
HAL Id: hal-03197983
https://hal.inrae.fr/hal-03197983

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Year-to-year crown condition poorly contributes to ring
width variations of beech trees in French ICP level I

network
Clara Tallieu, Vincent Badeau, Denis Allard, Louis-Michel Nageleisen,

Nathalie Bréda

To cite this version:
Clara Tallieu, Vincent Badeau, Denis Allard, Louis-Michel Nageleisen, Nathalie Bréda. Year-to-
year crown condition poorly contributes to ring width variations of beech trees in French ICP level
I network. Forest Ecology and Management, 2020, 465, pp.118071. �10.1016/j.foreco.2020.118071�.
�hal-03197983�

https://hal.inrae.fr/hal-03197983
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Reference: FORECO 118071 

Title: Year-to-year crown condition poorly contributes to ring width variations of beech trees in 

French ICP level I network 

Authors: 

1. Clara Tallieu : corresponding author 

• Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France 

• clara.tallieu@inrae.fr 

 

2. Vincent Badeau : Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France 

 

3. Denis Allard : Biostatistics and Spatial Processes (BioSP), INRAE, F-84914 Avignon, France 

 

4. Louis-Michel Nageleisen : Ministère de l'Agriculture, de l'Alimentation et de la Forêt, Département 

Santé des Forêts, 54280 Champenoux, France 

 

5. Nathalie Bréda : Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France 

 

Abstract: 

Since the 1980-90’s episodes of decline in Central European Forests, forest condition has been 

surveyed thanks to the trans-national network the International Co-operative Programme on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). It has been traditionally 

accepted that leaf loss is directly related to impairment of physiological condition of the tree. A few 

studies tried to correlate crown condition and growth trends while others concentrated on linking 

annual growth with crown observation at one date clustered into fertility classes. However, none 

focussed on the high frequency synchronism between leaf loss from annual network observations 

and annual radial growth issued from dendrochronology. Therefore, we jointly studied annual leaf 

loss observations and tree-ring width measurements on 715 common beech (Fagus sylvatica L.) trees 

distributed in the French part of the ICP monitoring network. Detrended inter-annual variations of 

leaf loss and tree-ring width index were used as response variables in the machine-learning algorithm 

Random Forest to investigate a common response to abiotic (current and lagged) and biotic hazards, 

to test the extent to which leaf loss helped to predict inter-annual variations in radial growth. Using 

Random Forest was effective to identify a common sensitivity to soil water deficit at different time 

lags. Previous-year climatic variables tended to control leaf loss while radial growth was more 

sensitive to current-year soil water deficit. Late frost damages were observed on crown condition in 

mountainous regions but no impact was detected on radial growth. Few significant biotic damages 

were observed on growth or leaf loss. Leaf loss series did not show a clear common signal among 

trees from a plot as did radial growth and captured fewer pointer years. Radial growth index did not 

fall below normal until a 20% leaf loss was reached. However, this threshold is driven by a few 

extreme leaf loss events. As shown by our joint analysis of leaf loss and radial growth pointer years, 

no relationship occurred in cases of slight or moderate defoliation. Crown condition is a poorer 

descriptor of tree vitality than radial growth. 

Keywords: Dendrochronology; climate; drought; leaf loss; Random Forest; Fagus sylvatica; forest 

health monitoring; water balance. 
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1. Introduction 1 

Forests have to cope with a variety of disturbances including acute stressors (climatic 2 

events, insect outbreaks or fungal leaf diseases) and chronic pressures (atmospheric 3 

pollution, root rots, adverse trends in temperatures) (Seidl et al., 2017). Since the 1980s, 4 

forest decline in Europe has triggered a need for robust indicators to help to monitor forest 5 

condition.  6 

Diagnosing forest health has mainly been based on descriptive criteria related to primary 7 

growth, summarized under the term "crown condition". These descriptors include crown 8 

morphology, abnormal leaf discolouration and estimates of leaf deficit relative to a so-called 9 

reference tree, later referred to as "leaf loss" (Nageleisen, 2005; Roloff, 1985). 10 

Since the end of the 1970s, and the impressive episodes of decline in Central European 11 

forests, several forest health monitoring networks have been set up. The first in France was 12 

set up on a 16x1 km grid, only in the mountains all along the eastern border, where foresters 13 

were concerned by a severe health decline in fir.Observations were performed from 1983 to 14 

1993 to observe the recovery of coniferous tree health (Barthod, 1994). In 1985, a trans-15 

national network, the International Co-operative Programme on Assessment and Monitoring 16 

of Air Pollution Effects on Forests (ICP Forests), was created under the United Nations 17 

Economic Commission for Europe (UNECE) (Mueller-Edzards et al., 1997). Forest condition 18 

has therefore been monitored since 1986/87 on a large scale, though at a low intensity 19 

(Level I), thanks to a systematic network of plots located at the nodes of a 16x16 km grid in 20 

all European forests. Annual visual observations of crown condition are carried out for 20 21 

trees on these plots according to two criteria: leaf loss compared to a full folied “reference 22 

tree” , and abnormal leaf colouration (Eichhorn et al., 2016). 23 

Visual assessment of crown condition from the ground has historically raised the 24 

methodological problem of the experts’ objectivity (Innes et al., 1993). Despite this, many 25 

studies have based their analyses on such data and used them to interpret inter-annual 26 

variations and trends in crown condition as a function of environmental constraints. Through 27 

a cross-sectional approach, van Leuween et al. (2000) proved the limited effect of air 28 

pollution on crown condition compared to the effect of tree age and climate. Other studies, 29 

based on cross-sectional mean-term and inter-annual resolution approaches, showed the 30 

negative impact of drought events on tree crown condition (de Vries et al., 2014; Ferretti et 31 

al., 2014; Popa et al., 2017; Seidling, 2007; Solberg, 2004).  32 

In Europe, crown condition remains a widely-used forest condition indicator “within Criterion 33 

2, ‘Forest health and vitality’”, one of the six criteria adopted by Forest Europe (formerly the 34 



Ministerial Conference on the Protection of Forests in Europe – MCPFE) to provide 35 

information for sustainable forest management in Europe1”(Michel et al., 2018). ICP technical 36 

and executive reports express damage results as the percentage of trees with more than 37 

25% defoliation. However, to our knowledge, it has never been properly demonstrated that 38 

this threshold is an appropriate breakpoint for deciding whether a tree is in good or poor 39 

condition. Assessing the validity of this threshold was one goal of this study. 40 

Radial growth, is also a well-established and widely-used indicator of tree health and 41 

physiological status (Dobbertin, 2005). Research on the relationship between radial growth 42 

and crown condition has shown no clear pattern. Authors discriminate tree populations 43 

according to their growth performance and then retrieve characteristic leaf loss thresholds 44 

that have a significant effect on radial growth a posteriori. However, the thresholds for growth 45 

decline are species- and site-dependent (Becker, 1987; Bert et al., 1990). 46 

Very few studies have investigated the connection between inter-annual variations in crown 47 

condition and radial growth. Dittmar and Elling (2007) showed a decrease in increment with 48 

leaf loss but their findings cannot be generalized because their study was restricted to only 49 

12 trees. Seidling (2012) found a low correlation between inter-annual beech growth and leaf 50 

loss and questioned using leaf loss to explain functional relationships between the two 51 

indicators at the plot level. Solberg (1999) also found a weak correlation between tree-52 

specific long-term means for crown condition and growth.  53 

This study focuses on common beech, one of the most important and widespread 54 

broadleaved trees in France and Europe. In beech, each year, a new shoot grows from a 55 

dormant bud at the end of the previous year's shoot. There are two types of shoots: 56 

exploratory (long) and exploitation (short) shoots. The long, fast-growing exploratory shoots 57 

extend into the space around the tree and are therefore located in the upper periphery of the 58 

crown (Teissier Du Cros et al., 1981), where leaf loss is usually assessed. Therefore, leaf 59 

loss as compared to a reference tree and assessed on the upper third of the crown, results 60 

from abnormal primary development (short elongation, impaired crown development, bud 61 

burst deficit), while cambial activity generates the secondary growth responsible for radial 62 

increment.  63 

There is solid knowledge of radial growth and crown development responses in beech to 64 

climate. On one hand, water deficits impair twig elongation (Power, 1994; Stribley and 65 

Ashmore, 2002) and reduce the number, rate of expansion and final size of the leaves 66 

(Zahner, 1968). On the other hand, secondary growth in beech is sensitive to current 67 

                                                

1 https://www.foresteurope.org/docs/MC/MC_lisbon_resolution_annex1.pdf 



summer water shortage as well as the previous year’s climatic conditions. These 68 

observations can be explained by the influence of climate on the carbon quantities allocated 69 

to growth or storage (Barbaroux and Bréda, 2002) and by a possible trade-off between 70 

growth and masting (Genet et al., 2009; Hacket-Pain et al., 2017, 2015). In beech, mild 71 

winter temperatures induce the resumption of physiological processes leading to reactivation 72 

of cambium and breaking of bud dormancy (Dittmar et al., 2003; Lebourgeois et al., 2005). It 73 

has been shown that negative pointer years present in a growth series can be related to late 74 

frost events, thus showing a sensitivity of beech to late winter temperatures, especially 75 

during the critical stage of leaf unfolding (Dittmar et al., 2006, 2003). 76 

A comprehensive view of the link between primary and secondary growth considers leaf loss 77 

as a measure of the mid-term regulation of leaf mass (Bréda, 2008). This leaf loss can impair 78 

carbon and water fluxes and, as a consequence, restrict primary and/or secondary radial 79 

growth. 80 

The aims of this paper are: 1/ to investigate whether the leaf loss (LL - monitored from 2001 81 

to 2014) and radial growth at permanent plots in the French Level I ICP Forests network 82 

respond to common biotic or abiotic hazards; and 2/ to test if annual leaf loss  explains part 83 

of the annual radial growth. 84 

We compared the impact of climate constraints during the current and previous year on 85 

radial growth and leaf loss, and interpreted the results in the light of the current knowledge of 86 

beech ecophysiology and development.  87 

The originality of our approach is twofold. First, typical dendrochronological analyses rely on 88 

a bootstrapped response function requiring monthly climatic values as input (Biondi and 89 

Waikul, 2004) and not considering any time-related cumulative impact. Such results are not 90 

suited for a functional interpretation because the variables are disconnected from the 91 

underlying gaseous exchanges and the growth and carbon-allocation processes. In contrast, 92 

based on our knowledge of ecophysiology, we assume a posture that differs from classical 93 

dendrochronology. We computed several drought indices retrospectively with the process-94 

based model Biljou©. The daily time resolution in Biljou© allowed us to take into account 95 

changes in canopy conductance in response to soil water deficit. A daily calculation makes it 96 

possible to integrate key phenological periods for beech water balance or carbon assimilation 97 

and allocation. Through soil water balance modelling, responses to temperature, precipitation 98 



- and more importantly for canopy processes - potential evapotranspiration, are integrated in 99 

comprehensive process-based predictors. We can therefore avoid adding monthly 100 

precipitation and temperature as done in function response models. Second, to handle the 101 

diversity of the potential variables, the presence of nonlinear relationships and the possible 102 

correlations among them, we chose to work with a nonparametric variable-selection method, 103 

Random Forest (Breiman, 2001). Random Forest models often show a higher predictive 104 

ability than classical regression (Muchlinski et al., 2016; Oliveira et al., 2012) and linear 105 

response function models (Jevšenak et al., 2018a). Random Forest models are gaining 106 

attention in different fields of ecology, including dendrochronology (Cutler et al., 2007; 107 

Jevšenak et al., 2018a; Prasad et al., 2006). We emphasize that the objective of this work is 108 

to interpret rather than predict results, even though Random Forest has proven to be a very 109 

powerful predictive method in many contexts, including tree-ring analysis (Genuer et al., 110 

2015; Jevšenak et al., 2018b). Our aim is to take advantage of this powerful device to 111 

disentangle possible non-linear, complex or redundant relationships between variables.  112 

2. Materials and methods 113 

2.1. Sampled plots 114 

The French part of the ICP Forests “Level I” transnational monitoring network includes 112 115 

plots with at least one common beech (Fagus sylvatica L.) tree. For this study, 97 plots, with 116 

a total of 715 beech trees, were selected based on three criteria: 1/ the plot contained at 117 

least five beech trees, 2/ crown condition observations were available from 1989 to 2014, 118 

and 3/ the plots were distributed as widely as possible within the beech distribution range in 119 

France. The French national territory is divided into eight ecological regions, referred to as 120 

GRECOs (‘Large Ecological Regions’), with similar bio-climates, bedrock formations and 121 

topography, as defined by the French NFI (National Forest Inventory). The eight GRECOs 122 

are as follows: three lowland regions in the west, north and east; three mid-mountain areas in 123 

the Massif Central, Vosges and Jura; and two high-mountain regions in the Pyrenees and 124 

Alps. For statistical reasons, and based on climatic similarities, we grouped together the plots 125 



in the western and northern regions (Northern lowlands), and the plots in the Jura and 126 

Vosges (Vosges-Jura) mountains, for a total of six ecological regions.  127 

2.2. Crown condition data  128 

Assessing crown condition is central to monitoring in the ICP Forests. The currently used 129 

assessment methods were developed in the mid-1980s. Crown condition is evaluated by 130 

visually assessing leaf loss (LL) from the ground and a standardised method presented in a 131 

manual for crown condition assessment is followed (Eichhorn et al., 2016). Every year from 132 

July 1st to August 31st, trained observers assess LL in 5% incremental steps on 20 133 

numbered, dominant or co-dominant trees. Leaf loss in the crown of the sampled trees is 134 

visually compared to a virtual local “reference tree”. This reference is a conceptual tree, 135 

optimally foliated under the specific local site conditions and of a similar age and social 136 

status to the average tree in the stand. Leaf loss series are available from 1989 to the 137 

present. 138 

Age is known to be the factor most correlated to crown condition (Seidling and Mues, 2005). 139 

Because we wanted to identify signals in relation to climate, we needed to remove any trends 140 

caused by other factors. Furthermore, we hoped to explain the inter-annual variations in leaf 141 

loss and to keep only high-frequency inter-annual signals. We therefore standardized leaf-142 

loss series at the tree level to create two indices. For the first leaf-loss series index (LLd1), 143 

we fitted the long-term trend with a linear regression of time for a given tree, then, for each 144 

year, used the ratio method to compute a de-trended signal (Cook et al., 1990; Douglass, 145 

1936; Dyer and Fritts, 1978). 146 

2.3. Radial growth data 147 

Each assessed tree was cored to the pith at breast height for dendrochronological analysis. 148 

We measured tree-ring from the bark to the pith to the nearest 1/100 mm with a microscope 149 

connected to a computer running the SAISIE program (Bert et al., 1990). Ring-reading 150 

mistakes were checked for and corrected by cross-dating the tree ring series, according to 151 



the procedure described in Becker et al. (1994). During the cross-dating step, each individual 152 

chronology was compared to an average chronology for the corresponding ecological region 153 

to identify regional pointer years. Then, each ring-series was checked for erroneous dating 154 

with the INTERDAT computer program (Becker and Dupouey, unpublished). This program 155 

depends on pointer years calculated with the method proposed by Becker (1989): a year is 156 

considered characteristic when at least 75% of the trees in a stand have the same sign for 157 

change in growth with an absolute variation in growth of at least 10% from the previous year. 158 

Plots were chosen according to a systematic grid. Therefore, trees of different ages, social 159 

status and stand management were cored to the pith. To investigate year-to-year tree-ring 160 

variations, we removed non-climatic signals (trends related to age, competition, stand 161 

management, long term trend due to climate change): each individual tree-ring series was 162 

transformed into a growth index which kept only the annual growth signal, i.e. inter-annual 163 

climatic variations and annual pest and disease damage (Fig. 1b). We used the statistical 164 

freeware R (R Core Team, 2016) with the “dplR” package (Bunn, 2008) to standardize each 165 

individual tree-ring series and to isolate the inter-annual signal thanks to a smoothing spline 166 

with a frequency response of 50% at 30 years (Cook and Peters, 1981), thus yielding 167 

dimensionless de-trended ring widths (rwi). With this de-trending method, we kept high 168 

frequency variations, the signals that we sought to interpret. In addition, because we were 169 

interested in the relation between leaf loss and tree-ring increment, we did not remove the 170 

autocorrelation. Indeed, both leaf loss and tree-ring increment can have legacy effects from 171 

the previous year through amounts of non-structural carbohydrates or bud preformation. 172 

2.4. Predictors 173 

In order to characterize inter-annual variations in growth and in leaf loss, the selected 174 

predictors were related to plot (mainly climatic) or individual tree characteristics (annual leaf 175 

damage). For each plot, daily climatic variables were extracted from the mesoscale SAFRAN  176 

reanalysis, which covers France with an 8 km x 8 km grid (Quintana-Seguí et al., 2008). 177 

These climatic variables were then summarized into seasonal variables known to influence 178 



crown condition and/or growth (Nevalainen et al., 2010; Seidling, 2007; Seidling et al., 2012) 179 

over the reference period 2001-2014. Based on temperature functions, the budburst date 180 

(BBD) was also modelled for each plot (Dufrêne et al., 2005). As beech is a diffuse-porous 181 

species, its radial growth starts just after budburst and ends sometime in August (Barbaroux 182 

and Bréda, 2002; Michelot et al., 2012). For this reason, we used the modelled budburst date 183 

to define the start of the growing season for all our plots (Table 1) and we aggregated mean 184 

temperatures from April to August (TM.AA). 185 

One-year-lagged climatic variables were also computed as potential predictors. However, no 186 

significant trends were observed on the series. 187 

 188 

Table 1. Target and explanatory variables 189 

Variables Code Description Type Min Median Max 

Target variables       

Defoliation LL Raw leaf loss (5% steps) numeric 0 20 95 

 LLd1 De-trended leaf loss (indices around 1)  numeric 0 0.9 8 

 LLd2 De-trended leaf loss index centred on the 
mean (% of leaf loss) 

numeric 0 22.54 95.17 

Growth rwl Raw ring-width (1/100 mm) numeric 6 124 894 

 rwi Growth index numeric 0.10 0.98 2.62 

Explanatory variables       

Climate TM.AA Mean temperature from April to August numeric 5.79 14.5 19.42 

 late.chill Sum of maximum temperatures < 0°C from 
March to May 

numeric -116.50 0 0 

 chill Sum of maximum temperatures < 0°C from 
previous-year October to current February 

numeric -352.40 -25.80 0 

 BBD Bud burst day modelled according to 
Dufrêne et al.(2005) 

numeric 96 114 154 

Water balance DI Soil water deficit intensity from budburst to 
leaf-fall 

numeric 0 30 120 

 DI.JJ Soil water deficit intensity from June to July numeric 0 7.58 58.76 

Leaf symptoms symptom Identification of leaf damage according to: Categori
cal  

   

 WHITE Whitish coloration     



 BRON Bronze coloration     

 CONS Consumption     

 COLOR Coloration     

 ENTO Insects present     

 DEFORM Deformation     

 FRUC Fructification     

 YELLOW Light green to yellow coloration     

 MISS Missing without any trace of consumption     

 MICR Microphylly     

 MORT Mortality     

 MYCO Fungus     

 NECR Necrosis     

  RED Reddening to browning      

 190 

The ICP Forests network underwent two soil surveys during the study period. A soil 191 

description (soil type, depth, root distribution) took place between 1994 and 1995 192 

(Vanmechelen et al., 1997) and soil properties (bulk density, texture, carbon content) were 193 

measured between 2005 and 2008 through the BioSoil-Biodiversity project (Lacarce et al., 194 

2009). These soil data were used to compute soil extractable water (in mm) for each plot. 195 

For each plot, ecophysiologically-based drought indices were computed thanks to the forest 196 

water balance model Biljou © (Granier et al., 1999). The model simulates the water fluxes 197 

between the atmosphere, the canopy and the soil for a given plot. The soil water content is 198 

computed daily as a function of precipitation, rainfall interception, tree transpiration, soil 199 

evaporation and drainage. The model represents the regulation of canopy gaseous 200 

exchanges when the soil water deficit drops below a threshold of 0.4, which induces stomatal 201 

closure (Granier et al., 1999, Bréda and Granier, 1996). Below this threshold, canopy 202 

conductance and GPP (gross primary production) decreases, as we demonstrated in beech 203 

stands (Granier et al., 2007). The calculation of potential evapotranspiration integrates 204 

elementary variables into radiative and convective components, which are the drivers for 205 

canopy exchanges with the atmosphere. The daily meteorological variables required are 206 



rainfall, air temperature and humidity, global radiation and wind speed. Soil descriptions and 207 

properties at each plot (rooting pattern, extractable water, soil bulk density) were used to 208 

calculate water balance. The output variable characterizing drought events was soil water 209 

deficit intensity from June to July (maximum growth rate, Michelot et al., 2012) or from 210 

budburst to leaf fall (Table 1). 211 

Since 2000, in addition to rating leaf loss, the ICP reports have required annual descriptions 212 

of damaging agents for each sampled tree. Damage assessment consists of describing the 213 

symptoms and determining the cause, if possible. A symptom is defined as an indicator of 214 

the presence of harmful agents having had a significant impact on any part of the tree 215 

(Eichhorn et al., 2016). Only the symptoms observed on leaves were kept in our analysis. 216 

The symptom variable indicates the presence or absence of a symptom on the leaves. The 217 

symptom variable is declined into different categories identifying the symptom observed on 218 

the leaves. 219 

2.5. Data sets 220 

Our objective was to work on continuous leaf-loss series that were homogeneous in quality 221 

while maximizing the number of trees for analysis. To avoid (1) biases due to the change in 222 

the leaf loss assessment protocol that occurred between 1994 and 1996 (Landmann et al., 223 

1999, 1998) and (2) the disturbances related to the 1999 storms (Lothar and Martin, 224 

depending on the region), we selected homogeneous leaf-loss series starting in 2001. Due to 225 

the joint analysis of leaf loss and radial growth series, the end of the study period was the 226 

year of the last available tree-ring width data, i.e. 2014. Therefore, we worked over the 227 

common period 2001 to 2014. 228 



 229 

Figure 1. Distribution of (a) leaf loss according to 5% classes (LL) and (b) tree-ring width index (rwi) over the 230 
period 2001-2014. 231 

Two different data sets were created for the analyses, according to their objectives.   232 

Our first objective was to analyse inter-annual variations in leaf loss, observed in July or 233 

August. The response variable was the de-trended annual leaf loss (LLd1) of each tree 234 

covering the period from 2001 to 2014 (Fig. 1, Table 2). The predictors used were current- 235 

and previous-year annual climatic variables, water balance variables and the presence of 236 

damage symptoms. Current-year soil water deficit from budburst to leaf fall and water deficit 237 

duration were eliminated because these variables aggregate events that may have 238 

happened after the observation of leaf loss (in July-August) and may therefore have had no 239 

influence on current-year crown condition estimates. Two symptoms with a possible delayed 240 

impact on leaf loss were introduced with a one-year lag: fructification and microphylly.  241 

 242 

Table 2. Number of sampled trees and plots (in brackets) composing each data set by ecological region. 243 

Ecological regions Site code Radial growth Leaf loss Common samples 

Alps ALPS 107 (14) 103 (14) 103 (14) 

Northern lowlands CNO 92 (18) 81 (17) 70 (17) 

Eastern lowlands EAST 147 (23) 103 (20) 66 (15) 



Massif central MC 142 (16) 135 (16) 135 (16) 

Vosges-Jura mountains VJ 134(18) 126 (18) 121 (18) 

Pyrenees PYR 94 (8) 93 (8) 88 (8) 

National NAT 716 (97) 641 (93) 583 (88) 

 244 

Our second objective was to analyse the influence of leaf loss on radial growth. We therefore 245 

created a second data set of 583 trees with a continuous series for leaf loss and growth 246 

index from 2001 to 2014 (Fig. 1, Table 2). The response variable was the annual ring-width 247 

index (rwi) and the same predictors were used as in the previously described analyses (i.e. 248 

current- and previous-year annual climatic variables, water balance variables and presence 249 

of damage symptoms).  250 

Because we expected the average level of leaf loss to influence inter-annual variations in 251 

radial growth, we calculated a second index, LLd2.  252 

For a given tree, i in year y, the new index ���2�� was: 253 

���2�� = ���1�� × ��	



 254 

where ��	



 is the average leaf loss for tree i for the period 2001-2014. 255 

The index LLd2 is centred on the average leaf loss of the tree and is expressed as a 256 

percentage. 257 

In the second objective, the de-trended leaf loss (LLd2) of the previous and current year was 258 

introduced as an additional predictor of radial growth. 259 

2.6. Statistics 260 

To provide deeper understanding of the relationship between leaf loss and tree-ring width, 261 

pointer years were detected on raw tree-ring and leaf-loss series. Analysing pointer years is 262 

typical in dendrochronological studies (Becker et al., 1994; Schweingruber et al., 1990). 263 



Pointer years represent a growth reaction to abrupt changes in environmental conditions and 264 

are usually expressed as a relative change in growth, in percentage. Usually, pointer years 265 

correspond to a calendar year when, at least, 75% of the trees have the same sign of change 266 

with rings at least 10% narrower, or wider, than the previous year (Becker et al., 1994). By 267 

testing different thresholds, it is possible to distinguish very characteristic years from less 268 

characteristic years. We transposed this technique to our leaf-loss series. However, because 269 

no pointer years were detected with the above-mentioned thresholds, we defined pointer 270 

years for radial growth and leaf loss as years when at least 60% of the trees shared a 271 

variation of at least 10% with the previous year (Becker et al., 1994; Mérian and 272 

Lebourgeois, 2011). 273 

We calculated the Gini coefficient (GINI) of the de-trended leaf loss (LLd1) and growth index 274 

(rwi) series to compare growth sensitivity to climate. GINI is a relative index, quantifying 275 

sensitivity scaled by mean and sample size (Biondi and Qeadan, 2008). We calculated GINI 276 

for each tree and then averaged the GINI values in a second step. We used the 277 

Gleichläufigkeit index (GLK) (Schweingruber, 1987) to check for a similarity in signal 278 

between the series, in other words, their synchronization. 279 

We chose to apply the machine-learning algorithm Random Forest (RF) (Breiman, 2001), a 280 

nonparametric technique for classification or regression. RF is based on the Classification 281 

And Regression Tree (CART) algorithm (Breiman et al., 1984). CART builds a decision tree 282 

by finding the dichotomy at each iteration that minimizes a goodness-of-fit criterion among all 283 

predictors. CART is known to be very sensitive to small changes in the data set (Genuer and 284 

Poggi, 2019). RF is a tree-based ensemble method, which overcomes these limitations by 285 

averaging regression over a great number of randomized variants of the decision trees 286 

obtained with CART. The number of trees, ntree, is usually set between 500 and 2000. 287 

Variants are obtained from bootstrap samples of the learning set (the bagging) and random 288 

subsets of variables. Breiman (2001) showed, both theoretically and empirically, that these 289 

averaged trees have fewer expected errors than do single trees. Because random subsets of 290 



variables are selected at each node (control parameter mtry), the collinearity of the predictors 291 

is reduced.  292 

RF therefore has two interesting features: it is able to model nonlinear relationships and it 293 

can handle redundancy in the variables. RF has proven to be a very efficient method, usually 294 

ranked among the most efficient machine-learning methods (Genuer et al., 2015), both for 295 

classification and for regression.  296 

In addition to these advantages over regressions, RF makes it possible to rank the 297 

importance of the predictor variables and to evaluate their marginal effect on the response 298 

variable, without any a priori assumptions. The bagging process makes it possible to predict 299 

the “out-of-bag” (OOB) samples from the “in-the-bag” ones. The importance of the variables 300 

is then measured as the averaged increase of squared OOB residuals when the predictor is 301 

permuted (Genuer et al., 2015). 302 

Variable importance provides a measure to compare predictors within a dataset but does not 303 

provide a threshold to select the most relevant ones. The R package “VSURF” (Genuer et 304 

al., 2015) selects variables in two ways: for interpretative purposes, it can select all the 305 

relevant predictors related to the variable under study (there can be redundancies); and, for 306 

predictive purposes, it can select the smallest set of predictors that explains most of the 307 

variability for the variable. Since we wanted to select predictors for functional interpretation 308 

and not for prediction, we will only discuss the first type of selection in this paper. As a first 309 

step, VSURF eliminated certain predictors based on the standard deviation of the variable’s 310 

importance (averaged over 50 runs of RF). The remaining variables were used to construct 311 

nested RFs starting with the single most important variable and finishing with all the 312 

important predictors. The predictors leading to the smallest OOB error were kept. After some 313 

exploratory analysis (not reported here), VSURF was implemented with ntree= 2000 and 314 

mtry=p/3 (p, being the number of variables involved in the model). Most of the time, the 315 

cross-validated optimised parameters were very close to these values; and even when they 316 

were not, predictions were not significantly different from those obtained with the above 317 



setting. We randomly sampled 70% of the data set to train the RF and kept the remaining 318 

30% to test prediction-error. For each model, the pseudo-R2 predictive accuracy metric was 319 

computed on the test set as calculated in the “randomForest” package (Liaw and Wiener, 320 

2002). This metric is defined as the proportion of total variation in the outcome explained by 321 

the model (or forest); values range between 0 and 1. 322 

Strobl et al. (2008) report that variable importance metrics can be biased towards correlated 323 

variables in some situations and propose an improved method in order to take this into 324 

account. The method requires implementing a conditional permutation scheme within a 325 

group that can potentially contain large sets of covariables. Genuer et al. (2010) specifically 326 

studied RF variable importance in the presence of groups of highly correlated explanatory 327 

variables. They did not diagnose any such bias for variable selection. In our case, we 328 

performed preliminary exploratory analyses with the “party” package (Strobl et al., 2009). We 329 

consistently obtained extremely low importance scores for all variables (results not reported 330 

here), making it completely impossible to come up with any interpretation. Strobl et al. (2008) 331 

and Genuer et al. (2010) agree on the fact that, despite possible overestimation of the 332 

importance score, the order of the variables is usually preserved. 333 

We used the “PDP” package (Greenwell, 2017) to describe the relationships between the 334 

selected predictors and the variables of interest and illustrated the results with partial 335 

dependence plots. A partial dependence plot (PDP) shows if the relationship between the 336 

response and the predictor is linear, monotonous or more complex. For a given predictor 337 

value, the PDP tells what the average marginal effect on the prediction is. We used the R 338 

3.3.2 statistical software for all of our statistical analyses. 339 

3. Results 340 

3.1. Leaf-loss and radial-growth series  341 

On the overall period (2001-2014), beech presented a mean defoliation of 24% 342 

(median=20%). We calculated the Gini (GINI) and the “Gleichlaufigkeit” (GLK) coefficients to 343 



compare the year-to-year variability and the strength of the common signal between the trees 344 

(Table A.1). The GINI coefficient was higher for LLd1 (0.22) than for rwi (0.18), and 345 

quantified a wider year-to-year variability for leaf loss. Inversely, the GLK coefficients were 346 

weaker for LLd1 (0.52) than for rwi (0.58), suggesting a weaker common signal for leaf loss, 347 

as shown in Fig.2. 348 

 349 

Figure 2: Mean yearly a) leaf loss (LL) and b) tree-ring width index (rwi) for each plot from 2001 to 2014 with 350 
dashed lines representing positive or negative pointer years. 351 

In order to check if the high year-to-year variability in LL among trees could be attributed to 352 

the quality of the visual assessment, we took into account the changes in observers at a 353 

given plot during the observation period (information available in the ICP database). There 354 

was no clear continuous pattern between the GINI coefficient and the number of pairs of LL 355 

observers. The GINI coefficient did increase when there was more than one pair of observers 356 

during the visual assessment period; however, it did not increase with increasing numbers of 357 

pairs (Fig. 3).  358 



 359 

Figure 3: Boxplots of the relationship between the GINI coefficients calculated on the de-trended leaf-loss series 360 
(LLd1) for the period 2001-2014 and the number of pairs of observers on the same period. In brackets, the 361 
number of observations. 362 

Looking only at positive pointer years for leaf loss (i.e. significant increase in leaf loss) and 363 

negative pointer years for radial growth (i.e. significant decrease in radial growth) for the 364 

period 2001-2014, pointer years were less frequent for leaf loss than for radial growth, 365 

confirming the lower sensitivity of leaf loss to climatic events.  366 

At the national scale, we detected only one pointer year (2004) common to both high leaf 367 

loss and low radial growth, while two other national-scale negative pointer years for radial 368 

growth were observed in 2002 and 2009 (Table 3). At this scale, no negative pointer year 369 

was detected for LL (i.e. a significant decrease in leaf loss), while radial growth had two 370 

positive pointer years (i.e. significant increase in radial growth) in 2007 and 2012 (Table 3). 371 

At the ecological-region scale, each positive pointer year found for the leaf loss series 372 

corresponded to a negative pointer year for radial growth, in 2004 and 2011 (Table A.2).  373 

 374 

Table 3. Negative and positive pointer years (PY) for radial growth and positive pointer years for leaf loss at the 375 
national scale, with their relative variation (LL_RV and RWI_RV, respectively) and abnormal climatic events that 376 
might be related. 377 

PY LL_RV RWI_RV Abnormal climatic events 



2002   -14.99  

2004 122.63 -32.15 lag effects from the extreme summer drought and heat wave in 2003  

2007 45.3 High precipitation distributed equally over the vegetation period 

2009 -15.38 Hot, dry summer and August 2008 drought with a lag effect  

2012   55.94 Autumn precipitation 

 378 

3.2. Common explanatory variables of the inter-annual variations in leaf loss and radial 379 

growth 380 

We selected variables with an important relation to LLd1 or rwi for interpretative, not 381 

predictive, purposes; consequently, our selected variables present redundancies. The 382 

interpretation of the selection should not be seen as an additive model but rather as a list of 383 

the most important variables to select when modelling inter-annual variability in leaf loss and 384 

radial growth. 385 

 386 

Figure 4: Variable importance plot generated by the Random Forest (VSURF) algorithm for inter-annual variations 387 
in de-trended leaf-loss series (LLd1, 2001-2016) at the national scale, and the ranking of the six ecological 388 
regions: East, North (CNO), Alps, Massif Central (MC), Vosges-Jura mountains (VJ) and Pyrenees (PYR). The 389 
predictors are ranked by the variable’s importance measured as the average increase in squared OOB residuals 390 
when the predictor was permuted (Genuer et al., 2015). The coloured variables were selected from the 391 
interpretation step of VSURF procedure. For each model, the variance explained is computed as pseudo R-392 
squared: 1 - mse / Var(y). For the retained predictors: mean temperature from April to August (TM.AA), sum of 393 
maximum temperatures < 0°C from March to May (late.chill), sum of maximum temperatures < 0°C from previous-394 
year October to current February (chill), modelled bud burst day (BBD), soil water deficit intensity from budburst to 395 

National EAST CNO ALPS MC VJ PYR

pseudo-R² 0.45 0.24 0.48 0.47 0.42 0.42 0.40
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leaf-fall (DI), soil water deficit intensity from June to July (DI.JJ), leaf damage assessment (symptom), de-trended 396 
leaf loss index centred on the mean LLd2). Lag.1= previous year. 397 

From partial dependence plots (PDPs) and the importance of the selected variables shown in 398 

Fig. 4 and Fig.5, we can describe the relationship between rwi or LLd1 and the predictors. A 399 

PDP helps visualize the relationship between a predictor and the response variable of 400 

interest, by keeping the other predictors constant. PDPs highlight the existence of non-linear 401 

relationships between predictors and the variables of interest rwi and LLd1 (Fig.B.1 and 402 

Fig.B.2). 403 

The Random Forest model explained 47% of the growth index. For the period 2001-2014, 404 

both the current and previous years’ climatic variables controlled the tree-ring width index 405 

(Fig. 5). For LLd1, the Random Forest model explained 45% of the inter-annual variability in 406 

leaf loss. The inter-annual variations in LLd1 were mainly predicted by the previous year’s 407 

climatic variables (Fig. 4). Seven of the explanatory variables selected for the interpretation 408 

of the inter-annual variations were common to LLd1 and rwi. The ranking of the variables 409 

shown in Fig. 4 and 5 is independent of whether they are common or not, meaning that the 410 

most important explanatory variable for leaf loss could be the least important one for radial 411 

growth. 412 

For LLd1, lagged climatic variables had a major impact (Fig. 4). LLd1 mainly responded to 413 

summer soil water deficit and temperature surplus with a 1-year lag. Leaf loss increased with 414 

the previous year’s soil water deficit. LLd1 also responded to temperature variables (bud 415 

burst date, chill, TM.AA). An early budburst in the year before crown condition assessment 416 

sometimes resulted in reduced leaf loss (i.e. a better crown condition). LLd1 tended to 417 

increase with the accumulation of negative maximum temperatures during the winter (from 418 

October of the previous year to February of the current year) and with mean temperatures 419 

above 18°C during the growing season (TM.AA).  420 

 421 



 422 

Figure 5: Variable importance plot generated by the Random Forest (VSURF) algorithm for inter-annual variations 423 
of tree-ring width index (rwi, 2001-2014) at the national scale, and the ranking of the six ecological regions East, 424 
North (CNO), Alps, Massif Central, Vosges-Jura mountains and Pyrenees. The predictor is ranked by the 425 
variable’s importance measured as the average increase in squared OOB residuals when the predictor was 426 
permuted (Genuer et al., 2015). The variables are identified in Tab.1. The coloured variables were selected from 427 
the interpretation step of the VSURF procedure. For each model, the variance explained is computed as pseudo 428 
R-squared: 1 - mse / Var(y). For the retained predictors: mean temperature from April to August (TM.AA), sum of 429 
maximum temperatures < 0°C from March to May (late.chill), sum of maximum temperatures < 0°C from previous-430 
year October to current February (chill), modelled bud burst day (BBD), soil water deficit intensity from budburst to 431 
leaf-fall (DI), soil water deficit intensity from June to July (DI.JJ), leaf damage assessment (symptom), de-trended 432 
leaf loss index centred on the mean LLd2). Lag.1= previous year. 433 

The accumulation of cold temperatures from the previous October to the current February 434 

seems to be a particularly important predictor, with a negative impact on radial growth (Fig. 435 

5), meaning that a cold winter inhibits radial growth. The second most important explanatory 436 

variable for the tree-ring index (rwi) is the previous year’s growth index, known as a first-437 

order autocorrelation in dendrochronology, which was not removed with the de-trending 438 

method we applied. Soil water deficit reduces tree-ring width since summer drought affects 439 

the current year’s growth and a long and/or severe drought event impairs next year’s growth. 440 

In addition to the influence of water deficit on radial growth, the model highlights the negative 441 

impact on rwi of increasing April-to-August temperatures between the previous and current 442 

year. The model also suggests that the date of bud burst, modelled as a temperature 443 

function, influences radial growth in two possible ways: an early bud burst will benefit next 444 

year’s growth; however, it can reduce current year’s radial growth. 445 

3.3. Are the variables controlling inter-annual variations in leaf loss and tree-ring index 446 

constant across ecological regions? 447 
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Working on smaller ecological regions highlighted specific responses of leaf loss and radial 448 

growth (Fig.4 and 5). As opposed to other regions, the northern lowlands and the Pyrenean 449 

mountains were more sensitive to temperatures than to previous year’s soil water deficit. 450 

Leaf loss increased with the accumulation of cold temperatures between March and May of 451 

the current year in three regions: the Alps, Vosges-Jura mountains and the Pyrenees. 452 

Except in the Alps, northern lowlands and Eastern ecological regions, no observed 453 

symptoms of leaf damage induced a significant increase in leaf loss, nor did fructification 454 

(Fig. 4). 455 

 456 

Figure 6: Partial dependence plots for the observed symptoms on leaves (categorical variable) and fructification, 457 
showing the marginal effect on the de-trended leaf-loss series (LLd1, 2001-2014) for the three affected ecological 458 
regions. The black dashed line represents a threshold above which the observed damage increased leaf loss.  459 

The same three regions presented high enough microphylly to increase LLd1. Leaf loss also 460 

increased with high fructification in the Eastern and northern lowlands. Necrosis symptoms 461 

were only found in the Alps (insect consumption and leaf deformation - (Fig. 6)). Leaves in 462 

the northern plains presented colouring symptoms (yellowing, reddening, whitish coloration). 463 

The northern lowlands stands out as the only case in the models where LLd2 was a relatively 464 

important variable contributing to radial growth, ranking third (Fig. 5). Otherwise, like results 465 

at the national scale, LLd2 was the least important variable explaining radial growth 466 

variations in three other regions (East, Vosges-Jura, Alps). In the Massif Central and the 467 

Pyrenees (Fig. 5), LLd2 did not influence growth. 468 



3.4. Leaf-loss as a predictor of inter-annual variability in radial growth 469 

Leaf loss (LLd2) appeared to be the least important variable predicting tree-ring width 470 

variations at the national and regional scale, except in the northern lowlands (CNO) where 471 

LLd2 was in third position (Fig. 5). However, the partial dependence plots seem to show a 472 

decrease in rwi with increasing LL (Fig. 7). When analysing the residuals of the models, we 473 

identified two years, corresponding to the two pointer years, with extreme leaf loss in the 474 

northern lowlands (2004 and 2011), one year (2004) in the Vosges-Jura mountains, and four 475 

years (2002, 2004, 2011 and 2014) in the Eastern lowlands. Removing these points 476 

decreased LLd2 importance as well as the slope of the partial dependence plots (Fig. 7). The 477 

tree-ring width index reached a value below 1 for leaf loss with a range of 9-34 %. 478 



 479 

Figure 7 : Partial dependence plots showing the marginal effect of de-trended leaf loss indices centred on the 480 
average (LLd2) on modelled common-beech tree-ring indices (rwi, 2001-2014) using all combinations of the other 481 
predictor variables for all regression trees in the forest. The plain black line shows the relationship between rwi 482 
and LLd2, and the dotted line shows the relationship between rwi and LLd2 without leaf-loss positive pointer 483 
years. At the national scale (a), in the northern lowlands, (b) in the Vosges-Jura mountains (c), in the Eastern 484 
lowlands and (d) in the Alps. Coloured lines show the relation without the positive pointer year 2004 (red), 2011 485 
(blue), 2004 and 2011 (purple), 2002 (green) and 2014 (orange). 486 

4. Discussion 487 

4.1. Beech health status in the French network and in Europe as a whole 488 

From 2001 to 2014, beech trees in the French part of the ICP network showed slightly higher 489 

leaf loss than all the ICP European beech trees (average defoliation of 26.5% in France 490 

compared to 20.39% in Europe). During the same period, according to the ICP Forests 491 



defoliation classes (Eichhorn et al., 2016), 23% of French beech trees presented no 492 

defoliation (class 0), 39% slight defoliation (class 1), 35 % moderate defoliation (class 2), 493 

only 2 % presented severe defoliation (class 3) and none were observed with 100% leaf loss. 494 

According to the European criteria, French beech forests overall were in good condition. 495 

4.2. Are inter-annual variations in leaf-loss and radial growth controlled by the same 496 

climatic variables? 497 

The systematic forest health monitoring network allowed us to work on a set of plots 498 

representative of the species in the regions or on the whole territory. The various growing 499 

conditions and ecological sites were taken into account through the calculation of specific 500 

bio- and pedo-climatic variables for each plot. Our approach resulted in a robust growth and 501 

leaf loss signal for each region.  502 

Over the period 2001-2014, we observed that several variables had an effect on both radial 503 

growth and crown condition. Most of these variables likely reflect ecophysiological 504 

processes. Previous year’s (n-1) climatic variables mainly control LL inter-annual variations, 505 

whereas radial growth is more sensitive to the climatic parameters of the current year (n). 506 

This observation is in line with previous studies on crown development, radial growth and 507 

their relationships with climate (Power, 1994; Thabeet et al., 2009) and confirm our 508 

hypothesis that climatic factors during the previous year control inter-annual variations in leaf 509 

loss. 510 

Whether the effect of soil water deficit occurs on primary or secondary growth depends 511 

mostly on when the stress occurs (Power, 1994).  512 

Soil water deficit in the previous year increases leaf loss. This a consequence of the climatic 513 

constraints on leaf preformation during the previous year. Cochard et al. (2005) suggest a 514 

correlation between primary growth and secondary growth through xylem hydraulic 515 

conductance. The shoots developing in year n depend on the number of leaf primordia in the 516 

bud, which themselves depend on the outermost tree-ring of year n-1. Finally, the soil water 517 



deficit of the previous year may increase the number of short shoots. In England (Stribley 518 

and Ashmore, 2002), the annual growth of both the leader, or primary, shoots and the lateral, 519 

or secondary, shoots were suppressed in drought years. A one-year delayed response of 520 

crown condition to soil water deficit is a common observation throughout Europe (Bréda and 521 

Badeau, 2008; Power, 1994; Seidling, 2007; Seidling et al., 2012; Wilson et al., 2008; Zierl, 522 

2004).  523 

Previous- and current-year soil water deficit controls tree-ring width.  524 

In our study, tree-ring width decreased with increasing current summer (June-July) soil 525 

water deficit (SWD). High evaporative demand and low precipitation during summer increase 526 

soil water deficit, reducing canopy conductance (Lemoine et al., 2002) and gross primary 527 

production (GPP) in beech stands (Granier et al., 2008, 2007). Ultimately, this can affect 528 

carbon storage and lead to dieback (Bréda et al., 2006). GPP depends on 1/ the duration 529 

and intensity of the water deficit cumulated over the growing season, and 2/ the growing 530 

season length, i.e. the period of carbon uptake by the stand (Granier et al., 2008).  531 

The negative effect of the previous year’s water deficit can be explained by a dysfunction in 532 

carbon storage. Skomarkova et al. (2006) showed that 20% of the ring-width in corresponds 533 

to carbon stored during the previous year. The previous year's level of growth may therefore 534 

explain part of the ongoing year's growth. However, in addition to a delayed effect of the non-535 

structural carbohydrate amount on radial growth, beech trees may sacrifice growth to sustain 536 

allocation to carbon storage. In young beech trees that had been submitted to an extremely 537 

long and intense drought period, Chuste et al. (2019) observed that carbon was allocated in 538 

storage at the expense of primary and secondary growth, that were severely reduced. 539 

 540 

The sensitivity of both LL and rwi to soil water deficit and mean April-to-August temperature 541 

could be a result of carbon partitioning among secondary and primary growth and 542 

reproduction (Drobyshev et al., 2010; Innes, 1994; Mund et al., 2010; Seidling, 2007).  543 



Leaf and flower production depend on carbon concentrations during the previous year 544 

(Cochard et al., 2005; Hoch et al., 2013; Miyazaki, 2013). Several authors show that after a 545 

hot dry summer, beeches can sometimes produce a large number of flowers (Etzold et al., 546 

2016; Hacket-Pain et al., 2017; Nussbaumer et al., 2018; Piovesan and Adams, 2002; 547 

Vacchiano et al., 2018). This may lead to a trade-off between leaf production and 548 

reproduction. In addition, heavy fruit production can also decrease the number of leaves per 549 

ground area because primordial leaf buds are replaced by flower buds (Müller-Haubold et al., 550 

2015). Microphylly can also lead to an abnormally high assessment of leaf loss. The 551 

observer may confuse leaf loss and a more transparent crown with smaller leaves.  552 

Fruit development depends on newly assimilated carbon and this can lead to a competition 553 

for carbon between growth and reproduction (Hacket-Pain et al., 2017; Hoch, 2005; Hoch et 554 

al., 2013; Miyazaki, 2013). In our study, however, when we added the presence or absence 555 

of fructification, we found no relationship between reproduction and radial growth. However, 556 

fructification, the product of flowering, did significantly increase leaf loss (i.e. primary growth 557 

and leaf mass) in two ecological regions (Northern and Eastern lowlands). However, the fact 558 

that fructification observations were not mandatory or systematic for the ICP Network data 559 

we used may have caused an underestimation of the effect of fructification on growth and/or 560 

leaf loss in our study.  561 

Both rwi and LL responded to current- and previous-year bud burst date (estimated through 562 

modelling). While an earlier bud burst date induces cambium activation and lengthens the 563 

growing season (Davi et al., 2006), it also exposes the tree to a higher risk of late frost 564 

damage in April. In our study, an early leaf unfolding in the previous year appeared to be an 565 

advantage for both secondary and primary growth. Granier et al. (2008) observed that 566 

canopy photosynthesis (GPP) depended on growing season length, i.e. the period of carbon 567 

uptake. A high assimilation rate increases C storage, allows wider tree rings in twigs, and 568 

enables buds to preformat a large number of leaf primordia. Indeed, the width of the 569 

outermost ring is positively correlated to xylem conductance to the buds (Cochard et al., 570 



2005). For beech, radial growth initiation is synchronous with leaf unfolding (Barbaroux and 571 

Bréda, 2002) and is closely dependent on leaf photosynthesis (Granier et al., 2008, Michelot 572 

et al., 2012). If previous-year leaf unfolding occurs early and there is no late frost damage, 573 

the growing season is longer and there is therefore more assimilated carbon available for the 574 

preformation of next year’s leaves and tree growth. For the current year, an early bud burst 575 

reduces radial growth without any deleterious effects to crown condition. However, we 576 

observed an effect of late frost on crown condition in mountainous regions. This agrees with 577 

other studies of frost damage on current growth and leaf loss (Dittmar et al., 2006; Menzel et 578 

al., 2015; Nolè et al., 2018; Príncipe et al., 2017); the intensity and frequency of late frosts 579 

increase with altitude (Cailleret and Davi, 2011). The newly formed leaves are damaged and 580 

the tree needs to mobilize more stored carbohydrates to create new foliation. The second 581 

foliation is nitrogen-depleted and therefore less efficient; furthermore, there is less carbon 582 

available to preform next year’s leaves (Augspurger, 2009; Awaya et al., 2009; Bascietto et 583 

al., 2018). 584 

As opposed to previous findings, we observed that the accumulation of negative daily 585 

maximum temperatures during winter impaired radial growth. As mentioned earlier, a 586 

reduction in growth is usually interpreted as the result of damage to buds or young leaves 587 

after a late frost. Oddly, the negative influence we observed on beech occurred for cold 588 

temperatures accumulated during the dormancy period. Indeed, the reduction in growth with 589 

winter temperatures cannot be attributed to bud damage. Winter buds have a high tolerance 590 

to cold temperatures, though this tolerance decreases as budburst approaches (Gömöry and 591 

Paule, 2011; Menzel et al., 2015). Lenz et al. (2016) demonstrated high frost resistance in 592 

the upper parts of the tree, with temperatures of -40°C damaging only 50% of the buds. 593 

However, as in previous, more local dendrochronological studies (Di Filippo et al., 2007; 594 

Dittmar et al., 2003; Weigel et al., 2018), we observed a relationship between winter 595 

temperatures and growth at national and regional scales. Power (1994) reported a significant 596 

impact of winter temperatures from December to February on apical growth, i.e. primary 597 



growth, on twigs of declining beech trees. This negative impact could lead to increased leaf 598 

loss the following summer. 599 

A deficiency in the frost hardening process is one possible explanation for beech growth 600 

sensitivity to negative temperatures during winter. Converting starch to soluble sugars is 601 

essential for hardening; this is observed through a decrease in starch and an increase in 602 

soluble sugar content during winter (Barbaroux and Bréda, 2002; Charra-Vaskou et al., 603 

2012). If a harsh winter is preceded by a summer drought or any event that could impair 604 

carbon storage, reserves may not be fully restored by the time hardening begins, thus 605 

leading to less efficient protection against freezing temperatures. These observations 606 

encourage us to deepen our understanding of the processes responsible for this result at 607 

different compartmental levels (crown, trunk, roots). 608 

Thanks to data provided by the French Forest Health Department (DSF) on the causes of 609 

observed leaf symptoms, we were able to explain most of the significant symptoms we found 610 

on beech leaves in our study. In the Northern region, leaf loss increased with leaf coloration 611 

(yellow, red), and a high proportion of abnormal leaf coloration occurred in the years 612 

following the exceptionally early drought in 2011. Constantly increasing leaf consumption by 613 

phyllophagous insects in the Alps has been observed since 2005 (data not shown here), thus 614 

explaining the increase in leaf loss. Unfortunately, the insects causing the consumption have 615 

not been clearly identified. Beech weevils have been recorded since 2011; however, their 616 

impact remains unknown. Finally, the leaf necrosis we observed was the result of a frost in 617 

2012. 618 

4.3. Assessment of the relationship between rwi and LL 619 

4.3.1.  Leaf loss is a poor predictor of radial growth inter-annual variability 620 

At the national scale and in the different ecological regions, there was a slight though 621 

continuous decrease in radial growth with leaf loss. The typical vertical canopy profile and 622 

differentiated leaves of the beech tree can explain our result. Leaf area is mostly distributed 623 



in the upper and middle part of the crown (Holdaway et al., 2008) with small, thick sun-624 

exposed leaves at the top, and thinner larger leaves in the middle and at the bottom of the 625 

canopy (Hagemeier and Leuschner, 2019). The sun-exposed leaves have higher 626 

photosynthetic rates (higher maximum CO2 assimilation rates, maximum stomatal 627 

conductance) than do the shaded leaves (Scartazza et al., 2016; Urban et al., 2007). Only 628 

the upper third of the crown is assessed (Eichhorn et al., 2016) where the photosynthesis 629 

rate is maximum. Therefore, annual recorded leaf loss corresponds to a potential decrease in 630 

carbon assimilation rate. However, leaf loss in the sun-exposed upper crown also induces a 631 

reduction in transpiration. Thanks to a trade-off between transpiration and assimilation, leaf 632 

loss should therefore have a limited impact on radial growth thanks to a more limited soil 633 

water shortage. 634 

However, even though we observed slowed radial growth starting from 5% leaf loss, values 635 

did not fall below normal (rwi=1) until a 20% leaf loss was reached. This threshold must be 636 

interpreted with precaution. While we did find a relationship between LL and rwi, LL ranked 637 

low. This is because the correlation between growth and leaf loss only occurs in case of 638 

extreme events, as shown by our joint analysis of leaf loss and radial growth pointer years; 639 

no relationship occurs in cases of slight or moderate defoliation. Almost all of the pointer 640 

years were due to climatic factors accounting for both the small radial increment and high 641 

leaf loss (Table A.2). Often, severe soil water deficits were involved (lag effects form 2003’s 642 

extreme summer drought and heat wave, a direct impact of the early drought event in spring 643 

of 2011). In fact, in the regions where LL appeared to predict radial growth, removing the 644 

common pointer years for the two indicators decreased the ability of LL to explain the 645 

variation in radial growth (rwi above 1). Drobyshev et al.’s (2007) and Sánchez-Salguero et 646 

al.’s (2013) results are in complete accordance with our findings. In their study, more 647 

significant differences in increment were observed between healthy crowns (class 1, < 25 %) 648 

and heavily declining crowns (class 3, > 60 %) than between other crown classes. Therefore, 649 

leaf loss is a good indicator of growth potential only in case of extreme events and when leaf 650 



loss is high. As supported by Seidling et al. (2012), leaf loss and radial growth are only 651 

weakly correlated. 652 

4.3.2.  Crown condition, a poorer descriptor of tree vitality than radial growth 653 

Leaf loss showed fewer significant relationships with the selected climate variables than did 654 

radial growth. The LL series of common beech did not show as clear a common signal as did 655 

rwi, as indicated by high between-tree variability in the leaf loss series and by a smaller 656 

“Gleichläufigkeit” coefficient (year-to-year agreement between the series). In accordance with 657 

earlier studies, we confirm that tree-ring series reflect exogenous signals more clearly for 658 

common beech (Dittmar et al., 2003). 659 

Describing crown condition and morphology enables forest managers to detect severe tree 660 

dysfunction through discoloration, abnormal leaf loss or branch mortality (Innes, 1998; Ling 661 

et al., 1993; Power, 1994). However, the multiple factors influencing inter-annual variations in 662 

leaf deficiency are challenging to disentangle (Innes et al., 1993). Our surprisingly strong 663 

GINI results for leaf loss, indicating a higher year-to-year variability than for growth, first led 664 

us to question the reliability of the observations made by the pairs of operators. We 665 

investigated this issue but found no clear relationship imputable to operator inconsistency. 666 

Nevertheless, the GINI coefficient clearly increased when more than one pair of operators 667 

assessed a given plot. Even though overall assessment quality has recently improved 668 

(Ferretti et al., 2014; Meining et al., 2016), it is important to keep in mind that one of the main 669 

weaknesses in the ICP monitoring network is operator subjectivity, which can lead to 670 

inconsistency among assessments related to different sky conditions, observation years and 671 

countries.  672 

5. Conclusions 673 

Using the machine-learning algorithm Random Forest to identify the response of inter-annual 674 

leaf loss or radial growth to biotic and abiotic constraints proved to be effective. The climatic 675 

drivers of radial growth we found through this approach are in accordance with previous 676 



studies. Several have an effect on both radial growth and crown condition, though previous-677 

year climatic variables tend to control leaf loss while radial growth is more sensitive to 678 

current-year climate. There is a common sensitivity to soil water deficit but with different time 679 

lags. Primary and secondary growth are related to each other through hydraulic structure or 680 

resource partitioning. With regard to its use as an indicator of tree health, leaf loss captured 681 

fewer pointer years than did radial growth. Leaf loss only explained a reduction in radial 682 

growth in the case of extreme leaf loss events. Furthermore, radial growth, unlike leaf loss, 683 

presented a strong common signal among trees, allowing us to study tree response to abiotic 684 

factors with more assurance. Radial growth also allowed us to carry out a retrospective 685 

analysis of living conditions thanks to more reliable measurements. A rigorous 686 

dendrochronological approach including coring to the pith can help to accurately measure the 687 

effect of age and is possibly more cost-effective than estimating a poor quality indicator like 688 

leaf loss every year. A study comparing our results on beech with other species, including 689 

coniferous trees, is underway in order to conclusively assess the performance of annual 690 

visual estimations of leaf loss.  691 
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