
HAL Id: hal-03194244
https://hal.inrae.fr/hal-03194244v1

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Viral tropism and detection of clade 2.3.4.4b H5N8
highly pathogenic avian influenza viruses in feathers of

ducks and geese
Nicolas Gaide, Charlotte Foret-Lucas, Thomas Figueroa, Timothée Vergne,

Marie-Noêlle Lucas, Luc Robertet, Marie Souvestre, Guillaume Croville,
Guillaume Le Loc’h, Maxence Delverdier, et al.

To cite this version:
Nicolas Gaide, Charlotte Foret-Lucas, Thomas Figueroa, Timothée Vergne, Marie-Noêlle Lucas, et
al.. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in
feathers of ducks and geese. Scientific Reports, 2021, 11 (1), pp.5928. �10.1038/s41598-021-85109-5�.
�hal-03194244�

https://hal.inrae.fr/hal-03194244v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5928  | https://doi.org/10.1038/s41598-021-85109-5

www.nature.com/scientificreports

Viral tropism and detection of clade 
2.3.4.4b H5N8 highly pathogenic 
avian influenza viruses in feathers 
of ducks and geese
Nicolas Gaide1,2, Charlotte Foret‑Lucas1,2, Thomas Figueroa1, Timothée Vergne1, 
Marie‑Noëlle Lucas1, Luc Robertet1, Marie Souvestre1, Guillaume Croville1, 
Guillaume Le Loc’h1, Maxence Delverdier1 & Jean‑Luc Guérin1*

Highly Pathogenic Avian Influenza viruses (HPAIVs) display a tissue pantropism, which implies a 
possible spread in feathers. HPAIV detection from feathers had been evaluated for H5N1 or H7N1 
HPAIVs. It was suggested that viral RNA loads could be equivalent or higher in samples of immature 
feather compared to tracheal (TS) or cloacal swabs (CS). We investigated the suitability of feathers 
for the detection of clade 2.3.4.4b H5N8 HPAIV in ducks and geese field samples. In the six H5N8 
positive flocks that were included in this study, TS, CS and immature wing feathers were taken from at 
least 10 birds. Molecular loads were then estimated using real‑time quantitative reverse transcription 
polymerase chain reaction (RT‑qPCR) targetting H5 and M genes. In all flocks, viral loads were at 
least equivalent between feather and swab samples and in most cases up to  103 higher in feathers. 
Bayesian modelling confirmed that, in infected poultry, RT‑qPCR was much more likely to be positive 
when applied on a feather sample only (estimated sensitivity between 0.89 and 0.96 depending on 
the positivity threshold) than on a combination of a tracheal and a cloacal swab (estimated sensitivity 
between 0.45 and 0.68 depending on the positivity threshold). Viral tropism and lesions in feathers 
were evaluated by histopathology and immunohistochemistry. Epithelial necrosis of immature 
feathers and follicles was observed concurrently with positive viral antigen detection and leukocytic 
infiltration of pulp. Accurate detection of clade 2.3.4.4b HPAIVs in feather samples were finally 
confirmed with experimental H5N8 infection on 10‑week‑old mule ducks, as viral loads at 3, 5 and 
7 days post‑infection were higher in feathers than in tracheal or cloacal swabs. However, feather 
samples were associated with lower viral loads than tracheal swabs at day 1, suggesting better 
detectability of the virus in feathers in the later course of infection. These results, based on both field 
cases and experimental infections, suggest that feather samples should be included in the toolbox of 
samples for detection of clade 2.3.4.4b HPAI viruses, at least in ducks and geese.

Avian influenza is a highly contagious infectious disease due to an Influenza A virus belonging to Orthomyxoviri-
dae  family1. Wild birds are considered as the natural reservoir that contributes to the spread of the disease, gen-
erating occasionally panzootic with massive death of wild and domestic birds and significant economic  losses2,3.

During winter 2016–2017, a highly pathogenic avian influenza virus (HPAIV) H5N8, belonging to A/goose/
Guangdong/1/1996 clade 2.3.4.4b lineage, caused epidemic outbreaks in  Europe4. France was the most affected 
country with more than 6 million culled birds and 484 outbreaks. Free-range foie gras ducks were particularly 
affected, representing more than 80% of  outbreaks5. Epidemiological studies pointed out that poor biosecurity 
practices, interactions with wild birds and transportation of ducks could have contributed to the spread of the 
virus within this livestock  sector5–9.

Classical recommendation for the surveillance of influenza involves the collection of tracheal or oropharyn-
geal and cloacal swabs on live and dead birds. Samples can be processed individually or pooled to detect Influ-
enza A specific nucleic acid signature, by real-time quantitative reverse transcription polymerase chain reaction 
(RT-qPCR), followed by pathotyping for cleavage site  identification10,11.
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Highly pathogenic avian influenza viruses (HPAIVs) differ from low pathogenic AIVs (LPAIVs) by the 
mutational acquisition of multibasic haemagglutinin cleavage site, that shifts mucosal epitheliotropism to tissue 
pantropism, leading to systemic diseases with high mortality in gallinaceous  species3,12. Since HPAIVs display 
tissue pantropism, it implies that they could spread in feathers. Accurate detection of HPAIVs from feather 
samples has been demonstrated for HP Asian H5N1 and H7N1 viruses. These few studies suggest that viral loads 
detected in immature feathers are equivalent or even higher than those detected on either tracheal or cloacal 
 swabs13–18. These results were also confirmed on carcasses of dead birds and detached feathers, suggesting bet-
ter preservation of viral particles in feathers than in  viscera15,19. However, almost all these studies were carried 
out in the context of experimental infections. Combining different approaches, we investigated the suitability 
of feather samples from both field and experimental infections to detect clade 2.3.4.4b H5N8 HPAIV in ducks.

Methods
Field cases sampling. Six flocks were included in the study based on sudden onset of nervous signs and 
mortality. These flocks have been tested positive for M and H5 AI genes by RT-qPCR10. Finally, all these flocks 
were confirmed positive for 2.3.4.4 H5N8 HPAIV between January and March 2017 by the French National 
Laboratory for Avian Influenza and Newcastle disease, using the official  procedures10. They included 4 mule 
duck flocks (5 to 13 weeks of age), 1 Pekin duck flock (8 weeks of age) and 1 flock of geese (8 weeks of age). In 
each flock, at least 10 non-clinically affected birds were randomly taken and sampled using tracheal (TS) and 
cloacal swabs (CS), as well as immature wing feathers (remiges). Mature wing feathers were also collected on 
geese flock. Skin samples with feathers were harvested following necropsy of clinically-affected ducks (n = 11) 
and geese (n = 4) and fixed in 10% buffered formalin to investigate viral tropism and feather lesions. On-farm 
investigations and collection of samples were performed in strict compliance with regulation and biosecurity 
procedures, with the authorization and supervision of official veterinary services and before implementation of 
sanitary culling and destruction of carcasses.

Animal experiment. For the experiment, twenty 10-week-old mule ducks, clinically healthy and AIV nega-
tive, were included in the study, in a BSL3 laboratory with negative pressure isolators, absolute air filtration and 
more than 2  m2 surface per isolator. Animals were randomly split into four groups to represent the different 
modalities of transmission. In the first isolator, five ducks were inoculated at day 0 with  106  EID50 H5N8 (A/
duck/France/171201g/2017(H5N8)) through choanal instillation (Infected group) with additional 5 non-infected 
ducks (contact group). Five non-infected ducks were put in an isolator receiving air from the infected group 
isolator (aerosol group). Five additional non-infected ducks were housed in another isolator into a fully closed 
system (control group). During the seven following days, ducks were fed and had access to water ad libitum. For 
each animal, tracheal swabs (TS), cloacal swabs (CS), feather pulp (FP) and blood were sampled at days 0 to 
check negativity (all samples) and then from day 1 to day 7.

Viral isolation and amplification. To obtain a viral stock for experimental infections, viral isolation and 
amplification were conducted on feather pulp of an infected mule duck of flock 2 with the highest Cq value on 
RT-qPCR. For viral isolation, feather pulp was placed in 500 µL of 1X PBS and vortexed for 30 s. Then 150 µL 
of supernatant at the dilution 1:100 in PBS with penicillin and streptomycin 4X were inoculated to 10-day-old 
specific-pathogen-free embryonated chicken eggs (INRAE PFIE, Nouzilly, France). Eggs were kept at 37 °C in a 
humidity chamber during 48 h and then placed at 4 °C overnight. Allantoic liquids were harvested and titrated 
by hemagglutination assay with fresh and washed chicken red blood cells.

For viral amplification, a similar passage on embryonated eggs was done on allantoic liquid with the highest 
hemagglutination assay titer. Embryonated chicken eggs were inoculated with 100 µL of a 1:100 dilution in PBS 
with penicillin and streptomycin 2X. The viral stock was then aliquoted and stored at − 80 °C. In parallel, the 
titer of this viral stock was also determined by Tissue Culture Infectious Dose (TCID50) method on MDCK 
cells and calculated by the Spearman & Kärber  algorithm20. All these steps were processed in a BSL3 lab in strict 
compliance with biosafety procedures. Sequences of amplified A/duck/France/171201g/2017(H5N8) virus, first 
isolated from a mule duck feather, were deposited on GenBank database under MK208604-MK208610 acces-
sion numbers.

Histopathology and immunohistochemistry. Formalin-fixed cutaneous tissues were routinely pro-
cessed in paraffin blocks, sectioned at 4 μm and stained with hematoxylin and eosin (HE) for microscopic exam-
ination. A diagram representing histological structures of avian feathered skin is provided in supplementary data 
(Suppl. Fig. S1). The number of follicular sections examined per skin section was 8 in average for ducks (n = 11 
birds) and 4 for geese (n = 4 birds). Immunostainings were performed on paraffin-embedded skin sections with 
a monoclonal mouse antibody against Influenza A virus nucleoprotein (NP) (Argene, Sherley, USA, 11–030). 
Immunohistochemical reaction included an antigen retrieval with pronase 0,05% 10 min at 37 °C, a peroxidase 
blocking step 5 min at room temperature (Dako, Glostrup, Denmark, S2023) and saturation of non-specific 
binding sites with normal goat serum (Dako, Glostrup, Denmark, X0907) 25 min at room temperature, before 
overnight incubation at 4 °C with anti-NP antibody at the dilution 1:50. The immunohistochemical staining was 
revealed with a biotinylated polyclonal goat anti-mouse immunoglobulins conjugated with horseradish per-
oxidase (HRP) antibody (Dako, Glostrup, Denmark, LSAB2 system-HRP, K0675) and the aminoethylcarbazole 
chromogen of the HRP (Dako, Glostrup, Denmark, AEC + Substrate-Chromogen, K3469). Negative controls 
included sections incubated either without specific primary antibody or with another monoclonal antibody of 
the same isotype (IgG2). Histopathological analyses were carried out by three veterinary pathologists certified 
by the European College of Veterinary Pathologists (ECVP).
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RNA extraction and RT‑qPCR. All samples were processed in BSL3 laboratory until lysis in strict com-
pliance with biosafety procedures. Swabs were placed in 500 µL of 1X PBS and vortexed for 30 s. Feather pulp 
was stored in 500 µL of 1X PBS and then vortexed for 30 s before RNA extraction. For experimental infected 
group, additional 30–60 mg feather pulp were concurrently incubated in 200 µL PBS 1X containing 0,8 µg/µL of 
proteinase K (Thermo fisher #EO0492) for 20 min at 37 °C to compare RNA extraction yields with and without 
proteinase K. For all sample types, RNA was extracted from 140 µL of supernatant with QIAamp Viral RNA Mini 
Kit (Qiagen #52906) and then kept at − 80 °C.

RT-qPCR was performed on 2 µL RNA using iTaq Universal SYBR Green Supermix (Bio-Rad #172–5125). 
M and H5 genes were targeted with M52C / M253R primers for M  gene21, and H5_HP_EA_F2 (5′-TCC TTG 
CAA CAG GAC TAA G-3′) / H5_HP_EA_R (5′-GTC TAC CAT TCC YTG CCA -3′)22. Absolute quantification was 
performed with a plasmid range from  102 to  107 copies/reaction (2 µL). RT-qPCR reaction and results interpreta-
tion were performed on a LightCycler 96 instrument (Roche).

Droplet digital PCR. For cDNA synthesis, 5 µL of RNA extracted from swabs and feather pulp (from field 
cases flock 2) were processed according to the instructions of the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Scientific #15255146). As negative controls, 5 μL of Milli-Q water was processed in parallel. A 2 μL 
aliquot of the cDNA from the reverse transcription step of samples and controls were used for PCR amplification 
with the QX200 ddPCR EvaGreen Supermix (Bio-Rad 1864033) and M and H5 primers previously described. 
ddPCR were processed according to the instruction for QX200 AutoDG Droplet Digital PCR System (Bio-Rad) 
established by the Transcriptomic platform from Genotoul (Get-Santé INSERM I2MC Toulouse). Analyses were 
performed with the dedicated software Quantsoft (Bio-Rad).

Bayesian data analysis. To estimate the sensitivity and the specificity of detection in the three different 
sample types (cloacal swab, tracheal swab and feather pulp) at the individual level, we used a latent class mod-
elling approach embedded in a Bayesian framework. This type of analysis has been extensively used to model 
cross-detection of individuals whose true epidemiological status (infected or not) is assessed using imperfect 
diagnostic tests of unknown sensitivity and  specificity23. To do so, we defined five thresholds of test positivity 
(5, 10, 20, 50 and 100 copies of RNA/μL), and derived the observed frequency of the  23 = 8 different combina-
tions of individual test results for each threshold. The combination of test results was assumed to be distributed 
according to a multinomial distribution of parameters n = 61 birds and eight probabilities, expressed as a com-
bination of seven parameters to be estimated, i.e. the proportion of infected birds in the sample and the sensi-
tivity and specificity of detection in the three different sample types. The sensitivity and specificity parameters 
were assumed to be threshold-specific (leading to 30 parameters, 6 for each of the five thresholds of positivity) 
while the proportion of infected birds was considered the same irrespective of the threshold. The value of the 31 
parameters was estimated in a Bayesian framework. We allocated uniform prior distributions for the proportion 
of infected birds and all sensitivity parameters. All specificity parameters were assigned an informative beta prior 
distribution to reflect that we were 97.5% and 50% confident that the true value of the specificity parameters 
were greater than 0.8 and 0.98, respectively.

Approval for animal experiments. This study was carried out in compliance with European animal wel-
fare regulation. The protocols were approved by the Animal Care and Use Committee “Comité d’éthique en Sci-
ence et Santé Animales—115”, protocol number 13205-2018012311319709.

Results
Integument lesions and virus detection of field cases in H5N8‑infected ducks and geese. Duck 
skin sections consisted of a mixture of immature and mature feathers, whereas geese presented a majority of 
immature feathers. Lesions were observed in immature feathers in 91% of ducks and 50% of affected geese 
(Table 1, Fig. 1A). Mature feathers were within normal limits for all subjects. In ducks, lesions were consist-
ent with focal to extensive necrosis of feather (64%) and follicular (73%) epidermis in association with leu-

Table 1.  Proportion of naturally H5N8-infected ducks and geese with histopathological lesions and positive 
viral detection in immature and mature feathers. NE non evaluated. a Focal to extensive lytic necrosis and 
apoptosis/single cell necrosis in epidermal structures. Mixed leukocytic lympho-plasmacytic rich infiltration in 
dermal structures. b Total number of positive subjects / Total subjects (percentage of positive subjects). c Anti-
nucleoprotein A immunohistochemistry. d Positive antigen detection in follicular epidermis.

Immature feather

Mature featherFeather dermis Feather epidermis Follicular epidermis Follicular dermis

Histopathologya

Duck n = 11 10/11 (91%)b 7/11 (64%) 8/11 (73%) 8/11 (73%) 0/11 (0%)

Goose n = 4 2/4 (50%) 2/4 (50%) 1/4 (25%) 0/4 (0%) 0/4 (0%)

Immunohistochemistryc

Duck n = 11 7/11 (64%) 11/11 (100%) 11/11 (100%) 8/11 (73%) 10/11 (91%)d

Goose n = 4 0/4 (0%) 4/4 (100%) 3/4 (75%) 0/4 (0%) NE
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kocytic infiltration of feather pulp (91%), including predominantly lymphocytes and plasma cells, and fewer 
macrophages and heterophils. Necrosis was predominant in the outer (corneal) layer and could be observed 
from early to late stage of feather epithelium differentiation, including early and late barb ridges and marginal 
plates (Fig. 1B). Variable amount of leukocytic infiltration including lymphocytes, plasma cells and heterophils 

Figure 1.  Lesion and viral detection in immature and mature feathers of naturally H5N8-infected ducks and 
geese. Hematoxylin and Eosin (HE) and anti-nucleoprotein A Immunohistochemistry (IHC). (A) Lesion and 
viral detection in immature and mature feathers, duck infected with H5N8 clade 2.3.4.4b, HE. (A1) Immature 
feather with extensive acute necrosis of feather and follicular epidermis (arrow). The feather pulp is infiltrated 
by leukocytes, mainly lymphocytes and plasma cells (asterisk). (A2) Mature feather with calamus (thin arrow) 
within normal limits. (A3) Abundant viral antigen is present within necrotic debris and outer layers of feather 
and follicular epidermis. (A4) Viral antigen is present in association with follicular epidermis of mature feather, 
under the calamus (arrowhead). (B) Growing and differentiating feather epidermis, duck infected with H5N8 
clade 2.3.4.4b. (B1) At early stage of differentiation, feather epidermis is stratified. Necrosis is visible at the 
outer (corneal) layer (arrow) with viral antigen colocalization. (B2) At the stage of early differentiation, necrosis 
and single-cell necrosis/apoptosis can be seen within marginal plates and barb ridges (arrowhead) and with 
viral antigen colocalization. (B3) At the stage of cornication, keratinized barbs and barbules are disrupted and 
intermixed with necrotic cells and debris (asterisk) with viral antigen colocalization.
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were observed in the follicular dermis in 73% of ducks. In geese, lesions were less frequent: half of the subjects 
presented leukocytic infiltration of pulp and necrosis of feather epidermis (50%) and one subject presented epi-
dermal focal necrosis in follicular epidermis (25%).

In immature feathers, viral antigen was detected in all ducks and geese samples, mainly in feather and fol-
licular epidermis. Viral antigen immunostaining was patchy to diffuse in distribution and severely intense in the 
outer (corneal) layer epidermis and necrotic areas (Fig. 1A). Interestingly, viral antigen was commonly detected at 
all levels of feather epithelial differentiation in ducks and geese, including barb ridges, marginal plate, barbs and 

Figure 2.  Viral RNA loads in feathers (F), tracheal swabs (TS) and cloacal swabs (CS) in 6 naturally infected 
flocks with H5N8 HPAIV. Mule ducks (4 flocks, n = 10 birds per flock), pekin ducks (1 flock, n = 11) and geese (1 
flock, n = 10). Results are expressed as  log10 viral RNA copies/µL.

Figure 3.  Estimated sensitivity (left panel) and specificity (right panel) of the three different sample types 
(feather sample, tracheal swab and oropharyngeal swab) for 5 different thresholds of positivity (5, 10, 20, 50 and 
100 copies of RNA/µL).
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barbules (Fig. 1B). In mature feathers, 91% of ducks presented immunostaining of follicular epidermis (corneal 
layer) without associated lesions (Fig. 1A). In ducks, viral antigens were occasionally detected in mesenchymal 
cell in feather pulp (64%) and follicular dermis (73%).

In all six duck flocks included in the study, RNA loads of HPAIV in feather pulp were at least equivalent and 
in most cases up to  103 higher than those detected in either TS or CS (Fig. 2). Incubation of swabs with proteinase 

Table 2.  Comparison of the detectability of the infection for each threshold of positivity between a sampling 
strategy involving one feather only and a sampling strategy involving a tracheal swab and an oropharyngeal 
swab (in which case an animal tested positive is defined by a positive result for at least one of the two swabs). 
The brackets represent the 95% credible interval of the posterior distributions.

Parameter Threshold of positivity (nb copies of RNA/μL) 1 feather sample 1 tracheal and 1 oropharyngeal swabs

Sensitivity

5 0.96 (0.87–1.00) 0.68 (0.56–0.80)

10 0.96 (0.86–1.00) 0.63 (0.51–0.75)

20 0.95 (0.83–1.00) 0.60 (0.47–0.72)

50 0.93 (0.79–0.99) 0.57 (0.44–0.70)

100 0.89 (0.73–0.99) 0.45 (0.31–0.59)

Specificity

5 0.95 (0.68–1.00) 0.96 (0.82–1.00)

10 0.96 (0.71–1.00) 0.96 (0.81–1.00)

20 0.97 (0.78–1.00) 0.96 (0.83–1.00)

50 0.98 (0.82–1.00) 0.97 (0.85–1.00)

100 0.98 (0.83–1.00) 0.97 (0.85–1.00)

Figure 4.  Viral RNA loads in experimentally H5N8-infected 10-week-old mule ducks.Virus loads in feathers 
(F), tracheal swabs (TS) or cloacal swabs (CS) were determined from day 1 to day 7 post-infection for infected 
(pink), contact (yellow) and aerosol (blue) groups. Absolute quantification was performed by RT-qPCR 
targeting the viral M gene from extracted RNAs in parallel with an M gene plasmid range. Each dot represents 
an individual value and horizontal bars correspond to means. limit of detection for each experiment.
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K was assessed on a few samples and did not result in a significant increase in detectability (Suppl. Fig. S2). For 
a given positivity threshold, feather pulp tested positive much more frequently than TS or CS (Suppl. Table T1). 
A latent class modelling approach was used to estimate the sensitivity and specificity of RNA detection in each 
sample type (feather pulp, CS and TS). Irrespective of the threshold of positivity (5, 10, 20, 50 and 100 copies of 
RNA/μL), the sensitivity of RNA detection by RT-qPCR in feather pulp of infected birds was much higher than 
in TS or CS, while the specificity did not substantially drop (Fig. 3). As an example, for a positivity threshold of 
10 copies of RNA/mL, the sensitivity of the detection in feather pulp was estimated at 0.96 (95% credible interval 
(95% CI) 0.86–1.00), while the sensitivity of detection in tracheal swabs and cloacal swabs were estimated at 0.46 
(95% CI 0.32–0.60) and 0.31 (95% CI 0.19–0.45), respectively. 

As shown in Table 2, testing one sample of feather pulp was even shown to be more sensitive (Se = 0.96 (95% 
CI 0.86–1.00)) than the classical sampling recommendation, involving the combination of one tracheal swab 
and one cloacal swab (Se = 0.63 (95% CI 0.51–0.75) for a positivity threshold of 10 RNA copies/mL). To further 
confirm the quantitation in tissues, a Droplet Digital PCR assay, using the same primer set, was implemented on 
a subset of samples. This assay showed a substantial correlation with RT-qPCR data and confirmed significant 
viral loads in feathers (Suppl. Fig. S3).

Dynamics of HPAIV detection in feathers and swabs in experimentally infected ducks. Exper-
imental infection resulted in totally asymptomatic infections in all birds, despite viral RNA detection in swabs 
and feathers starting from day 1 post-infection (Fig. 4) and RT-qPCR Ct values as low as 16 in some birds at peak 
of infection (data not shown). Control birds remained virus negative throughout the study. Three direct contact 
ducks became positive in tracheal swabs as early as day 1 post-infection and by day 3 post-infection, they were 
all positive in all sample types. Regarding birds connected through aerosols, some became positive at day 3 post-
infection, with two positive feather samples, five positive tracheal swabs and three positive cloacal swabs, and 
they were all positive in all sample types by day 5 post-infection. Viral loads were always substantially higher in 
tracheal than cloacal swabs. For feather samples, viral loads were equivalent or substantially higher than tracheal 
and cloacal swabs at day 3, 5 and 7 post-infection, but not at day 1 post-infection when compared with tracheal 
swabs of infected and contact groups (Fig. 4). The peak of viral excretion occurred between day 3 and 5 post-
infection and the relative viral loads in feathers increased, becoming obviously higher than tracheal and even 
more, cloacal swabs from day 5 post-infection until the end of the course of infection (Fig. 4).

Discussion
The present study investigated the suitability of HPAIV H5N8 clade 2.3.4.4b viral detection in feathers with 
histopathological correlates in ducks and geese. Previous studies focused on the pathology and detectability of 
H5N1 and H7N1 HPAIVs in the integument after experimental infections of ducks, chicken and  geese13–19. To 
the best of our knowledge, the present data provide new insights about HPAIV detection in feather for H5N8 
clade 2.3.4.4b through both naturally occurring field cases and experimental challenges.

Our data support previous findings that HPAIVs can replicate in feathers and induce feather folliculitis. Ducks 
presented epithelial necrotizing folliculitis in immature (growing) feathers, with concurrent viral antigenic detec-
tion. This lesional pattern supports a strong tropism for feather and follicular epidermis, corneal outer layers 
in particular, confirming previous  descriptions24–26. In 91% of ducks, a marked leukocytic, lymphoplasmacytic 
rich, infiltration was observed in the feather pulp, which contrasts with previous experimental infections of 
ducks with Indonesian strain of H5N1, where no inflammatory lesions were found in association with epithelial 
 necrosis24. Viral detection in leukocytes was uncommon, more frequent in mesenchymal stromal cells of dermal 
structures as previously  reported25. In geese, no major lesion pattern dominated and half of the subjects had 
feathers within normal limits.

Interestingly, cell death with concomitant viral antigens could be detected at different stages of feather epi-
thelial differentiation, from the early stage up to cornifying barbs, barbules of ducks and geese. Because viral 
replication seems to occur into feather structures intended to be external, these data suggest that growth and 
differentiation of feathers epidermis could be a source of viral production for pantropic H5N8 Clade 2.3.4.4b 
and could potentially carry and disseminate viral particles. The role of feathers in environmental dissemination 
of avian influenza viruses has been suggested, including in wild  waterfowl19,27. Viral infectivity and RNA detect-
ability in feathers detached from bodies has been experimentally investigated in ducks and revealed that HPAIV 
(H5N1) can longer persist compared to drinking water and feces, for 160 days at 4 °C and 15 days at 20 °C19. 
Additionally, a study conducted on wild waterbirds has suggested that preen oil increases AIVs survivability on 
feathers and can act as protection for viral  particles27. Altogether, these data indicate that feathers could be a 
source of environmental contamination. It would be interesting to compare feather infectivity potential between 
species, since we can presumably predict higher infectivity for species showing an epitheliotropic viral expression 
in feather compared to chicken where viral expression is endotheliotropic and restricted to the dermal pulp, 
confined in the calamus. Further studies are needed to confirm this significance of feathers in the epidemiology 
of avian influenza.

Viral loads and tropism may vary greatly during the course of infection in a same bird, which could impact 
greatly the efficiency of different  samples15. In our field investigations, flocks were sampled at day 1 to 7 after the 
onset of clinical signs and/or mortality, as notified by the farmer or the attending veterinarian. In all batches, 
viral loads in feathers were higher than in swabs, regardless of this estimated stage of infection. In controlled 
conditions, as during our experimental infection, viral loads in feathers increased during infection, suggesting 
that feathers may not be the most relevant samples at the very early stage of the infection (day 1 post-infection).

Classical recommendation for the surveillance of influenza involves the collection of tracheal or oropharyn-
geal and cloacal swabs on live and dead  birds10,11. According to our results, the sensitivity of combining one 
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tracheal and one cloacal swab to test for the presence of viral RNA in an infected duck would be 0.63 (0.51–0.75) 
for a positivity threshold of 10 copies/mL. It is striking that only one feather pulp sample outperform the clas-
sical sample recommendation, as its sensitivity was estimated at 0.96 (0.86–1.00). Moreover, feathers are easy 
to collect, transport and treat for molecular analyses. The much higher sensitivity of detection in feather pulp 
suggests that feather samples could be diluted without decreasing the overall sensitivity at the flock level, and 
therefore that they could be pooled further, which would reduce the costs of analysis at the flock scale and 
improve the overall economic efficiency of surveillance. Combined with swabs in a sampling strategy, feathers 
would also provide supplementary information about invasiveness of the virus. In a previous experimental study 
conducted on european quails, H5N1 and H7N1 HPAIVs inoculation resulted in viral RNA detection in feathers 
from day 1 up to day 6 and day 12, respectively. In contrast, H7N2 LPAIV detection remained negative during all 
the experiment from 1 to 15 days post-infection28. Assuming that AIV spread in feather is the result of viremia 
and systemic infection, feather folliculitis in combination with positive viral detection could presumably reflect 
the tissue pantropism of a virus strain and suggest infection by a HPAIV. Further investigations are needed to 
investigate feather infection as a signature of HPAIVs, including variations between strains.

Clinical expression of HPAI in ducks is poor, as evidenced on the field and in experimental  infections29. Our 
experiment confirmed that ducks may excrete huge loads of virus for days, contaminate very efficiently the rest 
of the flock without expressing clinical signs. This poor clinical expression in ducks stresses, even more, the 
pivotal importance of an optimized surveillance strategy, based on intensive testing, at least before farm-to-farm 
transportation of ducks.

These data, based on a selection of both field and experimental cases of H5N8-infected ducks and geese, 
suggest that feather samples should be included in the toolbox of samples for detection of clade 2.3.4.4b HPAI 
viruses, at least in ducks. Further investigations are needed in experimental settings and on a wide range of 
HPAIVs to ascertain the relevance of their insertion in the diagnostic protocols of HPAI surveillance.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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