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A B S T R A C T

In the winter 2016–2017 the largest epidemic of highly pathogenic avian influenza (HPAI) ever recorded in the
European Union spread to all 28 member states. France was hit particularly hard and reported a total of 484
infected premises (IPs) by March 2017. We developed a mathematical model to analyze the spatiotemporal
evolution of the epidemic and evaluate the impact of control strategies. We estimated that farms rearing ducks
were on average 2.5 times more infectious and 5.0 times more susceptible to HPAI than farms rearing other
avian species. The implementation of surveillance zones around IPs reduced transmission by a factor of 1.8 on
average. Compared to the strengthening of pre-emptive culling measures enforced by French authorities in
February 2017, we found that a faster depopulation of diagnosed IPs would have had a larger impact on the total
number of infections. For example, halving the time delay from detection to slaughter of infected animals would
have reduced the total number of IPs by 52% and total cull numbers by 50% on average. This study showcases
the possible contribution of modeling to inform and optimize control strategies during an outbreak.

1. Introduction

Outbreaks of Highly Pathogenic Avian Influenza (HPAI) have been
reported since 1959 and have caused considerable socioeconomic da-
mages on poultry farming in affected areas (Alexander, 2000). In ad-
dition to the impact on animal health and welfare, HPAI outbreaks also
constitute a potentially serious threat for humans due to the possible
emergence of a new pandemic strain after genetic reassortment in
mammalian hosts (Peiris et al., 2007; Smith et al., 2009).

In the winter 2016–2017 an epidemic of HPAI - HPAI H5 clade
2.3.4.4, mainly subtype H5N8 - hit the European Union (EU) and was
the largest ever recorded in the EU in terms of number of outbreaks and
geographical extent. After a first case in wild birds was reported in
Hungary on 1 November 2016, the epidemic wave quickly reached the
other 27 European countries (Brown et al., 2017). France, and in par-
ticular its south-west region with a high density of foie gras producers,

was hit particularly hard and reported a total of 484 infected premises
(IPs) by March 2017 (Bronner et al., 2017). Control measures were
implemented right after the start of the epidemic. However, despite the
implementation of reinforced control measures on 2 February 2017, the
epidemic persisted. A 6-week ban on duck movements entering the
affected area was implemented from 17 April 2017 to 28 May 2017.
This resulted in a progressive depopulation of the affected area as
farmers were only allowed to send their ducks to slaughter but not to
introduce new flocks onto their farms, and it also allowed for a deep
sanitization of the holdings of all actors involved in their production
(farmers, veterinarians, and trucking companies) (Arrêté du 31 mars,
2017). The last infected premise was detected on 23 March 2017 and
the control measures were lifted on 29 May 2017 (Bronner et al., 2017).
Since then, no other HPAI outbreak has been reported in France.

While no human cases were observed, the control policies that were
enacted in France during the 2016–2017 epidemic resulted in the
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culling of about 6.8 million poultry and induced severe perturbations to
poultry production, causing important economic losses for local pro-
ducers and for the whole poultry sector (Guinat et al., 2018) as well as
the closure of some export markets. In this context, it is important to
gain a deeper mechanistic understanding of the disease dynamics and to
develop tools to assess, refine, and tailor control strategies, which could
thus help to control HPAI transmission and limit its disruptive impact
on poultry trade should a new outbreak occur.

In this paper we developed a mathematical model to analyze the
spatiotemporal evolution of the epidemic and evaluate the impact of
control strategies on the epidemic dynamics. Drawing from previous
work on Foot and Mouth Disease (FMD) (Chis Ster and Ferguson, 2007;
Ferguson et al., 2001; Keeling et al., 2001), and HPAI in the Nether-
lands (Le Menach et al., 2006) and in Southeast Asia (Walker et al.,
2012, 2010), our model captured how the risk of infection varied with
time and distance for different farm types, while also taking into ac-
count the effect of control measures implemented once IPs were de-
tected. While a previous study of the H5N8 epidemic in France focused
on the spatiotemporal clustering of duck-rearing IPs (Guinat et al.,
2018), our analysis was informed by data on all IPs detected in the
south-west of France during the 2016–2017 epidemic.

2. Materials and methods

2.1. Data and preprocessing

Three datasets were used to calibrate our model. The first one in-
cluded the list of 471 HPAI IPs detected between 28 November 2016
and 23 March 2017 in the south-west of France, and containing in-
formation on the farm production type, geographical coordinates,
identifier, and dates of suspicion, symptom onset (when available), and
of culling. Twenty-eight IPs had an ambiguous or missing identifier and
were therefore excluded from the analyses, leaving us with 443 IPs. The
second dataset included identifier and culling date for 461 preventively
culled farms. Except for 5 farms, we had no data on preventive culling
measures concerning farms rearing poultry other than ducks. The final
dataset consisted of information (identifier, geographical coordinates,
municipality, department, and type) on all commercial farms of poultry
within 100 km from an IP, covering 17 departments in the south-west
region of France. After merging holdings belonging to the same owner
and separated by less than 250m, we were left with a total of 8380
farms. 1421 farms (17%) in this dataset had coordinates corresponding
to the centroid of the municipality in which they are located. In such
cases, we reassigned their coordinates by randomly drawing points
within that same municipality. In a sensitivity analysis described in
Supplement 1, we show that this preprocessing step did not affect in-
ference.

We assigned to each farm one of two labels according to the type of
species they reared: 1) galliformes (for farms raising chickens, hens,
quails, and turkeys) and 2) palmipeds (for farms raising ducks and
geese). Eight percent of farms (694/8380) reared both species and were
classified as palmipeds, since the latter represented the vast majority
(395/443=89%) of IPs. In total there were 4189 galliformes (50%)
and 4191 palmipeds farms in our final dataset. Three types of pro-
duction were distinguished for palmipeds: rearing (1-day old ducklings
are reared for around 3 weeks), breeding (3-week old ducks are reared
for around 9 weeks) and force-feeding (12-week old ducks are force-fed
for around 12 days).

2.2. Control measures

Following European directives, once an IP was notified, its stamping
out was planned and movement restrictions, surveillance and biose-
curity were enforced in a 10-km radius around the IP (surveillance
zone) - with additional constraints (e.g. pre-emptive culling, active
surveillance in all poultry farms with visits for clinical inspection and

sampling for virus detection in palmipeds farms, transit ban for all
vehicles related to poultry farming except on highways, and ban of
game birds hunting) in a 3-km radius around the IP (protection zone).

Pre-emptive culling measures in the protection zones started on 4
January 2017 (Bronner et al., 2017) and were reinforced from 2 Feb-
ruary 2017. They targeted 1) all poultry farms within 1 km from an IP,
irrespective of their production type (galliformes or palmipeds); and 2)
duck breeding farms within 3 km from an IP.

Fig. 1 shows the epidemic curve and highlights the key dates re-
lating to control measures. The first IP was notified on 28 November
2016 in the Tarn department. The daily number of IPs remained quite
stable until the end of January 2017 when a clear increase was ob-
served: this second wave was mainly characterized by transmission
events occurring in the Landes department (see Figure S2).

2.3. Mathematical model

We developed a space-time survival model in which the daily force
of infection experienced at time t by susceptible farm j is given by:

= +t t I i t( ) ( ) [ infectious at ]j
i

i j j
ext

(1)

where I is the indicator function, t( )i j is the force of infection that
farm i exerts on j at time t, and j

ext is an external term accounting for
infection sources other than IPs - e.g. the presence of infectious wild
birds or backyard poultry.

For t( )i j we assumed a frequency-dependent functional form:

=t i j t t
N d

I d d( ) ( , , ) ( )
( )

( )i j i j SZ
i c

ij c (2)

where i is the relative infectivity of i (with = 1i for palmipeds and
=i for galliformes farms), j is the relative susceptibility of j (with
= 1i for palmipeds and =i for galliformes farms), i j t( , , )SZ is a

multiplicative term accounting for changes in transmission in the sur-
veillance zones, t( ) is the transmission rate, dc is a cutoff distance,
N d( )i c is the number of farms within distance dc from i, and dij is the
distance between farms i and j. This choice of functional form for the
force of infection assumes that transmission between farms was only
possible for distances below dc and that each IP had a fixed number of
contacts, irrespective of the number of farms around it.

The term i j t( , , )SZ was defined as:

=i j t i j t( , , ) if or are in a surveillance zone at time
1 otherwiseSZ

SZ

(3)

In other words, we assumed that if either one of the farms in contact
- i or j in Eq. (3) – happened to be in a surveillance zone at time t, all the
measures implemented therein (movement restrictions, active surveil-
lance, and biosecurity) would result in a change of transmission rate.

Fig. 1. Epidemic curve. Daily number of IPs by date of suspicion.
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We tested different functional forms for the transmission rate t( )
(Supplement 2), but the one providing the best fit to the data was a
stepwise transmission rate with two switch points (t1 and t2) for the
Landes department:

=
<

<t
t t

t t t
t t

( )
if

if
if

1 1

2 1 2

3 2 (4)

and a constant transmission rate for all other departments.
The external force of infection was defined as:

=j
ext

ext j (5)

In a sensitivity analysis described in Supplement 2 we considered
alternative model formulations with 1) a constant transmission rates
(no switch points); 2) one switch point; and 3) a density-dependent
version of the model described above.

2.4. Inference

Our final dataset contained three different types of IPs: 1) farms
where the owners reported unusual deaths or symptomatic birds and
that were later confirmed as infected (IPs detected by passive surveil-
lance, 193/443=44% of total IPs); 2) preventively culled IPs (134/
443=30% of total IPs); 3) IPs detected by active surveillance before
symptom onset (113/443=26% of total IPs).

We assumed that, following infection, IPs detected by passive sur-
veillance were latent for L days and had an incubation period of T days
prior to developing symptoms. We also assumed a fixed delay of D days
between infection and culling (for preventively culled IPs) and between
infection and suspicion (for IPs detected by active surveillance). This
allowed us to infer, for each IP, the time of infection, which, in practice,
was unobserved. Fig. 2 schematically shows the three types of IPs.

Once the times of infection were assigned, the probability of farm j
being infected on day τj, conditional on having avoided infection until
that day, could be computed as:

=p 1 exp[ ( )]j
I

j j (6)

Similarly, the probability of farm j escaping infection until τj - 1 was:

=
=

p exp[ ( )]j
E

j
0

1j

(7)

From Eqs. (6) and (7), the likelihood function could be evaluated for
any set of model parameters. We used the algorithm described in
(Cauchemez and Ferguson, 2012) to speed up computations.

The model parameters (the relative susceptibility and infectivity,
the transmission rates, and the effect of surveillance zones on trans-
mission) are listed in Table 1 and were estimated using Markov Chain
Monte Carlo (MCMC) sampling (Gilks et al., 1996) with flat priors.
Chain convergence was assessed by visual inspection of the traceplots.

The inference procedure was repeated for a large number of models
differing in the choice of switch points t1 and t2, cutoff distance dc, and
time intervals L, T, and D (see Supplement 3). The Deviance
Information Criterion (DIC) was used for model selection (Gelman
et al., 2014).

Delays in detection, culling, and preventive culling were fitted to
Gamma distributions (Supplement 4) that were used when simulating
the alternative control strategies described below. Similarly, empirical
distribution functions obtained from data (Supplement 5) were used for
simulating the proportion of farms preventively culled around IPs.

Fig. 2. Time intervals needed to evaluate the likelihood
function. L represents the latent period, T the incubation
period, and D the time interval from infection to culling
(suspicion) for IPs that were preventively culled (detected by
active surveillance), respectively. Green denotes observed
dates while black denotes unobserved time points (For inter-
pretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Table 1
Estimates of model parameters for the best fitting model (latent period L=1
day, incubation period T=7 days, delay between infection and preventive
culling or detection D=5 days, and cutoff distance dc=15 km).

Parameter Mean 95% CI

: Relative infectivity of galliformes farms 0.39 0.10, 0.85
: Relative susceptibility of galliformes farms 0.20 0.15, 0.27
SZ : Effect of surveillance zones on transmission rate 0.58 0.42, 0.80

0: Transmission rate (all departments except for Landes) 0.23 0.16, 0.31

1: Transmission rate in Landes department (28 Nov 2016 -
22 Jan 2017)

0.31 0.20, 0.47

2: Transmission rate in Landes department (23 Jan 2017 -
11 Feb 2017)

0.53 0.37, 0.72

3: Transmission rate in Landes department (12 Feb 2017 -
14 Apr 2017)

0.28 0.18, 0.40

ext (10
−4): External transmission rate 0.86 0.62, 1.15
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2.5. Simulations

The same framework used for inference was then employed to si-
mulate epidemic scenarios under different control measures. Using Eqs.
(6) and (7) with parameters drawn from the posterior distribution, it
was possible to compute the probability of infection for each farm at
each time step and simulate multiple epidemics while also keeping
track of the transmission tree (i.e. which IP infected which farm).

We thus studied the effect of five main variables: 1) the choice of
culling radius; 2) the type of farms targeted by the pre-emptive culling
measures; 3) the time delay in stamping out an IP once detected; 4) the
time delay in carrying out preventive culling around detected IPs; and
5) the radius of the movement restrictions zones (i.e. the surveillance
zones).

While we assumed that the parameters of our model were the same
for ducks and geese farms, when simulating preventive culling mea-
sures, we did differentiate between duck-rearing versus other palmiped
farms.

To allow for a direct comparison to the real epidemic, all simula-
tions were stopped at the beginning of the 6-week ban on duck move-
ments (14 April 2017), i.e. three weeks after the last IP was reported.

3. Results

3.1. Parameter estimates and goodness of fit

The model that better supported by the data had a latent period
L=1 day, incubation period T=7 days, a delay between infection and
preventive culling or detection D=5 days, and a cutoff distance
dc=15 km. According to this model, transmission was constant in all
departments but the Landes, for which two switch points provided the
best fit: t1=23 January 2017 and t2=12 February 2017 (see
Supplement 3).

Table 1 shows the estimates of model parameters.
We found that the infectivity and susceptibility of galliformes farms

was only 39% (Credible Interval (CI): 10%–85%) and 20% (CI:
15%–27%) of that of palmipeds farms, respectively.

The model also estimated that transmission in the surveillance zone
was reduced by 1 - SZ = 42% (CI: 20%–58%), confirming the re-
levance of the control measures (active surveillance, movements re-
strictions) implemented in the surveillance zones around IPs in order to
contain disease spread.

Fig. 3 shows the estimated transmission rates through time: the best
fitting model shows an increase of transmission in the Landes

department between the end of January and the first weeks of February
2017. This period corresponds to the beginning of the second epidemic
wave hitting that department right before the implementation of re-
inforced pre-emptive culling on 2 February 2017.

From the reconstructed transmission trees, we looked at temporal
variations of reproduction number and infection distance (Fig. 4). The
average reproduction number was slightly above one for the first part of
the epidemic but quickly rose above 1.5 as the second epidemic wave
(Fig. 4A) hit the region and in particular the Landes department (Figure
S2). The infection distance was quite stable around its overall average -
8.5 km (CI: 8.2 km–8.8 km) - but showed a clear decrease right before
the second epidemic wave.

Palmipeds IPs were the main drivers of the epidemic: 84% (CI:
79%–87%) of all transmission events were due to palmipeds IPs, only
5% (CI: 1%–9%) were due to galliformes IPs, and 11% (CI: 10%–13%)
to the external transmission rate. Most - 58% (CI: 54%–62%) - trans-
mission events occurred within 10 km from an IP.

The model was able to accurately reproduce the epidemic dynamic
globally and at the department level (Fig. 5, Figure S3, and Figure S4).

According to the DIC, alternative model formulations with a con-
stant transmission rate or with only one switch point were not equally
well supported by the data. Similarly, density-dependent variants of the
model had higher DICs than our baseline model (Supplement 2).

3.2. Control measures

Table 2 shows the complete summary of all the scenarios we con-
sidered.

3.2.1. Preventive culling radius
The preventive culling strategy implemented on 2 February 2017

targeted all poultry farms within 1 km from an IP and all duck breeding
farms within 3 km from an IP. Here we simulated alternative control
strategies targeting all farms within x km from an IP, with x going from
0 km (no preventive culling) to 5 km, and starting on 4 January 2016
(i.e. on the first date preventive culling measures were implemented in
reality).

While a 1 km preventive cull halves the total number of IPs com-
pared to no preventive cull, the marginal benefits of further increasing
the intervention area are only relatively limited (Fig. 6). For example,
when the preventive culling radius is 5 km the model still predicts an
average of 286 IPs (versus 1027 IPs with no preventive culling and 502
IPs with 1 km preventive culling), while the expected number of pre-
ventively culled farms is 1122 farms (CI: 5–1638) - corresponding to
approximately 13% of all the farms in our dataset (this number is 329
farms (CI: 19–545) when the preventive culling radius is 1 km).

3.2.2. Type of farms concerned by the preventive culling measures
The second set of simulations aimed at assessing the effect of tar-

geting the preventive culling measures to different types of farms.
Starting from our baseline model (preventive culling measures con-
cerning all poultry farms within 1 km and all duck breeding farms
within 3 km from an IP), we considered two alternative strategies tar-
geting 1) only palmipeds farms within 1 km and duck breeding farms
within 3 km from an IP); and 2) only duck breeding farms within 3 km
from an IP. As shown in Table 2, while the first strategy results in a
reduction (8%) of the total number of preventively culled farms (482 vs
526) with approximately the same total number of IPs (411 vs 408), the
second strategy is associated to a considerably (44%) larger epidemic
(587 vs 408 IPs).

3.2.3. Stamping out delay
During the course of the epidemic, the average delay from the de-

tection of an IP to the slaughter of its animals was dS=5.2 days (see
Supplement 4). We simulated two alternative scenarios representing 1)
faster stamping out (dS=2 days); and 2) slower stamping out (dS=10

Fig. 3. Transmission rate through time. Blue: transmission rate in the Landes
department. Black: transmission rate in the other departments. Solid lines de-
note averages while the shaded region and the dashed lines denote the 95% CI
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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days). As expected, dS has a large effect on the epidemic dynamics: in
particular we found that its effect on the number of IPs is approximately
linear. If dS=2 days, the total number of IPs is reduced by a factor
close to 2 with respect to our baseline scenario (196 vs 408 IPs). On the
other hand, for dS=10 days, the number of IPs increases by a factor
close to 2 (783 vs 408 IPs).

3.2.4. Preventive culling delay
The average delay from detection of an IP to the preemptive culling

of neighboring farms was dP=7.8 days. Similarly to the previous set of
simulations, we studied two alternative scenarios corresponding to 1)
faster preventive culling measures (dP=4 days); and 2) slower pre-
ventive culling measures (dP=16 days). As seen in Table 2, both al-
ternative strategies have only a modest effect on the total number of
IPs.

3.2.5. Surveillance zone radius
The last set of simulations aimed at studying the effect of the size of

surveillance areas, i.e. the zones where movement restrictions and ac-
tive surveillance are enforced. Starting from the baseline value of 10 km
for the surveillance radius we simulated two alternative strategies with
1) a radius of 5 km and 2) a radius of 15 km. Both strategies had a
moderate impact on the epidemic size (see Table 2).

4. Discussion

In this paper we analyzed a large outbreak of HPAI subtype H5N8
that took place in the south-west of France from the end of November
2016 to March 2017. We developed and calibrated a mathematical
model that was able to accurately capture and reproduce the dynamics
of the outbreak. This allowed the estimation of key epidemiological
parameters such as the relative susceptibility and infectivity of the
different farm types, the transmission rate through time, and the effect

of surveillance zones on transmission. We subsequently used our model
to evaluate the effect of different culling strategies. Our results indicate
that a quicker depopulation of diagnosed IPs would have impacted the
total number of infections more effectively than reinforcing pre-emp-
tive culling measures around IPs. In particular, halving the time delay
from IP detection to its stamping out would have reduced IPs by 52%
and total cull numbers by 50% on average. This result is consistent with
previous studies on HPAI and FMD (Ferguson et al., 2001; Keeling et al.,
2001; Le Menach et al., 2006). Since culling protocols are much more
strict, complex, and cumbersome for stamping out IPs (slaughter per-
formed on breeding sites by a veterinarian or by authorized personnel,
reinforced biosecurity and disinfection measures…) than for pre-emp-
tive culls (performed at slaughterhouses), our results suggest that
emergency plans for future HPAI crises should focus on allocating ap-
propriate human and material resources with the aim of minimizing as
much as possible stamping out delays for IPs.

We found that the model with better support from the data was a
frequency-dependent model where each IP had a fixed number of
contacts and where transmission could only occur for distances within
15 km from an IP. With this model, the mean transmission distance was
estimated at 8.5 km, consistent with a previous study based on spatio-
temporal clustering of duck-rearing IPs (Guinat et al., 2018). These
findings suggest that most transmission events occurred possibly
through movement of animals, materials, or personnel between farms,
rather than through animal contact or airborne spread - the latter being
unlikely to play a role for this range of distances (Spekreijse et al.,
2011). Additionally, the external transmission rate - capturing the effect
of wild avifauna and backyard poultry - accounted for only 11% of
infections, suggesting that the main driver of the epidemic was farm-to-
farm transmission.

We found that transmission varied through time in Landes but not in
other departments (Supplement 2). Transmission was also higher from
the end of January to mid-February 2017. Even though Landes is the

Fig. 4. Reproduction number (A) and infection distance (B) through time. Colored lines represent averages while colored areas represent 95% CIs. Moving average
smoothing with a window of 1 week was used to improve clarity. The dashed curve in panel A corresponds to a reproduction number of 1, while the dashed line in
panel B corresponds to the average distance calculated over the entire epidemic (8.5 km).

Fig. 5. Goodness of fit. A. Daily number of IPs
through time by date of suspicion. Simulations
from the model are in purple: the solid line
corresponds to the average while the shaded
region corresponds to the 95% CI. Black dots
represent data. B. Total number of IPs by de-
partment. Simulations from the model are
shown in color: dots represent averages while
lines represent 95% CIs. Black squares re-
present data (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article).
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department with the highest density of commercial farms, models ex-
plicitly accounting for density-dependent effects alongside frequency-
dependent transmission did not provide a good fit to the data
(Supplement 2). Therefore, the estimated difference in transmission
rate may be ascribed to the distinctive characteristics of the Landes
department in terms of farming practices and environment. First, this
department displays a considerable diversity of farming systems ran-
ging from independent and small-size to very large integrated farms:
official documents (French Ministry of Agriculture website, 2018) show
that, compared to the other French departments, Landes exhibits the
coexistence of diverse systems such as duck fattening and broiler
(mainly free-range) production. Moreover, unlike neighboring depart-
ments, Landes has a high density of both ducks and chickens. Second,
this department displays important heterogeneities in terms of biose-
curity practices, as shown in a recent paper (Delpont et al., 2018): this
study, based on 46 farms (22 located in the Landes department) iden-
tified three distinct clusters of farms based on 80 biosecurity measures.
Significant variation was observed over the three clusters, including
heterogeneity in managing the flow of people and vehicles, sharing of
equipment, use of logbooks, handwashing, and cleaning and disinfec-
tion. Third, possible cases of noncompliance with governmental direc-
tives might also have played a role, but in absence of data documenting
them, it is not possible to assess their potential impact on transmission
dynamics. Finally, different environmental conditions could also have
contributed to the estimated change in transmission rate: for example,
large wetlands with a high density of wild avifauna characterize the
Landes department (Eaufrance website, 2011) and, as a consequence,
38% of its municipalities are found in zones classified by the French
government as being at high risk of HPAI outbreaks (Arrêté du 16 no-
vembre, 2016).

We found that galliformes farms were less susceptible to infection
than palmipeds farms, which is in line with recent studies on HPAI
subtype H5N8 clade 2.3.4.4 (Bertran et al., 2016). Interestingly, our
estimates indicate that galliformes farms were also less infectious in
terms of viral shedding and accounted for only 5% of transmission
events. If pre-emptive culling measures had targeted only palmipeds
farms, the total number of IPs would have barely changed (from 408 to
411) but the total cull number would have reduced by 8% on average
(Table 2).

The observation that the transmission rate in surveillance zones was
approximately halved compared to non-surveillance zones (Table 1)
indicate that control measures around IPs (such as preventive culling,
active surveillance, and movement restrictions) are vital to contain
disease spread.

This study has a number of limitations. First, our model implicitly

assumes that the epidemic was fully observed (100% reporting prob-
ability). Indeed, given the usually high mortality rate of HPAI it seems
unlikely that clinically affected farms could have been missed.
Moreover all the slaughtered flocks were tested for the presence of the
virus, which allowed the detection of infected flocks where clinical
signs were rare or absent. The surveillance of wild avifauna was also
reinforced in the affected area, but only few positive animals were
observed. In particular, none of 300 commensal wild birds living in or
around outbreaks were found infected (Van De Wiele et al., 2017).
Additionally, since we had no data on backyard poultry producers and
smallholders, their possible effect on transmission is only indirectly
captured through the ext parameter. Similarly, movements of animals
were not explicitly included in the model although in practice, our
cutoff distance dc acts as a proxy for the average maximum movement
distance. When data will become available, it would be interesting to
extend our model to explicitly account for such effects. Our study also
ignored the impact of within-farm epidemic dynamics and possible
differences in biosecurity risks between small and large farms. The
latter however should not have a major impact on the overall dynamics
of the epidemic, which was well captured by the model (Fig. 5). Finally,
our inference procedure relies on the deterministic assignment of time
delays L, T, and D (Fig. 2), thus ignoring highly plausible differences
between farms. This could be improved, at the expense of a con-
siderably higher computational cost, by using data augmentation to
infer individual time delays for each IP.

The approach we have developed provides a framework for esti-
mating key parameters of HPAI outbreaks and, more importantly, for
evaluating the impact of control strategies. While we have used it here
retrospectively, this framework could also be used to provide real time
estimates and forecast possible epidemic scenarios under different
control strategies, thus providing useful inputs to inform policymakers’
decisions.
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