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POPULATION GENOMICS REVEALS MOLECULAR DETERMINANTS OF SPECIALIZATION TO TOMATO IN THE 1 

POLYPHAGOUS FUNGAL PATHOGEN BOTRYTIS CINEREA IN FRANCE 2 
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Abstract 15 

Many fungal plant pathogens encompass multiple populations specialized on different plant 16 

species. Understanding the factors underlying pathogen adaptation to their hosts is a major 17 

challenge of evolutionary microbiology, and it should help preventing the emergence of new 18 

specialized pathogens on novel hosts. Previous studies have shown that French populations 19 

of the grey mould pathogen Botrytis cinerea parasitizing tomato and grapevine are 20 

differentiated from each other, and have higher aggressiveness on their host-of-origin than 21 

on other hosts, indicating some degree of host specialization in this polyphagous pathogen. 22 

Here, we aimed at identifying the genomic features underlying the specialization of B. 23 

cinerea populations to tomato and grapevine. Based on whole genome sequences of 32 24 

isolates, we confirmed the subdivision of B. cinerea pathogens into two genetic clusters on 25 

grapevine and another, single cluster on tomato. Levels of genetic variation in the different 26 

clusters were similar, suggesting that the tomato-specific cluster has not recently emerged 27 

following a bottleneck. Using genome scans for selective sweeps and divergent selection, 28 

tests of positive selection based on polymorphism and divergence at synonymous and non-29 

synonymous sites and analyses of presence/absence variation, we identified several 30 

candidate genes that represent possible determinants of host specialization in the tomato-31 

associated population. This work deepens our understanding of the genomic changes 32 

underlying the specialization of fungal pathogen populations. 33 

 34 

Keywords: Host specialization; grey mould; gene content variation; selective sweeps; 35 

positive selection  36 

 37 
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Introduction 38 

Many fungal plant pathogens encompass multiple lineages, host races or formae speciales 39 

specialized on different plant species. Understanding the proximate (i.e. molecular) and 40 

ultimate (i.e. eco-evolutionary) factors underlying adaptation to hosts is a major goal for 41 

evolutionary microbiology, because emerging diseases are often caused by the appearance 42 

and spread of new pathogen populations specialized onto new hosts (Fisher et al. 2012; 43 

Stukenbrock & McDonald 2008). Evolutionary theory predicts that pathogen specialization 44 

should facilitate the emergence of new populations onto novel hosts, because specialization 45 

restricts encounters of potential mates within hosts and reduces the survival of offspring due 46 

to maladaptation of immigrants and hybrid offspring, thereby reducing gene flow between 47 

ancestral and emerging populations (Giraud et al. 2010; Nosil et al. 2005). The role of 48 

specialization as a barrier to gene flow is expected to be strong for pathogens mating within 49 

or onto their hosts because, for individuals evolving the ability to infect novel hosts, mating 50 

automatically becomes assortative with respect to host use, and reproductive isolation 51 

arises as a direct consequence of adaptive divergence (Gladieux et al. 2011; Servedio et al. 52 

2011). Evolutionary theory also predicts that specialization, and the associated emergence of 53 

new populations, could be facilitated by the molecular basis of plant-pathogen interactions, 54 

because compatibility is often determined by a limited number of genes in the host and the 55 

pathogen, and selection is more efficient when it acts on a smaller number of genes  (Giraud 56 

et al. 2010; Schulze-Lefert & Panstruga 2011). However, despite the apparent ubiquity of 57 

specialized fungal pathogens and the negative impact that specialized populations can have 58 

on food security and ecosystem health, the genomic features involved in host specialization 59 
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remain largely unknown. Acquiring knowledge about the genomic features underlying 60 

pathogen specialization can provide key insights into the mechanisms of specialization. 61 

 The ascomycete Botrytis cinerea is often presented as a textbook example of a 62 

polyphagous plant pathogen, parasitizing more than 1400 host plant species belonging to 63 

580 genera (Elad et al. 2016). Previous population genetic studies reveal that B. cinerea is 64 

not strictly speaking a generalist pathogen, and that a more appropriate qualifier is 65 

“polyspecialist”, i.e. a set of populations specialized to different host species. Indeed, with 66 

the exception of California (Ma and Michailides, 2005; Caseys et al, 2020; Soltis et al, 2019; 67 

Atwell et al, 2015), studies conducted in multiple regions of the world reveal that 68 

populations were structured (reviewed in Walker 2016), and recognize the host as the factor 69 

with the highest explanatory power for population structure in B. cinerea, ahead of 70 

geography. In France, our previous work revealed population subdivision in B. cinerea, with 71 

genetic differentiation between field populations infecting tomato (Solanum lycopersicum) 72 

and grapevine (Vitis vinifera), respectively (Walker et al. 2015). This population structure in 73 

B. cinerea was shown to be stable in time and was observed in multiple regions in France. 74 

Furthermore, this structure was later associated with differences in performance on the two 75 

hosts, with pathogens isolated from tomato being more aggressive on tomato than 76 

pathogens isolated from grapevine, and reciprocally (Mercier et al. 2019). Altogether, these 77 

data were consistent with a certain degree of specialization of B. cinerea populations onto 78 

these two host plants.  79 

Here, we aimed to identify the molecular basis of host specialization in the B. cinerea 80 

tomato- and grapevine-associated populations, by addressing the following questions: (1) 81 

Can we confirm the genetic subdivision between B. cinerea populations from tomato and 82 
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grapevine using genomic data, and what is the degree of divergence between them? (2) Can 83 

we identify genes with footprints of positive selection and/or divergent selection in the 84 

genomes of populations specialized to different hosts, and what are their predicted 85 

functions? (3) Is there variation in gene content between B. cinerea populations associated 86 

with tomato and grapevine? To address these questions, we used a set of B. cinerea isolates 87 

collected on tomato and grapevine in different regions of France. We Illumina-sequenced 88 

their genomes and identified single nucleotide polymorphisms by mapping sequencing reads 89 

against a high-quality reference genome (van Kan et al. 2017). Because some tests of 90 

selection can be biased by population subdivision, while other tests are based on patterns of 91 

population differentiation, we first analyzed the population structure of B. cinerea collected 92 

on tomato and grapevine. To detect genes potentially involved in the specialization of B. 93 

cinerea to tomato, we searched for signatures of positive selection, by scanning genomes in 94 

the tomato population for selective sweeps, and by estimating the direction and intensity of 95 

selection using McDonald-Kreitman tests on coding sequences. Furthermore, we 96 

investigated signatures of divergent selection using genomic differentiation between 97 

populations, and we characterized variations in the presence/absence of predicted genes 98 

between populations collected on tomato and grapevine using de novo genome assemblies, 99 

gene prediction, and orthology analysis. 100 

 101 
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Materials and methods 102 

Sample collection 103 

Botrytis cinerea samples were selected in a collection of isolates (i.e. single-spored mycelial 104 

colonies) originating from three regions of France (Champagne, Occitanie and Provence) and 105 

previously characterized using analyses of population structure based on microsatellite 106 

markers and pathogenicity tests (Walker et al. 2015; Mercier et al., 2019). For each region 107 

and each host, we randomly selected three to nine isolates with high membership 108 

proportions (q>0.9) in the cluster matching their host of origin in a previous analysis of 109 

population structure based on microsatellite genotyping (Table 1; Mercier et al. 2019). 110 

Collection sites were 15 to 133 km apart within regions, and 204 to 722 km apart between 111 

regions (Supplementary Figure S1). The set of 32 isolates originated from the following 112 

hosts: (i) tomato (Solanum lycopersicum; fruits; 13 isolates), (ii) grapevine (Vitis vinifera; 113 

berries; 16 isolates), (iii) bramble (Rubus fruticosus; berries; two isolates) and (iv) hydrangea 114 

(Hydrangea macrophylla; flower buds; one isolate). Samples from tomato originated from 115 

plastic tunnels with sides opened (Occitanie region) or glasshouses (Provence and 116 

Champagne regions). Mycelia were cultured on malt-yeast-agar (MYA; 20 g.L
-1

 malt extract, 117 

5 g.L
-1

 yeast extract, 15 g.L
-1

 agar) at 23°C under continuous light until conidiation, and 118 

stored as conidial suspensions in glycerol 20% at -80°C until use. 119 

Pathogenicity tests on tomato plants 120 

Isolates of B. cinerea collected from tomato or grape were cultivated on MYA medium in a 121 

growth chamber (21°C, 14 hours light) for 14 days. Conidia were then washed with sterile 122 

distilled water. The conidial suspension was filtered through a 30 µm mesh sterile filter to 123 
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remove mycelium fragments. The conidial concentration was determined with a 124 

haemacytometer and adjusted to 10
6
 spores/mL. Seeds of tomato var. Clodano (Syngenta) 125 

were sown in compost and transplanted after one week in individual pots. Plants were 126 

grown in a glasshouse for 6 to 8 weeks where they received a standard commercial nutrient 127 

solution once or twice a day, depending on needs. Plants had at least eight fully expanded 128 

leaves when inoculated with a conidial suspension. Each isolate was inoculated on five 129 

plants, from each of which two leaves were removed, leaving 5-10 mm petiole stubs on the 130 

stems. Each pruning wound was inoculated with 10 µl of conidial suspension at 10
6
 131 

conidia/mL. Inoculated plants were incubated in a growth chamber in conditions conducive 132 

to disease development (21°C, 16h-photoperiod, 162 µmol.s
-1

.m
-2

, relative humidity > 80%). 133 

Due to a growth chamber area that did not allow all the isolates to be tested at the same 134 

time, nine series of pathogenicity tests were conducted with 10-12 isolates each, together 135 

with the BC1 reference isolate collected in 1989 in a tomato glasshouse in Brittany 136 

(Decognet et al. 2009). For each isolate, two to four independent repetitions of the 137 

pathogenicity test were performed. Lesion sizes (in mm) were assessed daily between the 4
th 138 

and the 7
th 

day post-infection and the Area Under the Disease Progress Curve (AUDPC; 139 

(Simko & Piepho 2012) was computed to take into account the kinetics of disease 140 

development for each isolate. To compare the aggressiveness of isolates, an aggressiveness 141 

index (AI), relative to the reference isolate BC1, was computed as follows: ���������  �142 

 100 �  ��	
��������� �	
���	
⁄ �, where AUDPCisolate was the average AUDPC for a given 143 

isolate and AUDPCBC1 is the average AUDPC for the reference isolate BC1. Using the AI index 144 

calibrating the AUDPC of a given isolate with that of the reference isolate BC1 in the same 145 

test allows comparing isolates aggressiveness while taking into account the variability 146 
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occurring among assays (e.g. plant physiological state; (Leyronas et al. 2018). Because of 147 

data non-normality, data were analysed using non-parametric tests. Three statistical tests 148 

were carried out with STATISTICA: (1) we used a non-parametric analysis of variance (Kruskal-149 

Wallis test) to assess differences among isolates in terms of aggressiveness on grape and 150 

tomato, considering the average values for each of the independent pathogenicity tests as 151 

replications; (2) we used the Mann-Whitney U-test to compare the aggressiveness of isolates 152 

from different hosts of origin (tomato vs. grape), considering the independent repetitions of 153 

the pathogenicity test as blocks and the 13 isolates from tomato and 16 isolates from 154 

grapevine as replicates; (3) we used a Kruskal-Wallis test to compare isolates from three 155 

different clusters (see Results section) in terms of aggressiveness on tomato plants.   156 

 157 

DNA preparation and sequencing 158 

Isolates were cultivated for 48 h on MYA + cellophane medium at 23 °C in the dark and then 159 

ground using a mortar and pestle in liquid nitrogen. DNA was extracted using a standard 160 

sarkosyl procedure (Dellaporta et al. 1983). Paired-end libraries were prepared and 161 

sequenced (2 x 100 nucleotides) on a HiSeq4000 Illumina platform at Integragen (Evry, 162 

France). Sequencing coverage ranged from 58 to 305 X. Genomic data were deposited at SRA 163 

under accession number PRJNA624742. Read quality was checked using FASTQC 164 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).   165 

 166 
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SNP calling and filtering 167 

SNPs were detected with the same workflow as described in (Zhong et al. 2017). Sequencing 168 

reads were preprocessed with TRIMMOMATIC v0.36 (Bolger et al. 2014). Preprocessed reads 169 

were mapped onto the B. cinerea B05.10 reference genome (van Kan et al. 2017) using BWA 170 

 v0.7.15 (Li & Durbin 2009). Aligned reads were filtered based on quality using SAMTOOLS v1.3 171 

(Li et al. 2009) and PICARD TOOLS (http://broadinstitute.github.io/picard/) to remove 172 

secondary alignments, reads with a mapping quality <30 and paired reads not at the 173 

expected distance. SNP calling was performed with FREEBAYES v1.1 (Garrison & Marth 2012). 174 

Further filtering was carried out using script VCFFiltering.py 175 

(https://urgi.versailles.inra.fr/download/gandalf/VCFtools-1.2.tar.gz), following (Li 2014). 176 

We kept only biallelic SNPs supported by more than 90% of aligned reads, detected outside 177 

low-complexity regions or transposable elements (as identified in the reference isolate 178 

B05.10: https://doi.org/10.15454/TFYH9N; Porquier et al. 2016) and with coverage lower 179 

than twice the standard deviation from the mean depth coverage. The VCF file is available 180 

on Zenodo (doi: 10.5281/zenodo.4293375). 181 

 182 

Population structure and demographic history 183 

We performed a principal component analysis based on biallelic SNPs using the python 184 

library SCIKIT-ALLEL 1.3.2 (https://github.com/cggh/scikit-allel). We used the SNMF program to 185 

infer individual ancestry coefficients in K ancestral populations. This program is optimized for 186 

the analysis of large datasets and it estimates individual admixture coefficients based on 187 

sparse non-negative matrix factorization, without assuming Hardy-Weinberg equilibrium 188 

(Frichot et al., 2014). We used SPLITSTREE 4 (Huson & Bryant 2005) to visualize relationships 189 
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between genotypes in a phylogenetic network, with reticulations representing the 190 

conflicting phylogenetic signals caused by recombination or incomplete lineage sorting. The 191 

position of the root was determined using a B. fabae isolate as the outgroup. Botrytis fabae 192 

is one of the closest known relatives of B. cinerea (Amselem et al. 2011; Walker 2016). 193 

Summary statistics of genomic variation (segregating sites S, nucleotide diversity π, 194 

Watterson’s θ, Tajima’s D) were estimated using EGGLIB 3.0 (https://egglib.org/) on 10kb 195 

windows, excluding sites with more than 50% missing data and removing windows with 196 

lseff<1000 (lseff is the number of analysed sites) or nseff<3 (nseff is the average number of 197 

exploitable samples). Site frequency spectra were estimated using DADI 1.7.0 (GUTENKUNST ET 198 

AL. 2009). Allelic richness and private allele richness were estimated with ADZE 1.0 (Szpiech 199 

et al. 2008), using a generalized rarefaction approach to account for differences in sample 200 

size among populations. 201 

We employed the f3 statistic (Reich et al. 2009) to test for admixture based on shared 202 

genetic drift, as implemented in the POPSTATS python script (Skoglund et al. 2015; 203 

https://github.com/pontussk/popstats/). The f3 statistic is used to test for admixture among 204 

three populations Px, P1, P2. In the no-admixture case, the f3 statistic measures the branch 205 

length between Px and the internal node of the unrooted population tree (Px;P1,P2), and it 206 

is therefore expected to be greater than zero. In the case Px has a mixed ancestry from P1 207 

and P2, or populations closely related to them, the f3 statistic is expected to be negative. 208 

Significance was assessed by block jackknife by treating each chromosome as a block and 209 

weighting each block by the number of SNPs. The standard error of the test statistic was 210 

used to define a Z-score.  211 
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 212 

Genome assembly and gene prediction 213 

Gene content was determined using two independent approaches. In the first approach, 214 

we used the read mapping coverage of the genes previously predicted in the reference 215 

genome B05.10 (van Kan et al. 2017). Read count per site for each gene and for each isolate 216 

was computed using SAMTOOLS BEDCOV, and normalized using EDGER (McCarthy et al. 2012; 217 

Robinson et al. 2010). Genes showing significant differences in mapping coverage across 218 

populations were identified with EDGER (adjusted p-value <0.05 and more than two-fold 219 

change). Putative gene duplication events (higher mapping coverage) and missing B05.10 220 

genes (lack of mapping reads) were visually inspected in their genomic context using a 221 

genome browser for validation.  222 

The second approach was based on genome assembly and de novo gene prediction. 223 

Illumina paired-reads were assembled using a combination of VELVET (Zerbino & Birney 224 

2008), SOAPDENOVO and SOAPGAPCLOSER (Luo et al. 2012), as follows: (1) reads were trimmed 225 

at the first N, (2) contigs were generated with several k-mer values using SOAPDENOVO, (3) 226 

several VELVET assemblies were built using several k-mer values and as the input the trimmed 227 

reads and all SOAPDENOVO contigs considered as "long reads ", (4) the assembly that 228 

maximizes the criterion (N50*size of the assembly) was selected, (5) SOAPGAPCLOSER was run 229 

on the selected assembly, and (6) Contigs completely included in other longer contigs were 230 

deleted. Genomic regions mapping to transposable elements previously identified in B. 231 

cinerea (https://doi.org/10.15454/TFYH9N; Porquier et al. 2016) were masked with 232 

REPEATMASKER (http://www.repeatmasker.org) prior to gene prediction. Genes were 233 

predicted using the FGENESH ab initio gene-finder (Solovyev et al. 2006; 234 
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http://www.softberry.com/berry.phtml), the program previously used to annotate the 235 

reference genome (Amselem et al. 2011), and for which Botrytis-specific gene-finding 236 

parameters were thus available. Completeness of the assembly and gene prediction were 237 

evaluated with BUSCO using the Ascomycota gene set (Seppey et al. 2019). We then used 238 

ORTHOFINDER (Emms & Kelly 2015) in order to define groups of orthologous sequences 239 

(hereafter “groups of orthologs”) based on sequences of predicted genes translated into 240 

protein sequences. To reduce the impact of incomplete gene prediction (e.g. truncated 241 

genes in small contigs), groups of orthologs were then manually checked for the 242 

presence/absence of the protein-encoding genes in the genomes using TBLASTN (Johnson et 243 

al. 2008). Proteins were functionally annotated using INTERPROSCAN (Jones et al. 2014), and 244 

SIGNALP (Almagro Armenteros et al. 2019) was used to predict secretion signal peptides. 245 

Prediction of transmembrane helices in proteins was performed using TMHMM 2.0 (Krogh et 246 

al. 2001; Sonnhammer et al.). As we detected traces of bacterial contamination in the 247 

genome of the Sl13 isolate, this genome was not included in orthology analysis. However, 248 

we have kept this genome for analyzes based on polymorphism, because bacterial reads 249 

cannot map to the reference genome. 250 

 251 

Tests of positive selection based on polymorphism and divergence at synonymous and non-252 

synonymous sites 253 

We estimated the intensity and direction of selective pressures exerted on genes in 254 

populations using the McDonald-Kreitman test based on polymorphism and divergence at 255 

synonymous and non-synonymous sites (McDonald & Kreitman 1991). This test is based on 256 

the number of nucleotide polymorphisms and substitutions in gene sequences, and assumes 257 
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that synonymous mutations are neutral. Pseudo-sequences for coding sequences of all 258 

genes in the reference genome were generated using the VCF file and the reference 259 

sequence. Synonymous and non-synonymous divergence was computed with CODEML (model 260 

0; Yang 1997, 2007), using B. fabae as the outgroup. Synonymous and non-synonymous 261 

polymorphism was computed using EGGLIB 3 (https://egglib.org/), filtering out sites with 262 

more than 80% missing data and excluding filtered alignments with less than 10 codons or 263 

four sequences. Samples Sl1, Sl2, Sl3, Sl13, Vv3, Vv5, Vv2, Vv4 and Vv6 were excluded 264 

because they introduced missing data that prevented calculations of synonymous and non-265 

synonymous divergence. The neutrality index (NI), defined as (PN/DN)/(PS/DS) (Stoletzki & 266 

Eyre-Walker 2011), was computed for every gene, with PN and DN the numbers of non-267 

synonymous polymorphisms and substitutions, respectively, and PS and DS the numbers of 268 

synonymous polymorphisms and substitutions, respectively.  Pseudocounts of one were 269 

added to each cell of the McDonald-Kreitman tables to ensure the NI was always defined 270 

(i.e. no division by zero).  271 

 272 

Linkage disequilibrium and recombination 273 

We used POPLDDECAY (Zhang et al. 2019a) to measure linkage disequilibrium (r²) as a function 274 

of the distance between pairs of SNPs. POPLDDECAY was configured with a maximum distance 275 

between SNPs of 300 kbp, a minor allele frequency of 0.005 and a maximum ratio of 276 

heterozygous allele of 0.88. Recombination rates were estimated for each chromosome with 277 

PAIRWISE in LDHAT version 2.2 (Auton & McVean 2007). Sites with missing data were excluded. 278 

 279 
Tests of positive selection based on linkage disequilibrium and the site frequency spectrum 280 
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We searched for signatures of selective sweeps along genomes using three different 281 

softwares, each implementing a different approach. The SWEED 3.0 software (Pavlidis et al. 282 

2013) implements a composite likelihood ratio (CLR) test based on the SWEEPFINDER algorithm 283 

(Nielsen et al. 2005), which uses the site frequency spectrum (SFS) of a locus to compute the 284 

ratio of the likelihood of a hard selective sweep at a given position to the likelihood of a null 285 

model hypothesis without selection. The CLR statistic was computed for each chromosomes 286 

of each population using a grid size of 50 or 200 (grid size is the number of positions where 287 

the likelihood is calculated), but only results for a grid size of 200 are presented because the 288 

CLR profiles were highly similar between the two settings. Input files included both 289 

“unfolded” SNPs (i.e. SNPs for which ancestral and derived states can be determined using 290 

the allelic state of the outgroup) and “folded” SNPs (i.e. SNPs for which the outgroup had 291 

missing data). Only biallelic sites with sample size greater than or equal to five were 292 

included. The nSL method implemented in the NSL software (Ferrer-Admetlla et al. 2014) 293 

detects hard and soft selective sweeps based on haplotype homozygosity.  The nSL statistic 294 

was computed for each chromosome of each population, including only biallelic sites with 295 

sample size greater than or equal to five. Nine isolates (Sl1, Sl2, Sl3, Sl13, Vv3, Vv5, Vv2, Vv4, 296 

Vv6) were excluded to reduce the proportion of missing data. The hapFLK method (Fariello 297 

et al. 2013) implemented in the HAPFLK software is based on the original FLK method by 298 

(Bonhomme et al. 2010), which detects signatures of selection from differentiation between 299 

populations. This metric was used to test the null hypothesis of neutrality by contrasting 300 

allele frequencies at a given locus in different populations. hapFLK extends the FLK method 301 

to account for the haplotype structure in the sample, and the method is robust to the effects 302 

of bottlenecks and migration. HAPFLK takes the number of cluster of haplotypes as a 303 
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parameter (K). To determine the number of clusters of haplotypes K, we ran FASTPHASE v1.4 304 

(Scheet & Stephens 2006) and R package IMPUTEQ (Khvorykh & Khrunin 2020) on 305 

polymorphism data for the largest chromosome BCIN01. For each population, we used 306 

IMPUTEQ to generate five datasets with 10% of polymorphic positions masked, and for each 307 

masked dataset we used FASTPHASE for imputing masked positions assuming clusters of 308 

K=2,3...10 haplotypes and the following parameters: -T10 -C25 -H-1 -n -Z. We estimated 309 

error using Estimate-Errors function in IMPUTEQ and the number of clusters that minimizes 310 

the error was selected as the optimum. The HapFLK metric was computed individually on 311 

each chromosome using as number of clusters K = 5, and nfit = 2. Accessory chromosomes 312 

were not included in these analyses as they showed presence/absence polymorphism (see 313 

Results section). 314 

Results 315 

Whole-genome sequencing, population structure and demographic history 316 

Previous work using microsatellite data revealed differentiation between populations of B. 317 

cinerea collected on tomato and grapevine (Mercier et al. 2019; Walker et al. 2015). To 318 

investigate the genetic basis of specialization of the tomato- and grapevine-infecting 319 

populations, we randomly selected for genome sequencing 32 isolates collected on tomato 320 

(13 isolates), grapevine (16 isolates), Rubus (two isolates) and Hydrangea (one isolate) (Table 321 

1). Isolates from Rubus and Hydrangea were previously shown to belong to generalist 322 

populations (i.e. assigned to clusters found on all sampled hosts; Mercier et al. 2019). One 323 

isolate of the sister species B. fabae was also sequenced and used as the outgroup. 324 

Information about the sequenced isolates is summarized in Table 1. Alignment of sequencing 325 
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reads to the B05.10 reference genome (van Kan et al. 2017) followed by SNP calling 326 

identified 249,084 high-quality SNPs.   327 

In clustering analyses based on sparse nonnegative matrix factorization algorithms, as 328 

implemented in the SNMF program (Frichot et al., 2014), the model with K=4 clusters was 329 

identified as the best model based on cross-entropy (Supplementary Figure S2) and models 330 

with K>4 did not identify well-delimited and biologically relevant clusters (Fig. 1A). At K=4, 331 

one cluster was associated with tomato (hereafter referred to as “T” cluster), two clusters 332 

were associated with grapevine (hereafter referred to as “G1” for the largest, and “G2” for 333 

the smallest), and one cluster was formed by the isolates Rf1 and Hm1 from bramble (R. 334 

fruticosus) and hydrangea (H. macrophylla) (Figure 1A). The isolate Rf2 collected on wild 335 

blackberry displayed ancestry in multiple clusters, and the reference isolate B05.10 had 336 

ancestry in the G2 and T clusters. No pattern of geographical subdivision was observed, 337 

consistent with previous findings (Walker et al. 2015; Mercier et al., 2019). The neighbor-net 338 

network inferred with SPLITSTREE revealed three main groups, corresponding to the three 339 

main clusters identified with SNMF, with cluster G2 (isolates Vv8, Vv9, Vv11 and Vv15) more 340 

closely related to T than to G1 (Figure 1B).  Reticulations in the neighbor-net network and 341 

patterns of membership at K=2 and K=3 in the analysis with sNMF indicated that cluster G2 342 

shared recent ancestry with clusters G1 and T. However, tests for admixture using the f3 343 

statistic (Reich et al. 2009; Skoglund et al. 2015) did not support a scenario in which G2 344 

derived from admixture between the two other clusters (Supplementary Table S1). The 345 

principal component analysis corroborated the results of clustering analyses and the 346 

neighbor-net network (Figure 1C). The first principal component separated isolates Hm1 and 347 

Rf1 from the rest of the dataset. The second principal component individualized isolate Rf2, 348 
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as well as the three clusters T, G1 and G2. The third and fourth principal components 349 

individualized cluster G2 and isolate Sl11, respectively. Together, analyses of population 350 

subdivision revealed three clearly defined populations (two on grapevine and one on 351 

tomato) and we therefore focused on these populations to identify the genes underlying 352 

differences in host specialization. 353 

On average across core chromosomes BCIN01 to BCIN16, nucleotide diversity π and 354 

Watterson’s θ were comparable in the three populations (from π=0.0018/bp in G1 to π 355 

=0.0030/bp in G2; from θ=0.0017/bp in G1 to θ=0.0027/bp in G2; Table 2; Supplementary 356 

Table S2), although all comparisons were statistically significant except between populations 357 

T and G2 for θ (two-tailed Wilcoxon signed-rank test, P-value>0.05). Allelic richness was 358 

slightly higher in G2 than in T (AR=1.104 vs AR=1.094), and lower in G1 (AR=1.078). Private 359 

allele richness was higher in G1 (PAR=0.085), than in T (PAR=0.073) and G2 (PAR=0.071) 360 

(Table 2). 361 

 The site frequency spectra estimated in populations G1 and T  were U-shaped, indicating 362 

an excess of high-frequency derived alleles (Figure 2; population G2 was excluded because of 363 

too small a sample size), consistent with ongoing episodes of positive selection, mis-364 

assignment of ancestral alleles or gene flow (Marchi & Excoffier 2020). Estimates of Tajima’s 365 

D were positive but close to zero in clusters T and G1 (T: D=0.309; G1: D=0.167), indicating a 366 

slight deficit of low frequency variants (Table 2; Supplementary Table 2), consistent with 367 

balancing selection or population contraction. In cluster G2, the estimated Tajima’s D was 368 

D=1.470 but the estimate was likely upwardly biased by the small sample size, because 369 

Watterson’s θ is underestimated when sample size is small. The distance at which linkage 370 

disequilibrium (LD) decayed to 50% of its maximum was an order of magnitude longer in G2 371 
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(LDdecay50: 16,800bp) than in T (LDdecay50: 8600bp) and G1 (LDdecay50: 3100bp) 372 

(Supplementary Figure S3). The recombination rate was higher in G2 (ρ=0.2047/bp) than in 373 

G1 and T (G1: ρ=0.0178/bp; T: ρ=0.0108/bp). 374 

The accessory chromosome BCIN18 showed no polymorphism in all three population and 375 

the accessory chromosome BCIN17 showed no polymorphism in population G2 376 

(Supplementary Table S2). However, it should be noted that coverage analysis also revealed 377 

that these accessory chromosomes, which contain a reduced number of genes (23 and 19 378 

respectively, van Kan et al. 2017), were distributed irrespectively of the host of origin: 379 

BCIN17 was found present in all but three isolates (Sl9, Sl10 and Vv15), while BCIN18 was 380 

only present in five isolates (Sl3, Sl5, Sl9, Vv9 and Vv11; Supplementary Table S3). In 381 

population T, the accessory chromosome BCIN17 displayed a relatively high and positive 382 

value of Tajima’s D (D=1.37; Supplementary Table S2) and approximately twice as much 383 

nucleotide diversity as in core chromosomes (π=0.0058/bp; Supplementary Table S2). In 384 

population G1, accessory chromosome BCIN17 displayed a negative value of Tajima’s D (D=-385 

0.845) and two orders of magnitude less nucleotide diversity than core chromosomes 386 

(π=5.7e-5/bp; Supplementary Table S2). The differences in Tajima’s D estimates for BCIN17 387 

reflect the existence of two divergent haplotypes in T, but not in G1 (not shown). 388 

 389 

Isolates from the T population are more aggressive on tomato plants. 390 

To test whether isolates collected on tomato are more aggressive on their host of origin, 391 

compared to isolates collected on grapevine, pathogenicity assays were performed on whole 392 

tomato plants in controlled conditions. To assess differences among isolates in terms of 393 

aggressiveness on grape and tomato, we used a non-parametric analysis of variance, 394 
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considering the average values for each of the independent pathogenicity tests as 395 

replications. We found a significant isolate effect (Kruskal Wallis test, H (28, N= 87) 396 

=69.89221, p < 0.0001), consistent with the wide range of aggressiveness levels observed for 397 

the 29 isolates.  398 

To compare the aggressiveness on tomato of isolates from different hosts of origin 399 

(tomato vs. grape), we tested for differences in the distribution of the aggressiveness index 400 

between isolates originating from the two types of hosts, considering the independent 401 

repetitions of the pathogenicity test as blocks and the 13 isolates from tomato and 16 402 

isolates from grapevine as replicates. We observed a significant effect of the host of origin 403 

(Figure 3, Mann-Whitney U test, p < 0.0001) and T isolates collected on tomato were on 404 

average 2.7 times more aggressive on tomato plants than isolates collected on grapevine.  405 

To compare the aggressiveness on tomato of isolates from three different clusters (T, 13 406 

isolates; G1, 12 isolates; G2, 4 isolates), we tested whether the aggressiveness index of 407 

isolates from different clusters originate from the same distribution. A Kruskall-Wallis test 408 

rejected the null hypothesis that all clusters display the same median of the aggressiveness 409 

index (H (2, N= 87) =19.80083, p < 0.0001).  The T population was significantly different from 410 

the G1 population but not from G2 (Kruskall-Wallis test, p< 0.0001 and p = 0.37, 411 

respectively). G2 and G1 were not significantly different (Kruskall-Wallis test, p = 0.57). 412 

 413 

Gene content slightly differs between tomato- and grapevine-associated populations 414 

As variation in gene content can be involved in adaptation to novel hosts (Cummings et al. 415 

2004; Inoue et al. 2017; Langridge et al. 2015), we sought to identify genes specific to the 416 

tomato (T) and grapevine (G1 and G2) populations. We first explored the mapping coverage 417 
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of genes previously identified in the B05.10 reference to identify sets of genes that were 418 

missing or showing duplication events (Supplementary Table S4). Five B05.10 genes were 419 

identified as missing in the T population, including four consecutive genes in the 420 

subtelomeric region of chromosome BCIN02 that could correspond to a secondary 421 

metabolism gene cluster. Among these four genes, one is coding for a NRPS-like enzyme 422 

similar to the protein MelA of Aspergillus terreus involved in the biosynthesis of an α-keto 423 

acid dimer (Geib et al. 2016), two other genes encode putative biosynthetic enzymes (FAD-424 

binding and enoyl reductase domains). Mapping coverage of B05.10 genes also suggested 425 

some possible duplication events in a subtelomeric region of chromosome BCIN08, with T 426 

isolates showing approximately three times as many reads as the G1 and G2 isolates for the 427 

four consecutive genes Bcin08g00060 to Bcin08g00090. This suggested that the 428 

corresponding region of at least 25 kb would be in three copies in the genomes of the T 429 

isolates. Among the four duplicated genes, two encode carbohydrate-active enzymes 430 

(CAZymes) known as plant cell wall degrading enzymes (PCWDEs) as they act on pectin 431 

(glycoside hydrolase GH28) and hemicellulose or pectin side chains (GH43). 432 

We also analysed the variation in gene content using a different approach that makes no 433 

use of reference genome B05.10. We built de novo assemblies of the genomes of T, G1 and 434 

G2 isolates. The genome assembly size of the 28 isolates ranged from 41 Mb to 42.5 Mb 435 

(Supplementary Table S5), which was slightly smaller than the genome assembly size of the 436 

B05.10 reference isolate (42.6 Mb). We then predicted genes ab initio using FGENESH. The 437 

number of predicted genes ranged from 11,109 to 11,311 among genomes.  To compare 438 

gene content in the T, G1 and G2 populations, we used ORTHOFINDER to identify 12,319 439 

groups of orthologous sequences (i.e., orthogroups). The number of groups of orthogroups 440 
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shared by pairs of isolates within populations was higher that between populations 441 

(Supplementary Table S6). By looking for orthologous groups that were present in at least 442 

75% of the genomes of a focal population and missing in other populations, we identified 21 443 

G1-specific genes, a single G2-specific gene, five genes specific to the G1 and G2 populations 444 

(those already detected with the first approach described above), two genes missing 445 

specifically in the G1 population, and a single gene specific to the T population 446 

(Supplementary Table S7). This latter gene was a GH71 glycoside hydrolase (OG0011490, an 447 

α-1,3-glucanase; (Lombard et al. 2014) acting on fungal cell wall.  Among the genes specific 448 

to G1, we found a GH10 glycoside hydrolase (in OG0011469; (Lombard et al. 2014) acting on 449 

plant cell wall (i.e. hemicellulose). The proteins encoded by the other G1-specific genes had 450 

no functional prediction though four of them shared a domain typical of metalloenzymes 451 

(IPR11249) with putative peptidase activities and three other ones showed a versatile 452 

protein-protein interaction motif involved in many functions (IPR011333).  Two proteins with 453 

secretion signal peptides were also found specific to G1 (OG0011305 and OG0011366), with 454 

OG0011366 having a predicted function of interferon alpha-inducible protein-like (Rosebeck 455 

& Leaman 2008) and a predicted transmembrane helix. 456 

Together, these analyses revealed that the magnitude of gene content variation is limited 457 

between B. cinerea populations, which emphasizes the need to investigate differences in 458 

allelic content at shared genes for elucidating the genomic basis of host specialization. 459 

 460 

McDonald-Kreitman tests of positive selection identify genes related to virulence 461 

We investigated differences in the direction and intensity of natural selection driving the 462 

evolution of gene sequences in the two populations with the greatest difference in terms of 463 
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quantitative pathogenicity on grape and tomato, which are also the two populations with 464 

the largest sample size (G1 and T).  More specifically, we searched for genes with signatures 465 

of positive selection in both populations that also show high sequence divergence between 466 

populations, or genes with signatures of positive selection in one population, but not in the 467 

other population. The direction and intensity of selection was estimated using neutrality 468 

indexes computed for each individual gene in each population based on McDonald-Kreitman 469 

tables of polymorphisms and substitutions at synonymous and non-synonymous sites, using 470 

B. fabae as the outgroup. The neutrality index is expected to be below one for genes under 471 

positive selection (due to an excess of non-synonymous substitutions) and above one for 472 

genes under negative selection (due to a deficit of non-synonymous polymorphisms). To 473 

identify genes potentially involved in host specialization, we first selected genes showing low 474 

values of the neutrality index in both populations (log [neutrality index] ≤-0.5), and high 475 

values of the inter-population dN/dS ratio (dN/dS in the top 5% percentile; Supplementary 476 

Figure S4). This analysis identified five genes: Bcin02p04900, Bcin07p02650, Bcin09p06530, 477 

Bcin14p01690, Bcin09p02190 (Supplementary Table S8). Two genes (Bcin07p02650, 478 

Bcin14p01690) code for glycosyl hydrolases of the GH5 family, a family that includes 479 

enzymes acting on plant cell walls and enzymes act on fungal cell walls. One of the two 480 

genes (Bcin14p01690), has a cellulose binding domain which strongly suggests a role as 481 

PCWDE. Two genes (Bcin02p04900, Bcin09p02190) are involved in basic cell functions (a 482 

DNA nuclease and a protein involved in ribosome biogenesis). The last gene (Bcin09p06530) 483 

has no known domain. 484 

We also selected genes showing low values of the neutrality index in one population (log 485 

[neutrality index] ≤-0.5), and high values in the other (log [neutrality index]>=0) 486 
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(Supplementary Figure S4). This analysis identified 392 genes in G1 and 428 genes in T 487 

(Supplementary Table S8).  Functional enrichment analyses revealed contrasting results in 488 

the G1 and T populations (Supplementary Table S8). In the G1 population, we identified a 489 

significant two-fold enrichment in transporter-encoding genes among the 392 genes with 490 

signatures of positive selection. These 28 transporters included many candidates with 491 

putative roles in nutrition such as the transport of sugars and amino-acids (five genes of 492 

each). Fifteen of them were proteins of the major facilitator superfamily (MFS). The MFS 493 

transporter-encoding genes included five putative sugar transporters and ten unknown 494 

transporters that could have roles in various processes, including obtaining nutrients from 495 

the host, efflux of fungi-toxic compounds or the export of fungal phytotoxins (Hartmann et 496 

al. 2018; Maruthachalam et al. 2011; Perlin et al. 2014). Finally, five of the 392 genes 497 

encoded ATPase transporters including the BcPrm1 P-type Ca2+/Mn2+-ATPase that 498 

mediates cell-wall integrity and virulence in B. cinerea (Plaza et al. 2015). 499 

 In the T population, the list of 428 genes with signatures of positive selection showed a 500 

significant 2.5-fold enrichment in genes encoding for proteins involved in oxidative stress 501 

response (eight genes). These genes encode enzymes that are able to detoxify reactive 502 

oxygen species i.e. glutathione-S-transferases (BcGST1, 9 and 24), the superoxide dismutase 503 

BcSOD1, and two peroxidases (BcPRX8 and BcCCP1). In addition, the list of 428 genes also 504 

included BcatrO, which encodes the transporter BcAtrO involved in the resistance to H2O2 505 

(Pane et al. 2008). 506 

A 2.5-fold enrichment was also observed for the genes coding for CAZYmes acting as 507 

PCWDEs (ten genes) especially for those involved in the modification of hemicellulose (five 508 
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genes; Espino et al. 2010 ; Supplementary Table S8) such as the xylanase BcXyn11A that is 509 

required for full virulence on tomato (Brito et al. 2006). 510 

 511 

Selective sweeps in regions encompassing genes encoding enzymes involved in carbohydrates 512 

metabolism 513 

 To identify genomic regions with signatures of selective sweeps, we conducted three 514 

different genome scans, using different features of the data: i) hapFLK, which detects hard 515 

and soft sweeps based on patterns of differentiation between clusters of haplotypes 516 

between populations; ii) nSL, which detects hard and soft sweeps based on the distribution 517 

of fragment length between mutations and the distribution of the number of segregating 518 

sites between pairs of chromosomes; iii) and SWEED’s CLR, which detects hard sweeps based 519 

on the site frequency spectrum. The CLR and nSL metrics are population-specific and were 520 

computed for each population independently, while the hapFLK metric is FST-based and was 521 

thus computed for populations G1 and T (Supplementary figure S5). We identified candidate 522 

SNPs located in (hard or soft) selective sweeps as the SNPs that were in the top 5% of the 523 

hapFLK statistic, but also in the top 5% of either the nSL or CLR statistic in a least one 524 

population (Figure 4). In total, this approach identified 4,667 SNPs of which 1,300 were 525 

localized in coding sequences, 256 in introns, 830 in untranslated transcribed regions, and 526 

465 less than 1500bp upstream of coding sequences. These 2,851 SNPs corresponded to 351 527 

genes, of which 15 were identified by SNPs in the top 5% of selective sweep metrics in both 528 

populations, 200 by SNPs in the top 5% of selective sweep metrics in population T, and 175 529 

by SNPs in the top 5% of selective sweep metrics in population G1 (Supplementary table S9).   530 
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 Candidate genes in the selective sweep regions of each population included genes coding 531 

for proteins with functions consistent with a role in infection, such as transporters, CAZymes, 532 

putative effectors and two genes that are confirmed virulence factors. Indeed, one region 533 

identified in the G1 population contains the gene encoding the Pectin Methyl Esterase 534 

BcPme1 required for full virulence of B. cinerea on several host including grapevine (Valette-535 

Collet et al. 2003), and another region contains the gene encoding BcCgf1, a small secreted 536 

protein that is essential for infection structure development (Zhang et al. 2020). 537 

Nevertheless, it is unlikely that all genes in selective sweep regions have been direct targets 538 

of positive selection, most of them being possible hitch-hikers. This could be the reason why 539 

no significant functional enrichment was detected among these genes. 540 

Finally, comparison of the lists of genes identified in the selective sweep regions and 541 

those with signatures of positive selection according to McDonald-Kreitman tests identified 542 

nine genes in common for the T population and four genes in common for the G1 population 543 

(Supplementary table S9). This suggests that these genes were subjected to both recurrent 544 

positive selection for amino-acid changes and to recent positive selection in populations of 545 

B. cinerea. In addition, we can hypothesize that these genes may be the actual targets of 546 

positive selection, and that surrounding candidate genes could be only hitch-hikers. 547 

Functional annotations of the genes that show both recurrent positive selection for amino-548 

acid changes and recent positive selection signals further indicated a cutinase-encoding gene 549 

(Bcin01g09430) in the T population and a sugar transporter encoding gene (Bcin16g00530) in 550 

the G1 population, and also pointed out various other functions.  551 

 552 
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Discussion 553 

Genetic differentiation in B. cinerea between populations associated with grapevine and  554 

tomato  555 

Genetic structure associated with the host of origin in B. cinerea has been extensively 556 

investigated (reviewed in Walker 2016). Most of the studies based on sufficient sampling 557 

size (n>100) found significant population differentiation between populations of B. cinerea 558 

from different hosts (e.g. in Chile, Tunisia, Hungary, United Kingdom;  Walker 2016). One 559 

noticeable case is the population of B. cinerea collected from various hosts in California (Ma 560 

& Michailides 2005), for which whole-genome sequencing data did not detect any host-561 

associated population structure despite differences in pathogenicity against different hosts 562 

(including tomato) in cross-infectivity assays (Atwell et al. 2015; Caseys et al. 2020; Soltis et 563 

al. 2019). In France, previous research concluded that B. cinerea populations were 564 

differentiated according to some of their hosts, including tomato, grapevine and, to a lesser 565 

extent, bramble (Fournier & Giraud 2008; Walker et al. 2015). In two recent studies 566 

comparing the aggressiveness of isolates coming from diverse hosts, the disease severity 567 

caused by isolates from tomato was significantly greater than the severity caused by isolates 568 

from grape or other crops, thus indicating that B. cinerea populations parasitizing tomato 569 

were specialized to this host (Bardin et al. 2018; Mercier et al. 2019). Here we show that 570 

populations parasitizing tomato and grapevine are subdivided into three populations, two 571 

being associated with grapevine (G1 and G2) and one with tomato (T). This pattern of 572 

population genetic structure differs from previous findings (Walker et al., 2015), as three 573 

populations parasitizing grapevine had previously been detected, but studies differ in terms 574 

of sampling and genotyping schemes (thousands of SNPs vs 8 SSR markers, and an order of 575 
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magnitude of difference in the size of sample sets). The clear pattern of population 576 

subdivision found in our study also stands in sharp contrast with the lack of host- or 577 

geography-associated population subdivision across various hosts, including tomato and 578 

grape, in California (Atwell et al. 2015; Atwell et al. 2018). This difference in population 579 

structure between France and California indicates that the factors leading to host-specific 580 

differentiation between B. cinerea pathogens from grape and tomato do not operate 581 

everywhere. The differences in LD decay (up to an order of magnitude longer in our study 582 

compared to Californian B. cinerea) and nucleotide diversity (half as much in our study 583 

compared to Californian B. cinerea) also suggest that the demographic history and 584 

population biology of the pathogen is contrasted between the two regions. 585 

Multiple factors can contribute to reduce gene flow between populations parasitizing 586 

grapevine and tomato. A first possible factor limiting gene flow is adaptation to host. Mating 587 

in B. cinerea occurs on the host after infection, between individuals that were thus 588 

sufficiently adapted to infect the same host, which induces assortative mating with respect 589 

to host use and reduce opportunities for inter-population crosses (Giraud 2006; Giraud et al. 590 

2010; Giraud et al. 2008). Another factor possibly limiting gene flow between populations 591 

infecting tomato and grape is habitat isolation (i.e. reduced encounters caused by mating in 592 

different habitats). Tomatoes are grown in nurseries before being dispatched to the fields, 593 

tunnels or greenhouses, and this may generate habitat isolation if sexual reproduction in the 594 

pathogen occurs in nurseries for the tomato-infecting population of B. cinerea. Such habitat 595 

isolation may contribute to promote adaptation to tomato, by preventing the immigration of 596 

alleles which are favorable for infection of non-tomato hosts but not favorable for infection 597 

of tomato. Differences in the timing of epidemics are unlikely to contribute to this habitat 598 
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isolation, as the period of infection of greenhouse tomatoes runs from late to early winter, 599 

which includes the period of infection of grape. The same goes for the location of epidemics, 600 

since the sites studied were chosen because the two types of crops are grown nearby. A final 601 

possibility to explain the lack of gene flow between B. cinerea populations from grape and 602 

tomato is that the frequency of sexual reproduction might be lower in populations infecting 603 

greenhouse tomatoes. Higher winter temperatures and the removal of plant residues in the 604 

greenhouse represent conditions that are less conducive to sexual reproduction. However, 605 

our estimates of LD decay and recombination rates are not consistent with a substantially 606 

lower frequency of sexual reproduction in the population associated with tomato, compared 607 

to the population associated with grape. 608 

The differences in population structure observed between B. cinerea populations from 609 

France and California could be due to different cultivation practices. In California, differences 610 

in pathogenicity between tomato and other hosts did not lead to genome-wide 611 

differentiation, indicating that gene flow occurs between hosts. In France, on the contrary, 612 

differences in virulence are associated to genome-wide differentiation, indicating restriction 613 

of gene flow. These differences in structure may be explained by the cultivation of tomatoes 614 

in open fields in California, which favors dispersal to other crops, while French tomatoes are 615 

generally grown in plastic tunnels or greenhouses. 616 

 617 

Widespread signatures of selection along genomes 618 

We identified little variation in the gene content among T, G1 and G2 populations, with one 619 

gene specific to T, 22 genes specific to G1 and five genes shared between G1 and G2 but not 620 

T, suggesting that gene gain or loss is not the main process of adaptation to tomato. In 621 
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parallel to our analysis of presence/absence variation, our genome scans for positive 622 

selection pinpointed several genomic regions which may harbour determinants of ecological 623 

differentiation between the population specialized to tomato and the population parasitizing 624 

grapevine. In order to cover multiple time scales and different signatures of positive 625 

selection, we used a variety of analytical approaches. The McDonald-Kreitman test focuses 626 

on genes and detects repeated episodes of selective sweeps fixing non-synonymous 627 

substitutions, thus generating a higher ratio of amino acid divergence to polymorphism (Dn / 628 

Pn), relative to the ratio of silent divergence to polymorphism (Ds / Ps), than expected under 629 

neutrality. The values of nucleotide diversity and Tajima’s D measured in the T population 630 

specialized in tomatoes were very close to the values measured for the two other 631 

populations, which is not consistent with a very recent origin of this population and justifies 632 

the use of the McDonald-Kreitman test. Genome scans for selective sweeps detect more 633 

recent events, and by nature these methods can also detect genes that are not directly the 634 

target of selection, but may have hitch-hiked due to physical linkage with sites under 635 

positive selection. However, the LD decay values measured for the T population remain 636 

moderate (9kb), and we used a combination of different selective sweep metrics to 637 

substantially shorten the list of candidate genes, which should reduce the impact of genetic 638 

hitch-hiking on our list of genes under recent positive selection. Despite using a more 639 

conservative approach, we identified more selective sweeps than in the generalist 640 

Sclerotinia sclerotiorum fungus (Derbyshire et al. 2019), or in the Californian generalist 641 

population of B. cinerea (Soltis et al. 2019). 642 

 643 
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Genes under positive selection 644 

We identified a number of genes showing signatures of positive selection using the 645 

approaches discussed above and highlighting potential candidates for their role in host 646 

specialization. Functional annotation of the B. cinerea genome and previous experimental 647 

studies provided lists of genes involved in host-pathogen interaction and in other 648 

developmental processes (Amselem et al. 2011; Nakajima & Akutsu 2014; Rodriguez-649 

Moreno et al. 2018). We used these published lists of genes to investigate whether some 650 

specific biological processes were subjected to positive selection in the different 651 

populations. Our data revealed that the five genes showing the strongest signatures of 652 

selection in both the T and G1 populations, but also showing high sequence divergence 653 

between the two populations, included two genes encoding for CAZymes with glycoside 654 

hydrolase activity, which are potential PCWDEs. We also found that the 428 genes showing 655 

the strongest signatures of selection in the T population with McDonald-Kreitman tests were 656 

enriched both in genes coding for PCWDEs and in genes coding for enzymes involved in the 657 

oxidative stress response. Notably, ten genes encoding secreted CAZymes targeting 658 

compounds of the plant cell wall, i.e. cellulose and pectin (Amselem et al., 2011; Lombard et 659 

al. 2014), were found under positive selection. One of these ten genes encodes the xylanase 660 

BcXyn11A that has previously been shown to be a virulence factor on tomato (Brito et al. 661 

2006). Another one encodes a cutinase (Bcin01g09430) that was further detected in a 662 

selective sweep region suggesting, recurrent and recent positive selection events. Additional 663 

PCWDEs were found in other genomic regions identified as selective sweeps. Finally, our 664 

comparative genomic analysis suggested that a subtelomeric region that contains two 665 

PCWDEs acting on pectin and/or hemicellulose is duplicated in the T population. 666 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.07.24.219691doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219691
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Necrotrophic species have important repertoires of CAZymes especially those corresponding 667 

to PCWDEs which are known to act as major virulence factors in fungi (Zhao et al. 2013; 668 

Rodriguez-Moreno et al. 2018). The genome of the reference isolate of B. cinerea (B05.10) 669 

revealed 118 PCWDEs (Amselem et al., 2011) and our data suggest that, within this 670 

repertoire, some cellulases and pectinases may be of particular importance for the 671 

degradation of tomato cell wall. SNPs within a pectinesterase gene were also associated with 672 

virulence on tomato in a previous genome-wide association study (Soltis et al. 2019). 673 

In addition to PCWDEs, the single gene that was present in the T population but missing in 674 

the G1 and G2 populations encoded a CAZyme acting on the fungal cell wall, an α-1,3-675 

glucanase classified as a member of the GH71 family. In the fungal cell wall, α-1,3-glucan is a 676 

major component that encloses the α-(1,3)-glucan-chitin fibrillar core.  Because of its 677 

external localization and specific composition, α-1,3-glucan of pathogenic fungi plays a major 678 

role in infection-related morphology and host recognition (Beauvais et al. 2013; King et al. 679 

2017). A dozen of genes of B. cinerea encode for enzymes of the GH71 family (Amselem et 680 

al., 2011). The T-specific GH71 CAZyme might therefore have been retained in the T 681 

population as a mean to specifically facilitate infection of tomato by modification of the 682 

fungal cell wall resulting in adaptive morphological changes or impairment of host 683 

recognition. 684 

As mentioned above, the McDonald-Kreitman tests also indicated that eight genes coding 685 

for enzymes that detoxify reactive oxygen species showed signatures of positive selection in 686 

the T population. During infection, B. cinerea encounters an oxidative burst, an early host 687 

response that results in the death of plant cells. This mechanism is used in turn by B. cinerea 688 

to achieve full virulence but this also implies that the fungus has to resist to this toxic 689 
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environment. The fungal oxidative stress response system includes detoxifying enzymes such 690 

as superoxide dismutases (SODs) that convert O2 into the less toxic H2O2, as well as 691 

catalases, peroxidases and peroxiredoxins that convert H2O2. Additional non-enzymatic 692 

mechanisms include the oxidation of compounds such as glutathione (Heller & Tudzynski 693 

2011). In addition to the genes encoding SOD (BcSOD3), peroxidases (BcCCP1), 694 

peroxiredoxins (BcPRX8) and other detoxifying enzymes sur as glutathione-S-transferases 695 

(BcGST1, 9 and 24), a gene encoding the transporter BcAtrO also showed a signature of 696 

positive selection in the T population. Inactivation of this gene previously suggested that it 697 

allows the efflux of H2O2 and resistance this reactive oxygen species (Pane et al. 2008). 698 

Altogether, our data suggest that the oxidative burst occurring in the B. cinerea/tomato 699 

interaction is particularly challenging for the fungus. 700 

 701 

Concluding remarks 702 

We identified a population of B. cinerea specialized to tomato, which diverged from a 703 

grapevine-associated population. Genome scans for selective sweeps and McDonald-704 

Kreitman tests revealed widespread signatures of positive selection that identified genes 705 

that may contribute to the pathogen’s adaptation to its tomato host. Candidate genes for 706 

specialization to tomato were significantly enriched in those encoding cellulases, pectinases 707 

and enzymes involved in the oxidative stress response, suggesting that the ability to degrade 708 

the host cell wall and to cope with the oxidative burst are two key process in the B. 709 

cinerea/tomato interaction. Our work sets the stage for future studies aiming to elucidate 710 

the phenotypic and fitness effects of the candidate genes for specialization of B. cinerea to 711 

tomato, for instance by knocking-out or replacing candidate genes for host specialization.  712 
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Table 1. Botrytis isolates included in the study. Isolates from grapevine berries and tomatoes were collected in 

three regions of France between September 2005 and June 2007 for Champagne and Provence isolates (Walker 

et al. (2015), and between May and June 2009 for Occitanie isolates. Tomatoes in Occitanie were grown in 

plastic tunnels with sides open, whereas those from the Champagne and Provence areas were grown in glass-

greenhouses. B05.10 is used as the reference isolate for genomic analysis (van Kan et al. 2016) 

Species Isolate ID Other ID Host, cultivar Region, city 

B. cinerea Vv1 VC636 Vitis vinifera, Pinot noir Champagne, Hautvilliers 

 Vv2 VC095 Vitis vinifera, Pinot noir Champagne, Vandières 

 Vv3 VC621 Vitis vinifera, Pinot noir Champagne, Hautvilliers 

 Vv4 VC671 Vitis vinifera, Pinot noir Champagne, Hautvilliers 

 Vv5 VC224 Vitis vinifera, Pinot meunier Champagne, Courteron 

 Vv6 VC624 Vitis vinifera, Pinot noir Champagne, Hautvilliers 

 Vv7 ACBER342 Vitis vinifera, Grenache Provence, Berre 

 Vv8 ACBER356 Vitis vinifera, Grenache Provence, Berre 

 Vv9 ACBER358 Vitis vinifera, Grenache Provence, Berre 

 Vv10 ACSAR333 Vitis vinifera, Grenache Provence, Sarrians 

 Vv11 ACSAR334 Vitis vinifera, Grenache Provence, Sarrians 

 Vv12 ACSAR335 Vitis vinifera, Grenache Provence, Sarrians 

 Vv13 ACSAR342 Vitis vinifera, Grenache Provence, Sarrians 

 Vv14 ACSAR354 Vitis vinifera, Grenache Provence, Sarrians 

 Vv15 ACSAR357 Vitis vinifera, Grenache Provence, Sarrians 

 Vv16 VC610 Vitis vinifera, Pinot noir Champagne, Hautvilliers 

 Sl1 VA714 Solanum lycopersicum, Moneymaker Champagne, Foissy-sur-Vanne 

 Sl2 VC800 Solanum lycopersicum, Moneymaker Champagne, Courceroy 

 Sl3 VC806 Solanum lycopersicum, Moneymaker Champagne, Courceroy 

 Sl4 AABER19 Solanum lycopersicum, Alison Provence, Berre 

 Sl5 ACBER304 Solanum lycopersicum, Alison Provence, Berre 

 Sl6 ACPIE306 Solanum lycopersicum, Hipop Provence, Pierrelatte 

 Sl7 ADPIE463 Solanum lycopersicum, Hipop Provence, Pierrelatte 

 Sl8 ADPIE475 Solanum lycopersicum, Hipop Provence, Pierrelatte 

 Sl9 65_TT8 Solanum lycopersicum, Brenda Occitanie, Alenya 

 Sl10 5_TT8 Solanum lycopersicum, Brenda Occitanie, Alenya 

 Sl11 13_TT8 Solanum lycopersicum, Brenda Occitanie, Alenya 
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 Sl12 9_TT8 Solanum lycopersicum, Brenda Occitanie, Alenya 

 Sl13 66_TT8 Solanum lycopersicum, Brenda Occitanie, Alenya 

 Rf1 VC902 Rubus fruticosus, wild Champagne, Foissy-sur-Vanne 

 Rf2 VC399 Rubus fruticosus, wild Champagne, Courteron 

 Hm1 MSN-Bot 2556 Hydrangea macrophylla, Leuchtfeuer Anjou, Angers 

 B05.10 - - - 

B. fabae Bfab MSN-Bot 2220 Vicia faba Region of Tunis (Tunisia) 
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Table 2. Summary statistics of genomic variation in three clusters of Botrytis 

cinerea 

 
Cluste

r 

S π θ AR PAR D H LD50 ρ 

T 

37763 0.0027 0.0026 

1.094 

(0.000

2) 

0.073 

(0.000

2) 0.309 0.451 

8600 0.010

8 

G1 

26769 0.0018 0.0017 

1.078 

(0.000

2) 

0.085 

(0.000

2) 0.167 0.230 

3100 0.017

8 

G2 

14307 0.0030 0.0027 

1.104 

(0.000

3) 

0.071 

(0.000

2) 1.470 0.140 

16800 0.204

7 

 

 

S, number of segregating sites; π, nucleotide diversity per site; θ, Watterson's 

estimate of the population mutation parameter per site; ρ, population 

recombination parameter per site; AR, allelic richness (standard error of the 

mean); PAR, private allele richness (standard error of the mean); D, Tajima's D; 

H, Fay and Wu’s standardised H; LD50, distance (in bp) at which linkage 

disequilibrium reaches half of its maximum value. Only core chromosomes 

BCIN01 to BCIN16 were included in calculations. Per site estimates of π, ρ and 

θ were computed by summing across chromosomes and dividing by number of 

sites covered. Tajima’s D and Fay and Wu’s standardised H were computed 

across 10kb windows, and averaged. AR and PAR were computed using a 

generalized rarefaction approach and a standardized sample size of two 

haploid genomes. 
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Figure Captions 

Figure 1. Population subdivision inferred based on SNPs identified in 32 isolates of Botrytis 

cinerea collected on tomato (red, Sl prefix, Solanum lycopersicum), grape (green, Vv prefix, 

Vitis vinifera), bramble (black, Rf prefix, Rubus fruticosus) and hydrangea (black, Hm prefix, 

Hydrangea macrophylla). (A) Ancestry proportions in K clusters, as estimated with the SNMF 

program. Each multilocus genotype is represented by a vertical bar divided into K segments, 

indicating membership in K clusters. (B) Neighbor-net phylogenetic network estimated with 

SPLITSTREE, with one isolate of B. fabae (Bfab) used as the outgroup. Reticulations indicate 

phylogenetic conflicts caused by recombination or incomplete lineage sorting. (C) Principal 

component analysis showing first four principal components PC1, PC2, PC3 and PC4. Isolate 

B05.10 in (A) and (B) is the reference genome for B. cinerea (van Kan et al. 2016) 

Figure 2. Site frequency spectra estimated in populations T2 and Vv1 based on 85,415 SNPs 

using the python package DADI, projecting sample sizes to seven haploid genomes. Projection 

consists in averaging over all possible re-samplings of the larger sample size data, thus 

biallelic positions with data for less than seven individuals are not included in calculations 

and not counted as SNPs. 

Figure 3. Boxplots representing the extent of aggressiveness (% relative to the reference 

isolate BC1) on tomato of the Botrytis cinerea isolates collected on grapevine (n=16) and 

tomato (n=13). For each boxplot, mean (crosses), median (horizontal lines), values of the 

aggressiveness index (circles), 25-75% quartiles, and maximum and minimum values are 

represented.  

Figure 4. Genome scans for selective sweeps in the T and G1 populations of Botrytis cinerea, 

parasitizing tomato and grapevine, respectively. (A) and (C): Composite likelihood ratio 
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(CLR) estimated using the SWEED software (Nielsen et al. 2005; Pavlidis et al., 2013) in T and 

G1, respectively. (B) and (D) Number of segregating sites by length, nSL, estimated using 

the NSL software (Ferrer-Admetlla et al. 2014) in T and G1, respectively. (E) hapFLK statistic 

estimated using the HAPFLK software (Bonhomme et al. 2010; Fariello et 

al. 2013). Horizontal dashed black lines represent the top 5%. Vertical dashed grey lines 

represent the boundaries of the 16 chromosomes and the chromosome names are set along 

the x axis. SNPs in chromosomes with names ending with odd numbers are represented in 

dark colors, while SNPs in chromosomes with names ending with even numbers are 

represented in light colors. Black dots represent SNPs belonging to the following set: [(top 

5% CLR population G1) ⋃ (top 5% CLR population T) ⋃ (top 5% nSL population G1) ⋃ (top 5% 

nSL population T)] ⋂ [top 5% hapFLK]. 
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