Forest management and soil organic carbon
Laurent Saint-andré, Laurent Augusto, Lauric Cecillon, Delphine Derrien

To cite this version:
Laurent Saint-andré, Laurent Augusto, Lauric Cecillon, Delphine Derrien. Forest management and soil organic carbon. EU Green Week, Commission européenne, Oct 2020, Inconnu, France. hal-03194988

HAL Id: hal-03194988
https://hal.inrae.fr/hal-03194988
Submitted on 9 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Forest management and soil organic carbon

Laurent SAINT-ANDRE, Laurent AUGUSTO, Lauric CECILLON, Delphine DERRIEN

#EUGreenWeek
19–22 OCTOBER 2020
Forest management and soil organic carbon

IPCC Report 2018 → Keeping the average temperature increase below +1.5°C implies achieving carbon neutrality on a global scale by 2050 at the latest.

Two complementary levers

- Reduce CO2 emissions related to the use of fossil fuels and deforestation, as well as emissions of other greenhouse gases (N2O, CH4)
- Preserve and increase the biosphere's CO2 sink (storage in biomass and soils)

Today, focus on the soil organic carbon

Forests play a major role in climate change mitigation because of their carbon cycle (C)

- in France, 28% of the emissions captured by the forests (biomass and soils).
Soil organic carbon stocks and stock changes in different ecosystems

- **SUITMAs**
 - Variable
- **Vineyards**
 - ~35 tC/ha
- **Orchards**
 - ~50 tC/ha
- **Grasslands**
 - ~80 tC/ha
- **Forests**
 - ~10 tC/ha

[Stocks in 0-30 cm, from Martin et al, 2011 and ADEME 2014]

- **In average, forests have the highest SOC stock**
 - (taking forest floor into account – 90 tC / ha)

- **Key message 1**: SOC in forests is high and is not at steady state (C sequestration is still very high in France and seems to comply with the 4p1000 initiative)

- **Grasslands**
 - ~80 tC/ha
- **Forests**
 - ~10 tC/ha

SOE sequestration in France

- **Grasslands**
 - Sequestration réalisée (+ tendancielle -)
- **Forests**
 - ~0.35 tC/ha/year = 0.0043 % of the soil C stock (RENECOFOR) but with strong uncertainty

[Jonard et al. 2017], waiting for the second national soil survey to get more precise numbers

- **Forests**: +0.35tC/ha/year = 0.0043 % of the soil C stock (RENECOFOR) but with strong uncertainty

[Jonard et al. 2017], waiting for the second national soil survey to get more precise numbers
Forest management and soil organic carbon

Key message 2: Topsoil C is younger and less stable than deep soil C: forest Management then may impact soil organic C

- **Deep C is more stable than top-soil C**
- **Soil type modulates the effect of depth on the stability of soil organic C**
- Between 0-10cm, 70% of C is young (less than 100 years, i.e. less than one or two rotation lengths)

Forest carbon pools are not equal in terms of their vulnerability to global change.
Key message 3: Thinnings have no impact on the forest floor, provided that the intensity of the cut is low or moderate; Thinning does not quantitatively impact the SOC pool.

Key message 4: Clearcuts that leaves harvesting residues on the soil generally do not affect C sequestration, as long as they do not disturb the soil. The risk of C loss increases with the initial size of the C pool.
Impact of forest management

Whole – tree harvesting: large consensus in the literature, **Fertilization** with N: few papers

Whole tree harvesting

Losses at all depths (-11% in average)

Key message 5: Whole tree harvesting negatively affects the SOC, the impact increases under warm climates.

Key message 6: The impact of N fertilization on SOC is unclear (dose effect with a bell curve).

Key message 7: There are probably many density experiments with SOC measurement, but the data are not sufficiently published/visible. The best stand density trade-off for SOC sequestration and drought resistance/resilience is unknown.
Impact of forest management

Rotation length – few papers, unclear effect

RENECOFOR: \(\uparrow \) SOC up to \(~100\) years

Key message 8: Extending rotations - and thus tending towards old-growth forests - can improve SOC sequestration over the long term (up to 50-100 years?). But strong interaction with the past history of the forests.
Impact of forest management
Species Effect – Literature relatively abundant, unclear effect

Key message 9: Many uncertainties remain. Identity is generally a more important factor than diversity. Functional diversity (conifers, nitrogen fixing species, ...) in relation with the climate could better explain the observed trends than specific diversity.
Impact of forest management

Conclusion

Afforestation of cultivated or degraded soils (poor SOC stocks)
- Fast growing tree species
- Rotation length >50 years to maintain the inherited soil fertility
- Intensive forest management

[[e.g. Boulmane et al. (2017) - Ann. For. Sci.; Cook et al. (2016) - For. Ecol. Manage.]

Forests with medium SOC stocks
- No whole-tree harvesting
- Increase SOC stocks with nitrogen fixing trees
- Reduce soil perturbations during harvesting and forest regeneration

Forests with high SOC stocks
- Continuous cover
- No soil perturbation during harvesting

Key message 10: Win-Win strategies can be built to produce wood for different purposes and continue to store C in forest soils. Keeping in mind that soil fertility (physical, chemical and biological) is a key driver and should be considered as a whole (not only C).
For more information on

Thinnings and clearcuts

Species effect