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Abstract

A new method named cluster-based GSA is proposed to enhance the
sensitivity analysis of models with temporal or spatial outputs. It is based
on a tight coupling between Global Sensitivity Analysis (GSA) and clustering
procedures. Clustering is introduced to characterize the different behaviors
of the model outputs by grouping them into clusters. The cluster-based GSA
produces variance-based indices that quantifies how the model inputs drive
the model outputs toward a given cluster or how they influence variation
along a direction defined by two clusters. Aggregated indices are proposed
to summarize the overall influence of model inputs on changes of clusters
. The method is applied on two models having temporal outputs: a toy
example and a environmental model simulating the decomposition of soil
organic matter (CANTIS). In both cases, the influence of the model inputs
on the different behaviors of model outputs was efficiently reported by this
approach.
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Software availability

R codes for the toy model and the cluster-based GSA method are available
from a github repository located at https://github.com/sbuis/ClusterBased GSA.
The Cantis model and Vsoil platform are available at http://www6.inrae.fr/vsoil.
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1. Introduction

Sensitivity Analysis (SA) is recognized as a central tool in the modelling
process, from model development to applications, up to decision making
[1, 2]. Environmental modelling applications often involve models with multi-
variate outputs: typical examples are variables simulated at different instants
(temporal outputs) or at different spatial locations (spatial outputs) or both.
Standard SA performed on a scalar output often focus on characterizing the
influence of model inputs on the variance of the output distribution obtained
when these model inputs vary. Due to the increase of dimension, many other
characterizations of the output distributions can be of interest for the modeler
when performing SA on a temporal or spatial output. We focus specifically
in this work on questions relating to the influence of variation in model in-
puts on the change in shape of model outputs. For instance, when samples
of the output distribution are smooth curves differing only in some of their
geometric properties (gradients, horizontal or vertical shift . . . ), a question
of interest for the model user can be: which model inputs preferentially lead
to particular shapes of these curves (e.g. increasing ones, upper curves . . . )?

To study the effect of model inputs on the shape of simulated curves,
Campbell et al. [3] proposed to project model outputs onto polynomial
or adaptive bases. The outputs are expanded in a new coordinate system
defined by a set of basis functions and the SA is then performed on the coef-
ficients of the expansion using any SA method. The geometrical analysis of
the outputs variability along each basis functions along with the value of the
associated sensitivity indices revealed in this case the impact of model in-
puts on up–down shift, left–right shift, symmetric kurtosis and tail-fattening
components of the simulated curves. This approach was further extended by
Lamboni et al. [4, 5] and Savall et al. [6] applied it to a spatio-temporal
model describing nitrogen transfers, transformations and losses at the land-
scape scale. A generic implementation using different bases such as eigenvec-
tors, orthogonal polynomials, b-spline or principal component analysis can
be found in Bidot et al. [7]. Recently, Xiao et al. [8] used a wavelet basis to
analyze the impact of model inputs on signal features in the time-frequency
domain. This approach brings information about the influence of model in-
puts on some specific variation of shape of the simulated outputs. But the
results obtained are constrained by the choice of the basis and may be diffi-
cult to interpret.

An alternative approach is to consider that the temporal or spatial output
distribution can be decomposed into a small number of homogeneous groups
that characterize the diversity of the output shapes. The set of smooth curves
taken as an example above can for instance be split into subsets of similar

3



curves which shape differs for some of their geometric properties (e.g. in-
creasing vs decreasing curves or upper vs lower ones . . . ). Partitioning the
model output space was originally introduced in SA for scalar outputs in
the so-called Regional Sensitivity Analysis (RSA) [9]. It consists in splitting
the set of simulated outputs into two classes, often called ‘behavioral’ and
’non-behavioral’, and computing sensitivity indices based on a Kolmogorov-
Smirnov test. RSA was recently extended to spatio-temporal outputs by
applying a clustering algorithm on the simulated outputs and applied to
reservoir modeling in [10, 11]. The interest of using a clustering algorithm
in this context is to automatically group the simulated temporal or spatial
outputs that have similar shapes into a small number of clusters supposed to
be representative of the different shapes of interest, and then to identify the
model inputs that lead to these different clusters. In reference to the original
version of RSA, these groups are denoted as ’model behaviors’ in the follow-
ing. However, one known drawback of RSA approaches is the difficulty to
estimate sensitivity indices with the same precision and flexibility than the
widely used Sobol’ indices, which can characterize in a robust way the influ-
ence of parameters and their interaction based on the variance decomposition
of the considered output. In a recent paper, Raguet et al. [12], citing the
work from Lemaitre [13], introduced the concept of Target SA to revisit RSA
in the context of reliability engineering where a given model output is split
into two groups: a critical domain (associated to rare events) and the rest.
They proposed different sensitivity indices and noticeably mentioned the ap-
plication of Sobol’ indices, i.e. of variance-based Global Sensitivity Analysis
(GSA), to the binary function encoding the membership of the simulated
output values to the critical domain. This approach seems very promising
to bridge the gap between SA including cluster analysis and variance-based
SA for temporal or spatial model outputs. However it raises the questions of
how to integrate a detection step of behaviors in a GSA procedure and what
indices can be derived from it, in particular when more than two behaviors
are detected.

In this work we propose to extend the target sensitivity analysis approach
to study the impact of model inputs on behaviors characterized by a clus-
ter analysis on temporal or spatial outputs. Although a clear distinction
between different model behaviors may not always be possible to achieve,
we consider this framework as flexible enough to be of interest for a lot of
models and applications. We thus suppose in the following that behaviors
can be defined and will come back to this hypothesis in the discussion sec-
tion. Our approach, named cluster-based GSA, is based on the idea of using
the cluster membership functions to compute several variance-based indices
allowing a thorough analysis of the influence of model inputs on the different
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identified model behaviors. The article is organized as follows. We present
in Section 2 a motivating example introducing the basic idea of the proposed
procedure and in Section 3, the coupling approach that makes use of a clus-
tering of temporal or spatial outputs in order to define several cluster-based
sensitivity indices. Section 4 is devoted to the validation of these indices on
a dedicated toy model and Section 5 to its application on a realistic environ-
mental model simulating the decomposition of soil organic matter.

2. Motivating example

The basic idea and motivation of the overall approach can be illustrated
by looking at a sample of the output distribution obtained when varying
some inputs of the CANTIS model that will be further described and ana-
lyzed in Section 5. CANTIS output of interest are curves representing the
dynamics of a quantity of interest (the biomass of an organic matter pool
when studying crop residue over time). By looking at the sample of curves
in Fig. 1, it is clear that they have only several typical shapes defined by
their monotony, abscissa and value of maximum, and end level. Such par-
simony of possible shapes motivates the idea to identify the main groups of
shapes that describes the output distribution and to study the influence of
input factors on the occurrence of these shapes. For example, one can won-
der which parameter drives the output toward monotonic increasing behavior
(increase of biomass) or monotonic decreasing behavior (full consumption of
initial organic matter stock). Based on the initial idea of target sensitiv-
ity analysis, a simple procedure to tackle this issue can be the following: i)
Perform simulations on a numerical design-of-experiment associated to a se-
lected SA method (e.g. the Sobol’ method), ii) Detect or select groups in the
simulated outputs, iii) Build scalar functions representing the membership of
each curve to each group, iv) Perform a scalar sensitivity analysis on this new
functions. The result would allow discussing the desired model properties.
This is the general idea of the Cluster-based GSA that will be formalized in
the following section. The result of its complete application on the CANTIS
model will be presented in Section 5.

3. Method

In this section, we recall some useful results in the fields of sensitivity
analysis and clustering before presenting the proposed cluster-based approach
which integrates both aspects.
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Figure 1: Sample of the output distribution of the CANTIS model

3.1. Variance-based sensitivity indices

Many numerical indices have been proposed to characterize the influence
of model inputs on model outputs (see for example [14]). Among these dif-
ferent options, using Sobol’ sensitivity indices [15, 16] is a widely accepted
choice for global sensitivity analyses of scalar model outputs obtained from
model inputs varying independently. Sobol’ indices are based on the orthog-
onal decomposition of the output variance. The first order index (noted here
SIYj ) corresponds to the part of variance of the scalar output Y due to the
variation of an input Xj:

SIYj =
V [E[Y |Xj]]

V[Y ]
,

with E(Y |Xj) the expectation of Y given Xj and V(Y ) the variance of Y .
The total order index (noted here TSIYj ) corresponds to the part of the vari-
ance of Y due to Xj and to all interaction effects of Xj with the other varying
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inputs:

TSIYj = 1− V [E[Y |X∼j]]

V[Y ]
,

with X∼j the vector of all model inputs except Xj.
In the case of a MV output Y made of several scalar components (Yk)k,
Generalized Sensitivity Indices (GSIs) [4, 5, 17] allow the impact of model
inputs on the whole MV output to be studied. The first-order GSI of Xj can
be defined by:

GSIj =
N∑
k=1

V[Yk]∑N
m=1 V[Ym]

SIYk
j

Likewise, the total GSI of Xj can be defined by:

GSITj
=

N∑
k=1

V[Yk]∑N
m=1 V[Ym]

TSIYk
j

They are easily computed from the SIYk
j and TSIYk

j . Many software are now
available for the estimation of Sobol’ indices and GSI (see for example the
recent review [18]).

3.2. Clustering

Clustering methods are powerful tools that can reveal hidden structures
in multi-dimensional data set by grouping objects using similarity criteria
[19]. A successfully applied clustering method would typically provide a
small number of groups of objects where the similarity within groups is max-
imized while the similarity between groups is minimized. In this study we
considered fuzzy clustering methods (see for example [20]). As opposed to
classical clustering, fuzzy clustering does not produce a binary answer to the
question of membership of an object to a given cluster but instead computes
the so-called membership functions which evaluate the degree of membership
of an object to any given cluster. A main advantage of fuzzy clustering over
classical clustering is its natural handling of partial or uncertain affectation
to clusters using low but non-zero membership functions. In the follow-
ing, we consider membership functions normalized in [0, 1]. Such normalized
membership functions correspond to empirical probabilities or weights in
clustering approaches based on statistical modeling.

The use of a basic fuzzy clustering algorithm, the fuzzy c-means (or fcm)
algorithm [21] proved sufficient to derive a satisfying model analysis in the
numerical examples. We briefly recall the principle of this algorithm in the
following. The fcm algorithm is the fuzzy extension of the classical K-means
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algorithm. Its principle is to perform an alternate optimisation procedure
in order to minimize the weighted sum of squared distances to cluster cen-
ters. More precisely, let uij be the membership function of object xj with
respect to cluster i, dij be the distance (e.g. euclidean) between xj and
the ith cluster center ci and m > 1 a parameter controlling the level of
’fuzzyness’ of the method. Then, for a given cluster number K, the fcm
algorithm seeks for the membership functions (u∗

ij)ij and centers (c∗j )j min-

imizing
(∑K

i=1

∑n
j=1 u

m
ijd

2
ij

)
over all membership functions and centers. It

proceeds by iteration, updating alternatively the membership functions from
previous center estimates (see [21]) :

uij =
d

−2
m−1

ij∑K
i=1 d

−2
m−1

ij

and the centers from previous membership functions estimates:

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

3.3. The cluster-based GSA method

3.3.1. Integration of clustering into a sensitivity analysis procedure

A clustering procedure can be easily integrated in a SA workflow: we pro-
pose to apply it after the simulations have been performed on the numerical
experimental design specific of the SA method used (See Fig. 2). In this way
a vector of membership functions is made available on each element of the
design and can be used to feed a classical sensitivity analysis approach. The
whole set of simulations should be preferably used for clustering if the size
and number of objects to be clustered as well as the complexity of the chosen
fuzzy clustering algorithm allow it. However, one can also use a subset of
model simulations to define the clusters before computing the membership
functions for each element of the experimental design in order to reduce the
problem size and computational cost of the clustering step.

3.3.2. Cluster-based sensitivity indices

Several sensitivity indices can be easily computed using the membership
functions produced by the clustering procedure.

Indices of cluster membership. This first type of indices is simply obtained by
applying a sensitivity analysis method on each scalar membership function
in order to estimate their Sobol’ indices. Depending on the method used,
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Figure 2: Integration of a clustering step in sensitivity analysis workflow. The cluster-
ing is applied on the simulations and its outputs, the membership functions, feed scalar
sensitivity analysis procedures to produce different cluster-based sensitivity indices.

first order, total or specific interaction indices can be computed. For a model
input Xj, first and total order indices related to the k-th cluster are defined
using the membership functions uk as follows:

SIuk
j =

V [E [uk|Xj]]

V [uk]

TSIuk
j = 1− V [E [uk|X∼j]]

V [uk]

These indices, by definition, quantify the effect of model input parameters
onto the variability of the membership function of a given cluster. They allow
therefore the parameters driving the model outputs to a targeted behavior
defined by a cluster to be pointed out.

Aggregated indices of changes between clusters (Cluster-based GSIs). These
indices are based on the idea of computing aggregated indices on the vec-
tor of membership functions u = [u1, .., uK ], seen as a new low-dimensional
multivariate variable. The GSIs computation scheme presented in Section 3
gives the following expressions for the first and total indices for model input
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Xj using indices SIuk
j and TSIuk

j :

GSIcluj =
N∑
k=1

V[uk]∑N
m=1 V[um]

SIuk
j

GSIcluTj
=

N∑
k=1

V[uk]∑N
m=1 V[um]

TSIuk
j

These cluster-based GSIs summarize the overall influence of parameters
on changes of behaviors defined by the different clusters. They are easily
computed from indices computed on the membership functions. They ag-
gregate the information contained in these indices while taking into account
differences in their variance.

Indices of directions of change between clusters and of membership to an
union of clusters. The membership functions can be combined to define other
transformation functions that provide complementary information about the
impact of model inputs on changes of model behaviors defined by the different
clusters.

• Sum of membership functions ui+uj. The sensitivity indices associated
to the sum of two or more membership functions allow discussing which
parameters influence the membership of an union of clusters.

• Difference of membership functions ui − uj. The sensitivity indices
associated to the difference between two membership functions allow
discussing which parameters influence variations of the vector of mem-
bership functions projected along the direction defined by 2 clusters.
It should be noted that i) changes of membership orthogonal to the
direction defined by the two cluster centers do not contribute to the
variance explained by this index, ii) changes from cluster i to cluster
j in situations where all changes of membership from on cluster i is
transferred to cluster j contribute, iii) changes from cluster i (or j) to
another cluster also contribute, but to a lower extent, to the variance
explained by the index. These indices thus mostly bring information
about the impact of model inputs on transitions between two given
clusters.

4. Application to a toy model

4.1. Model description

A toy model named TC (for ToyCurves) was introduced to perform a
qualitative validation of the cluster-based sensitivity indices and illustrate
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their interpretation capabilities. Validation of the results is made by linking
the geometrical effects of parameters deduced from the model definition (e.g.
triggering the emergence of a pattern, modifying its shape, etc) with the
result of the clustering.

The TC model has six parameters and produces on the [0, 1] interval a
curve defined as a sum of a vertical offset plus two shifted triangles. As can
be seen in Fig. 3, parameter X1 drives the height of the first triangle while
two parameters (X1, X2) drive the height of the second in an interacting
way. Their abscissas are centered respectively at t = 0.15 and t = 0.75 with
perturbations controlled by parameters (X4, X6) for Triangle 1 and (X5, X6)
for Triangle 2. Parameter X3 controls the height of the global shift. The
mathematical definition of the model is the following: Let Trg(c, h)(.) denote
a triangle function producing over [0,1] a triangle of height h and width 0.3
centered at t = c. A possible expression of this function is Trg(c, h)(t) =
h

0.15
·max (0, (0.15− |t− c|)). Then the TC model is defined as follows for an

input vector X = [X1, .., X6]:

TC(X)(t) =
X3

5
+ Trg(0.25 + 2.(X4 − 0.5).X6, X1)(t)

+ 1[0.5,1](X1).1[0.5,1](X2).Trg(0.75 + 2.(X5 − 0.5).X6, 2.(X2 − 0.5)(t)
(1)
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Figure 3: The toy model (A) and some samples for two parameter settings; Setting 1:
small t-shift (B), Setting 2: large t-shift (C).

4.2. Numerical configuration

We considered two levels of horizontal shift driven by parameter X6. Set-
ting 1, referred to as ’small t-shift’, is obtained by fixing X6 = 0.05 and cor-
responds to small horizontal perturbations of the triangle centers. Setting 2,
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referred to as ’large t-shift’ is obtained with X6 = 0.08 and produces larger
perturbations. The TC model is analysed for these two settings when the
other parameters (X1, .., X5) have independent uniform distributions within
[0, 1]. Samples of the resulting curves are presented in Fig.3. A Sobol’ al-
gorithm (”SobolJansen” from the Sensitivity package [22]) was used with
N = 7000 to define an experimental design and to compute the various sen-
sitivity indices based on the clustering outputs. 95% confidence intervals on
the sensitivity indices have been estimated using bootstrap replicates.

4.3. Clustering

A fuzzy clustering algorithm was applied for each setting on the curves
produced by the TC model on the experimental design defined by the Sobol’
algorithm. We applied a fuzzy c-means algorithm (see Section 3.2) targeting
three classes and using an euclidean distance between curves. This choice
led to a robust convergence with respect to the starting point and to clear
and interpretable clusters. The results are presented in Fig.4 and Table 1.
The clusters obtained on Setting 1 are characterized by differences in terms
of number (1 or 2) and amplitude of triangles, while the clustering obtained
for Setting 2 stressed the importance of the first triangle center location for
defining groups in the set of output curves: Cluster 1 and Cluster 3 only
differs by the horizontal position of the first triangle center (see Fig.4).

These results highlight that the TC model has different dominant behav-
iors depending on the parameter setting. The influence of the model inputs
on these behaviors will now be studied using the cluster-based sensitivity
indices.

Setting 1: small t-shift Setting 2: large t-shift

Cluster 1 single small and early maximum one early-right maximum and
small late maximum

Cluster 2 two maxima single small and early maximum

Cluster 3 single large and early maximum one early-left maximum and
small late maximum

Table 1: Description of the clusters obtained for the two settings of the toy
model

4.4. Results of the sensitivity analysis

The objective of this section is to illustrate how the different indices
defined in Section 3.3.2 accurately report interpretable and known effects of
the toy model parameters.
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Figure 4: Clustering obtained on two settings of the TC model (first line for Setting 1,
second line on Setting 2). Cluster centers are drawn as bold white curves. Simulated
curves are represented with a grey level depending on their membership level to a given
cluster (black = high membership, light grey = low membership). Qualitative description
of the clusters can be found in Table 1.

4.4.1. Indices of cluster membership

Sensitivity indices computed for each cluster membership function for
the two settings are presented in Fig.5 and discussed more precisely in the
following:

• Setting 1: The clusters obtained for this setting differ by the number
and amplitude of maxima, not by their horizontal shift. As X4 and
X5 precisely drive the horizontal shift of the two triangles, they shall
not exhibit strong influences on the membership functions, which is
effectively verified (maxk TSI

uk
4 = 0.034,maxk TSI

uk
5 = 0.004). As the

amplitude of the first triangle is only defined by X1 and as the ap-
pearance of the second triangle occurs only for large values of X1 and
X2 (and corresponds to high amplitude of the first triangle), X1 is ex-
pected to be the main parameter influencing the membership function
variability of cluster 1, whereas X1 and X2 should explain the mem-
bership to cluster 2 and 3 with a strong interaction. As can be seen in
Fig. 5, these properties are verified by the computed indices.
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• Setting 2: Unlike Setting 1, Setting 2 produced clusters differing by
the shift of the first triangle. Parameter X2, which drives the height
of the second triangle when X1 is high enough, shall not influence
the membership to any of the three clusters obtained in this setting.
This is verified in Fig.5: maxk TSI

uk
2 = 0.055. The same fact can be

observed and verified for parameter X5 which only appears in the model
definition in the computation of the shift of the second triangle and thus
exhibits small sensitivity indices (remember that the second cluster is
not a key differentiating feature between clusters). On the contrary,
parameter X4 should drive the membership to cluster 1 and 3, as they
differ each other (and with cluster 2) by the shift and amplitude of
the first triangle. This property is verified in the results shown Fig.5:
SIu1

4 = 0.262, SIu3
4 = 0.255.
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Figure 5: Sensitivity indices (1st order and total) on membership functions obtained on
the toy model: first line on Setting 1 (’small t-shift’) , second line on Setting 2 (’large
t-shift’). Cluster centers are recalled on top of each graph.

4.4.2. Indices of direction of change between clusters

Sensitivity indices obtained on membership function differences are pre-
sented in Fig.6 for each of the three directions of change defined by two
clusters ((1, 2), (2, 3), (3, 1)) and discussed below:
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• Setting 1: A interesting property is the importance of X2 for explaining
the variability of the model outputs along direction (2, 3). Indeed, these
two clusters differ from the amplitude of the second triangle in the
presence of a high early triangle. From the model definition, such a
transition is obtained when X2 varies while X1 is kept large. This fact
is retrieved in Fig. 6: X2 is the parameter with the highest sensitivity
on direction (2, 3), with a high level of interaction with parameter X1

(SIu23
2 = 0.357, TSIu23

2 = 0.826). The indices obtained for the two other
directions show, as expected, the high importance of X1 since it controls
the height of the first triangle.

• Setting 2: The indices computed on membership functions have high-
lighted the importance of parameter X4. Its effect is completely re-
vealed in the analysis of indices associated to direction (3, 1) corre-
sponding to the two clusters differing only by a small shift of the early
triangle center: SIu13

4 = 0.554, TSIu13
4 = 1.00. This corresponds pre-

cisely to the geometrical effect of X4 in the model definition. However,
the transition between cluster 1 and 3 only occurs when X1 takes high
values and, thus, there is also a quite high interaction effect between
X1 and X4.

4.4.3. Aggregated indices on changes between clusters

We computed the cluster-based GSIs for the two settings with a focus on
how they stress out different parameter influence as compared to classical
GSIs computed on the dynamic outputs. The results are presented in Fig.7.
A first remark is that classical GSIs and cluster-based GSIs are different, even
if in all cases they rank X1 as the most influential parameter. Such result is
not suprising, as it is an application of GSI on two different functions. A nice
property of these results lies in the indices of the other parameters: while
for both settings the classical GSIs lead to conclude that (X1, X2, X4) play
a role to explain the global variability of the output curves (with a slightly
higher effect of X4 for Setting 2), cluster-based GSIs clearly highlight their
differential effect in the two settings. Indeed, in addition to X1, only (X2, X3)
have non-negligible cluster-based GSIs for Setting 1 and (X2, X4) of Setting
2. Cluster-based GSIs are thus able to report the effect of X2 to explain
the dominant amplitude-based behaviors in Setting 1 and the effect of X4 to
explain the dominant shift-based behaviors in Setting 2.
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Figure 6: Sensitivity indices (1st order and total) on membership function differences
obtained on the toy model: first line on Setting 1 (’small t-shift’) , second line on Setting
2 (’large t-shift’). Cluster directions are recalled on top of each graph.

5. Application to a realistic environmental model

5.1. Model description

The CANTIS model simulates Carbon And Nitrogen Transformations in
Soils [23]. Soil organic matter is an important natural resource sensitive to
direct and indirect human impacts. Simulation models play an important
role to integrate and examine the understanding of its dynamics, to evaluate
human impacts on ecosystem function, and to manage soil organic matter
for greenhouse gas mitigation, improved soil health and sustainable use as a
natural resource [24]. CANTIS is made of a set of first-order ordinary differ-
ential equations modeling the dynamics of several soil organic matter pools
interacting during their evolution. These pools correspond to: soil humified
organic matter, crop residues and two microbial pools growing on the humi-
fied compartment and the crop residues, respectively. Crop residues are split
in four pools to account for the large variety of biochemical composition of
the residues. The model includes more than 20 parameters. While some of
these are well known, a dozen of them are affected by significant uncertain-
ties. The impact of these uncertainties on the dynamics of simulated outputs
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Figure 7: Comparison of classical GSIs with cluster-based GSIs (GSIs applied on the vector
of membership functions) on the two settings of the toy model.

is far to be well known due to the strong interactions between the simulated
processes and to the high variability of their dynamics. This motivated the
application of cluster-based sensitivity analysis on this model.

5.2. Numerical configuration

For this study, a standard batch configuration has been used with ini-
tial contents defined as (i) non-limiting for nitrogen, (ii) corresponding to a
residue incorporation for organic matter, and (iii) sufficient for ammonium
to generate a nitrification at the beginning of the simulation. Simulation
duration has been set to 3 months, allowing the different processes of the
model to express in our configuration.

Ten parameters were selected to vary in the sensitivity analysis experi-
ments. Their name, definition and uncertainty distributions are detailed in
Appendix A.

The simulated variable studied is the zymogenous microbial biomass, de-
signed by ZYB in the following. This is the microbial biomass growing on
the crop residues. The size of this pool varies in time depending on the
availability of the residues and on environmental conditions. The dynamics
of this microbial biomass is also closely related to the quality of the residues
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and also linked with the humification process which is a transient state to-
wards storage of carbon in soils. In addition, the activity of this biomass
largely controls the carbon dioxide emissions and the soil mineral nitrogen
concentrations, two variables measured during organic matter recycling ex-
periments. It appears interesting to identify the parameters that have the
largest influence on its dynamics.

The SobolSalt function of the R package sensitivity [22] has been used
to generate the numerical design and compute both first order, second order
and total Sobol’ sensitivity indices. It implements the asymptotically efficient
formulas given in section 4.2 of [25]. The sample size has been set to n = 2500.

Simulations have been realized using the INRAE Virtual Soil Platform.
The platform provides an easy way to use and couple numerical modules rep-
resenting processes occurring in soils. Detail information about the platform
and how to use it and contribute can be found in : http://www6.inrae.fr/vsoil.

5.3. Clustering

Results of simulations conducted on the experimental design showed a
large diversity of dynamics for ZYB. Applying the clustering on time incre-
ments curves with 4 clusters lead to a fairly clear distinction of interpretable
behaviors as shown in Fig.8:

• Cluster 1 gathers concave ZYB dynamics increasing continuously dur-
ing almost all 3 months or starting to decrease in second half of the
simulation period,

• Cluster 2 gathers convex ZYB dynamics decreasing continuously from
the beginning of the simulation,

• Cluster 3 gathers non-monotonic concave ZYB dynamics with a max-
imum reached in the first half of the simulated period,

• Cluster 4 gathers mostly continuously decreasing ZYB dynamics, con-
vex or concave, with a large variation of slopes and of values at the end
of the simulated period with respect to curves in cluster 2.

The four clusters illustrate that very different behaviors can be simulated.
Then, the question that emerges is that of the identification of the param-
eters and/or of their interactions that drive the distinction between these
behaviors.
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Figure 8: Clustering obtained on Zymogenous Biomass time increments simulated by the
Cantis model (on first line the time increments and on second line the total biomass.
Cluster centers are drawn as bold white curves. Simulated curves are represented with a
grey level representing their membership level to a given cluster (black = high membership,
light grey = low membership). X axes represent the time in days.

5.4. Sensitivity Analysis

Results of sensitivity analyses using the cluster-based approach, presented
in Fig.9 and 10, showed that only 3 parameters out of the 10 varying in
this study explain the variations of ZYB dynamics: hz, the humification
coefficient of dead ZYB, kmz, the Michaëlis-Menten constant for SOL de-
composition and kz, the ZYB mortality rate. While the sensitivity to these
parameters was expected, the analyses, however, revealed that the biomass
dynamic is relatively insensitive to the parameters k1, k2, k3 and k4 con-
trolling the decomposition of the four pools composing the crop residues.
This is probably due to the quite low level of uncertainty associated to these
parameters in this study.

Cluster-based GSIs exhibit a large impact of interactions between these
parameters which is not the case of GSIs computed on ZYB (Fig.9). Cluster-
based GSIs reveal thus much more complexity in the relationships between
these parameters and ZYB dynamics than GSIs computed on ZYB.
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Figure 9: Classical GSI indices obtained on Zymogenous biomass times series (on the left)
and on vectors of membership functions (Cluster-Based GSIs, on the right).

Fig.10 shows that kz explains about 80% of the variance of cluster 1
membership function by itself. The value of this parameter is thus of ex-
treme importance for maintaining the dynamics of ZYB at high levels. Not
surprisingly, high values of the membership function are obtained for low
values of kz, that slow down the mortality of ZYB, as shown in Fig.1 of
supplementary materials.

The variance of cluster 2 membership function is mostly explained by
kz and kmz (first orders and interaction). The values of these parameters
may thus lead to minimal values of ZYB all along the simulations. Such
behaviors are obtained when both kz and kmz take medium to high values
(see Fig. 1 and 2 of Supplementary materials). A high value of kz implies
a high mortality while at the same time high values of kmz implies a slow
growth of the biomass. A combination of such parameter values thus impedes
the growth of the biomass and leads to a decrease from the initial value.
Such a situation probably corresponds to a low decomposition of the organic
matter pools RDM, HCEL, CEL and LIG. This result exhibits that in this
configuration of parameter values, the mortality is such that it compensates
the growth due to residue decomposition.

kmz explains about 70% of the variance of cluster 3 membership function
by itself. This parameter thus clearly controls rapid dynamics of ZYB with
a high increase at the beginning of the simulation period and an early peak
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Figure 10: Sensitivity indices of membership functions obtained for Zymogenous biomass
clustering. On first line the main and total indices, and on second line the three largest
2nd-order interaction indices.

followed by a rapid decrease. Fig.1 of supplementary materials shows that
these curves are obtained for low values of kmz. This means that in this
configuration a rapid colonization of the residues by the biomass occurs which
induce a lower availability of the substrate and thus a quite early recycling
of the biomass.

The probability of ZYB dynamics to belong to cluster 4, i.e. to decrease
continuously but not too fast, is mostly dependent on kz and on its second-
order interactions with kmz and hz. Fig. 1 and 2 of supplementary materials
show that very low values of kz do not allow to conduct to such behavior
while medium to high values may, preferentially if associated with high to
low values of hz and kmz. This shows that relatively low values of kmz, which
allows a good growth at the beginning, are balanced by the death. A low
value of hz contributes to a recycling of the dead biomass by itself and hence
provides nutrients and in consequence prevents from a fast decrease due to
exhaustion of substrate. This combination of parameters values thus leads to
a death rate of the biomass slightly larger than the growth which produces
a relatively slow decrease of ZYB biomass.
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5.5. Conclusion

Clustering of ZYB dynamics revealed a large diversity of simulated be-
haviors, some of them rather rarely observed in natural systems. The cluster-
based GSA allowed identifying the parameters that govern these behaviors.
It has also indicated which density plots to look at in order to fully under-
stand the processes involved and their interactions. The analysis particularly
highlighted the importance of the competition between growing and recycling
of dead biomass on ZYB dynamics.

6. Discussion

6.1. Genericity of cluster-based GSA

The cluster-based GSA was illustrated on temporal outputs and using
a simple fuzzy clustering algorithm along with a Monte Carlo scheme to
estimate Sobol’ indices. However, the fundamental principle of the method
is to compute indices based on the cluster membership functions. As a first
consequence, the scope of application that can be dealt with cluster based
GSA is wide and concerns any output for which considering homogeneous
groups may be of interest for a modeler. It may be applied on a single
temporal or spatial output but also on a single scalar output or on multiple
outputs partitioned simultaneously.

A second consequence concerns the choice of the clustering algorithm. A
simple fuzzy clustering algorithm (the fuzzy c-means) used with euclidean
distances proved sufficient for the two case studies. However, the cluster-
based GSA is in fact generic with respect to the fuzzy algorithm used. The
only requirement is to compute membership functions or membership proba-
bilities. Thus, more advanced clustering methods and/or distances might be
considered in more challenging situations. It should also be noted that the
method can directly be transposed to crisp clustering algorithms in which
case membership functions take their values in {0, 1}. This includes the case
of expert-based manual clustering where the user identifies and classifies him-
self the different behaviors to analyze.

Finally, the same remark holds for the computational scheme used to
compute Sobol’ indices. We used a standard Monte Carlo approach to esti-
mate the Sobol’ indices, but some more advanced methods, such as the ones
based on metamodels, may be required for models with high computational
cost. Concerning the cluster-based GSI, we proposed here to compute them
from the vector of membership functions with the usual approach based on
a decomposition of the trace of the model output covariance matrix [4, 17].
Different new aggregated indices have recently been introduced [26, 27] to
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explicitly take into account linear dependencies between the considered out-
puts. Cluster-based GSA is generic enough to allow computing these indices.
Computing several types of GSI might bring complementary information on
the global impact of model inputs on the vector of membership functions,
but is beyond the scope of this paper.

6.2. Limits of cluster-based GSA

As indicated in introduction, the ability of the cluster-based indices to
provide an analysis useful to model users is dependent on the model proper-
ties on the considered experimental design. If model outputs have no struc-
ture, then clustering algorithms will not find clearly separated clusters and
there will be no additional information brought by cluster-based indices. It
may be the case for models whose outputs of interest are strongly linked to
highly variable forcing input data considered on a large domain (e.g. weather
data, soil characteristics ...). In such case, the preferred option for a sensi-
tivity study remains the ’point-based’ approach that consists in computing
sensitivity indices at each time step and/or spatial location ([28, 29, 30]).
Note however that clearer patterns may appear in highly varying outputs by
selecting temporal and/or spatial sub-domains of interest. Reordering spa-
tial locations or time w.r.t. well chosen indicators may also be investigated
for an easier interpretation, and thus clustering, of such kind of outputs (see
e.g. [31]).

6.3. Within cluster analysis

As mentioned earlier in the paper, this work is related to the concept of
target sensitivity analysis [12] which involves binary partitions of the out-
put space corresponding to a critical domain. As these authors mentioned,
such partitions raised two types of question on the parameter influence: how
model inputs drive the model outputs to the critical domain (target SA) but
also how they influence the outputs variability inside the restricted domain
(what they called conditional SA). The same complementary analysis could
be considered in the case of the cluster-based GSA, namely how parameters
influence the variation of model outputs within a cluster. Such questions
however raised the same difficulties: parameter distributions when consid-
ered conditionally to the membership of a cluster become strongly dependent
and require different estimation methods [12].

7. Conclusion

In this work, we showed how to integrate a cluster analysis inside a global
sensitivity analysis workflow in order to discuss in detail the influence of
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model inputs on the shape of model temporal or spatial outputs. The cluster
analysis is used to partition the simulated outputs into homogeneous clusters
that characterize the diversity of the output shapes, i.e. the different model
behaviors. Several dedicated Sobol’ indices built from the cluster membership
functions have been proposed to quantify (i) how the inputs drive the outputs
to a given cluster, (ii) how they influence the transitions between two given
clusters and (iii) how they influence overall changes between clusters. The
insights gained by this approach were validated on a toy example with respect
to expected model properties. The cluster-based GSA approach was then
applied to the CANTIS model. The cluster analysis successfully summarized
the main dynamics of the simulated output curves. The cluster-based indices
revealed i) the two main factors influencing these behaviors and ii) which
density plots to look at in order to fully understand the processes involved
and their interactions. Based on these results, we think that the cluster-based
GSA is a promising method to improve the understanding of spatio-temporal
models that exhibit different shapes of simulated outputs.
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Appendix A. List of Cantis model parameters selected for SA

Name Definition Unit Distribution

k1 RDM decomposition rate day−1 U [0.08, 0.24]

k2 HCE decomposition rate day−1 U [0.032, 0.096]

k3 CEL decomposition rate day−1 U [0.0485, 0.1455]

k4 LIG decomposition rate day−1 U [0.0007, 0.0021]

kmz Michaëlis - Menten constant for
SOL decomposition

- U [1, 1000]

kz ZYB decomposition rate day−1 U [0.001, 0.1]

ha Humification coefficient for AUB - U [0, 1]

hl Humification coefficient of LIG - U [0, 1]

hz Humification coefficient for ZYB - U [0, 1]

yz C assimilation yield by ZYB - U [0.3, 0.6]

where RDM is rapidly decomposable material, HCE is hemicelluloses, CEL
is cellulose, LIG is lignin, SOL is soluble organic matter, ZYB is zymogenous
biomass, AUB is autochtonous biomass and C is carbon.
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