309,285 3.08 0.67 0.001
Residuals 49 4914344 100,293 0.33

Total 82 15120740 1

www.r-project.org
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Table 2. Profile of P-compounds in leaf material of tree species. 31P NMR spectra of NaOH–EDTA extracts (and relative proportions, %) from the leaf samples
were characterized.

Species Total P
(%, D.W.)

Total C
(%, D.W.)

Total N
(%, D.W.) C:N C:P N:P K

(%, D.W.) Phosphorus Species Distribution, % of Total P in Extract

Polyphos Orthophos Glucose-
6phos

Orthophos-
mono

Orthophos-
diesters DNA Pyrophos Poly-P

Licania alba 0.04 48.59 1.44 34.7 1151.91 33.17 0.35 3.55 7.11 0 14.12 28.57 16.57 17.30 12.79
Vouacapoua americana 0.07 50.2 1.99 25.6 687.46 26.84 0.67 1.67 8.57 24.17 22.41 15.52 6.75 13.92 6.99

Chrysophyllum
argenteum 0.03 49.7 1.34 37.2 1435.60 38.59 0.40 40.25 0 0 11.77 11.57 16.82 0 19.60

Oxandra asbeckii 0.05 48.1 1.94 24.8 1042.83 42.13 1.69 24.25 63.24 0 0.65 1.30 10.04 0 0.52
Hirtella bicornis 0.04 47.1 1.32 35.9 1215.23 33.94 0.75 0 0 0 26.38 13.88 9.03 25.13 25.58

Tovomita sp. 0.07 49.3 1.61 30.6 670.28 21.91 0.72 0 6.65 16.55 6.99 16.12 22.00 0 31.70
Moronobea coccinea 0.03 48.8 1.28 38.4 1469.22 38.49 0.27 5.88 0 0 1.82 46.14 23.60 0 22.55
Eschweilera coriacea 0.07 50.0 1.71 30.7 975.27 30.72 0.50 1.60 16.35 10.46 17.44 22.40 16.29 8.91 6.56
Hymanea courbaril 0.12 48.5 1.91 25.3 412.80 16.29 0.87 42.19 38.05 3.09 0 0 11.35 5.31 0

Eschweilera decolorans 0.05 50.0 1.77 28.2 1103.39 39.14 0.58 32.27 0 0 9.36 27.51 6.00 0 24.85
Capirona decorticans 0.05 48.7 2.08 23.4 1077.96 46.08 0.41 0 0 0 11.37 53.25 32.62 0 2.77
Pouteria eugeniifolia 0.08 48.6 2.89 16.9 650.54 38.58 0.69 0 35.00 0 15.72 19.61 19.61 0 10.06

Eperua falcata 0.08 49.6 1.70 30.1 687.85 23.49 0.63 7.37 0 6.41 25.85 43.73 10.22 0 6.41
Catostemma fragrans 0.03 25.2 0.90 14.0 455.01 16.29 0.28 0 49.45 2.50 28.06 0 20 0 0

Caryocar glabrum 0.05 52.4 1.34 39.2 1009.50 25.75 0.36 0 22.91 0 20.06 20.06 32.87 3.59 0.51
Eperua grandiflora 0.04 50.5 1.39 37.8 1289.63 34.47 0.34 6.39 7.22 6.46 25.13 19.73 12.13 18.70 4.25
Paloue guianensis 0.05 52.0 1.76 29.5 1086.24 36.77 0.22 2.21 0 19.81 7.14 21.05 21.63 28.16 0
Dipteryx odorata 0.06 49.4 1.38 35.9 891.48 24.81 0.89 0.31 12.79 8.35 4.57 16.65 3.13 0 54.19
Protium opacum 0.06 47.7 1.25 38.5 856.32 22.39 0.67 14.49 32.93 0 40.44 0.80 7.12 0 4.21
Talisia praealta 0.04 48.9 1.23 39.9 1203.11 30.12 0.21 0 0 0 10.14 18.78 18.78 23.31 28.98

Bocoa prouacensis 0.04 48.8 1.66 31.0 1471.96 47.02 0.35 0 27.66 14.21 14.21 4.61 2.66 0.46 36.19
Sterculia pruriens 0.07 46.9 1.42 33.2 686.14 20.66 1.14 0 19.99 22.74 44.54 0 12.73 0 0

Pradosia ptychandra 0.08 46.7 1.79 27.1 727.94 25.16 1.57 10.66 0 0 28.35 17.79 10.19 0 33.01
Aniba rosaeodora 0.05 48.2 1.44 33.5 1019.02 30.46 0.97 0 0 0 50 30 20 0 0
Vochysia sabatieri 0.04 47.31 1.22 39.03 1357.56 34.89 0.23 0 2.20 0 30.08 41.23 14.48 2.68 9.33
Chrysophyllum
sanguinolentum 0.06 48.02 2.42 19.85 816.72 41.14 1.47 0 0 0 18.18 59.02 13.77 0 9.03
Sterculia speciosa 0.05 48.63 1.35 36.10 1020.57 28.27 0.86 1.07 12.07 7.77 59.09 10 10 0 0

Carapa surinamensis 0.06 48.49 1.41 34.61 816.65 23.59 0.50 30.42 0 13.52 0 21.87 22.02 0 12.17
Chimarrhis turbinata 0.05 47.42 1.99 23.87 941.32 39.24 0.23 0 15.06 22.14 15.74 17.90 4.48 24.69 0
Drypetes variabilis 0.05 45.13 1.45 31.15 847.58 27.14 1.03 22.84 15.94 3.22 37.99 16.00 4.00 0 0

Micropholis venulosa 0.04 47.48 1.90 25.04 1149.58 45.91 0.65 0 0 0 27.64 23.10 28.69 0 20.57
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3.3. Phosphorus Compounds and Elements

PCs 1 and 2 of the PCA of P organic compounds and elements concentration in leaf material among
species represented 59% of the variation and showed several separations among species (Figure 1A).
The results of the PLS–DA were very similar to the results of PCA (Figure 1). Nutrients were a key
driver, as indicated by higher N and P concentrations and lower C:P and C:N ratios along PC1 axis,
whereas variation in PC2 was associated with distinct identified P family components, with observed
gradient along this axis from P families associated with energy transference and genetic information
and protein synthesis to organic P-family (polyphosphates) associated with energy reserves (Figure 1B).

4. Discussion

Our results support our hypothesis that P metabolite profiling differ among species, reflecting niche
differentiation in the P-use. We observed that species tended to be characterized by the composition in
leaf tissue of main functional groups of metabolic P-containing molecules and elements, indicating
species use of different forms of P drive is species-specific diversity in the studied tropical wet forest
studied sites. We observed clear species niche differentiation along PC2 (Figure 1B) along the gradient
constituted from high-anabolic-energy P-use and low P-storage compounds to low-anabolic-energy
P-use and high P-storage compounds; however, there were no clear patterns of this relationship
with total P concentration or between total foliar P concentration and the foliar P metabolome.
One possible explanation for these contrasting results may be the lack of direct comparison, because
the P-metabolome was analyzed using water extracts, whereas P concentrations were determined
from leaf structural tissues, where there are species variations in light use or anti-herbivore strategy,
may result in species with higher levels of P use for active metabolism, but not necessarily higher levels
of total P concentration. Leaves directly exposed to sunlight tend to be sclerophyllous and contain
low P concentrations; however, most P is allocated to energy and anabolic metabolism due to the high
photosynthetic activity and levels of energy storage.

Our results show that proportional and functional use of P varies with species, indicating
niche partitioning. Similarly, previous studies in this tropical forest have observed that general foliar
metabolomic profiles show clear species-specific signatures that indicate functional niche separation in
dominant tree species [48]. Our results indicate that microsite differences in resource bioavailability
create variations in niche conditions that drive multiple species coexistence at small spatial scales.

Classical species niche hypotheses are based on the concept that potential competing sympatric
species have varying optimum basic abiotic resource requirements (light, water and nutrients) and
contrasting biotic relationships [49]. Previous studies have identified associations between species
assemblages and habitat conditions in tropical rainforests [50–53], such as variations in leaf properties
(parental material, drainage), leaf nutrient availability [14] and topography (slope steepness and
orientation, margins with water courses), that are consistent with niche theory. Extensions of the
classical ecological niche hypothesis, such as the biogeochemical niche hypothesis, claim that species
tend to reach an optimal chemical composition that is linked to a singular optimal function (homeostasis)
and allows niche occupation [54–58]. Thus, this study provides evidence for the use of a fundamental
resource, such as the P, in the characterization of species niche space. This approach may be powerful
in sites with limited P, such as in rainforests, where a P-metabolic niche would reflect species-specific
functional adaptions along natural gradients that drive bioavailability, total concentration and content
of P as consequence of long-term different sympatric species co-evolution that should have optimized
community use and conservation of the scarce amounts of P. Tropical trees may occupy finely subdivided
niches [59], but there is little direct evidence for a measurable variable that reflects overall functional
differences among sympatric species. Our results clearly indicate that species niche specificity may
be determined, at least partially, by analyzing variance in the P-metabolic profile among sympatric
species, together with other potential sources of environmental variability, such as micro-site conditions
and topography. It is likely, therefore, that environmental factors, such as topography and leaf
physicochemical properties, could be related to species-specific use of P. That is also consistent with
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the significant change of P-use and niche differentiation across distinct space situation due slope at
microscale spatial level and also to medium spatial distances in this pristine rainforest area in French
Guiana. Implies a continuum of strategies form an extreme of high growth rates, high leaf area,
low wood density and high P-use in anabolic and energy store and transference to another extreme
strategy with low growth rate and leaf area, high wood density and high P-reserve compounds.

5. Conclusions

This study found large differences in P-metabolite profiling among sympatric tree species in French
Guianese rainforests. 31P-NMR-based metabolic profiling analysis showed tree species that contained
high concentrations of P-organic compounds related to energy, information and protein synthesis
had low concentrations of P-organic compounds related to P-storage; in other hand the reverse,
were P-organic compounds related to P-storage had higher concentration had low concentration of
P-organic compounds related to energy, information and protein synthesis was true.

These results are consistent with the niche theory and demonstrate the usefulness of P-metabolome
as an analytical tool to determine niche differences in the functions of plant species in a community under
limited nutrient bioavailability. It is likely that metabolomic niches in old, undisturbed tropical forest
ecosystems are associated with the optimal use-exploitation of environmental niches (light conditions,
water and nutrient availability, and/or specific biotic relationships) acquired through evolutionary
processes. In tropical forests on P-poor soils, species exhibit morphologic, physiological, molecular
and biochemical adaptions, where P-use forms are related to basic functional traits, such as growth
rate, leaf area and wood density.

Described results strongly suggested that existed a continuum of strategies form from the species
to relate an extreme of high growth rates, high leaf area, low wood density and high P-use in anabolic
and energy store. Another extreme strategy with low growth rate and leaf area, high wood density
and high P-reserve compounds.

The results were also consistent with the significant change of P-use and niche differentiation
across distinct space situation due to slope at microscale spatial level and to medium spatial distances
in this pristine rainforest area in French Guiana.
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